Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Toxicol ; 24(8): 766-775, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38850470

ABSTRACT

Cognitive impairment is a commonly observed complication following myocardial infarction; however, the underlying mechanisms are still not well understood. The most recent research suggests that extracellular signal-regulated kinase (ERK) plays a critical role in the development and occurrence of cognitive dysfunction-related diseases. This study aims to explore whether the ERK inhibitor U0126 targets the ERK/Signal Transducer and Activator of Transcription 1 (STAT1) pathway to ameliorate cognitive impairment after myocardial infarction. To establish a mouse model of myocardial infarction, we utilized various techniques including Echocardiography, Hematoxylin-eosin (HE) staining, Elisa, Open field test, Elevated plus maze test, and Western blot analysis to assess mouse cardiac function, cognitive function, and signal transduction pathways. For further investigation into the mechanisms of cognitive function and signal transduction, we administered the ERK inhibitor U0126 via intraperitoneal injection. Reduced total distance and activity range were observed in mice subjected to myocardial infarction during the open field test, along with decreased exploration of the open arms in the elevated plus maze test. However, U0126 treatment exhibited a significant improvement in cognitive decline, indicating a protective effect through the inhibition of the ERK/STAT1 signaling pathway. Hence, this study highlights the involvement of the ERK/STAT1 pathway in regulating cognitive dysfunction following myocardial infarction and establishes U0126 as a promising therapeutic target.


Subject(s)
Behavior, Animal , Butadienes , Cognition , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases , Mice, Inbred C57BL , Myocardial Infarction , Nitriles , STAT1 Transcription Factor , Animals , Myocardial Infarction/enzymology , Myocardial Infarction/physiopathology , Myocardial Infarction/pathology , Myocardial Infarction/drug therapy , Cognition/drug effects , Nitriles/pharmacology , Male , Butadienes/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Behavior, Animal/drug effects , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/enzymology , Cognitive Dysfunction/prevention & control , Signal Transduction/drug effects , Elevated Plus Maze Test , Open Field Test/drug effects , Mice
SELECTION OF CITATIONS
SEARCH DETAIL