Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 474
Filter
1.
Adv Sci (Weinh) ; : e2404753, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39303219

ABSTRACT

Several studies have observed renal cell ferroptosis during cisplatin-induced acute kidney injury (AKI). However, the mechanism is not completely clear. In this study, oxidized arachidonic acid (AA) metabolites are increased in cisplatin-treated HK-2 cells. Targeted metabolomics showed that the end product of pyrimidine biosynthesis is decreased and the initiating substrate of pyrimidine biosynthesis is increased in cisplatin-treated mouse kidneys. Mitochondrial DHODH, a key enzyme for pyrimidine synthesis, and its downstream product CoQH2, are downregulated. DHODH overexpression attenuated but DHODH silence exacerbated cisplatin-induced CoQH2 depletion and lipid peroxidation. Mechanistically, renal DHODH acetylation is elevated in cisplatin-exposed mice. Mitochondrial SIRT3 is reduced in cisplatin-treated mouse kidneys and HK-2 cells. Both in vitro SIRT3 overexpression and in vivo NMN supplementation attenuated cisplatin-induced mitochondrial DHODH acetylation and renal cell ferroptosis. By contrast, Sirt3 knockout aggravated cisplatin-induced mitochondrial DHODH acetylation and renal cell ferroptosis, which can not be attenuated by NMN. Additional experiments showed that cisplatin caused mitochondrial dysfunction and SIRT3 SUMOylation. Pretreatment with mitochondria-target antioxidant MitoQ alleviated cisplatin-caused mitochondrial dysfunction, SIRT3 SUMOylation, and DHODH acetylation. MitoQ pretreatment protected against cisplatin-caused AKI and renal cell ferroptosis. Taken together, these results suggest that mitochondrial dysfunction-evoked DHODH acetylation partially contributes to renal cell ferroptosis during cisplatin-induced AKI.

2.
Article in English | MEDLINE | ID: mdl-39264683

ABSTRACT

The sophisticated environment of chronic wounds, characterized by prolonged exudation and recurrent bacterial infections, poses significant challenges to wound recovery. Recent advancements in multifunctional wound dressings fall short of providing comprehensive, accurate, and comfortable treatment. To address these issues, a battery-free and multifunctional microfluidic Janus wound dressing (MM-JWD) capable of three functions, including exudate management, antibacterial properties, and multiple indications of wound infection detection, has been developed. During the treatment, the fully soft microfluidic Janus membrane not only demonstrated stable unidirectional fluid transport capabilities under various skin deformations for a longer period but also provided antibacterial effects through surface treatment with chitosan quaternary ammonium salts and poly(vinyl alcohol). Furthermore, integrating multiple colorimetric sensors within the Janus membrane's microchannels and a dual-layer structure enabled simultaneous monitoring of the wound's pH, uric acid, and temperature. The monitoring was facilitated by smartphone recognition of color changes in the sensors. In vivo and in vitro tests confirmed the exudate management, antibacterial, and sensing capabilities of the MM-JWD, proving its efficacy in monitoring and promoting the healing of wounds. Overall, this study provides a valuable method for the design of multifunctional wound dressings for chronic wound care.

3.
Medicine (Baltimore) ; 103(36): e39300, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39252305

ABSTRACT

Pyroptosis-related genes have great potential for prognosis, an accurate prognostic model based on pyroptosis genes has not been seen in Colorectal adenocarcinoma (COAD). Furthermore, understanding the mechanisms of gene expression characteristics and the Tumor Immune Microenvironment associated with the prognosis of COAD is still largely unknown. Constructing a prognostic model based on pyroptosis-related genes, and revealing prognosis-related mechanisms associated with the gene expression characteristics and tumor microenvironment. 59 pyroptosis-related genes were collected. The gene expression data and clinical data of COAD were downloaded from The Cancer Genome Atlas. External validation datasets were downloaded from the Gene Expression Omnibus database. 10 characteristic genes with prognostic values were obtained using univariate and LASSO Cox. 10-gene Riskscore prognostic model was constructed. Both gene set enrichment analysis and network propagation methods were used to find pathways and key genes leading to different prognostic risks. The area under the ROC curves were used to evaluate the performance of the model to distinguish between high-risk and low-risk patients, the results were 0.718, 0.672, and 0.669 for 1-, 3-, and 5-year survival times. A nomogram based on Riskscore and clinical characteristics showed the probability of survival at 1, 3, and 5 years, and the calibration curves showed good agreement between the predicted and actual observations, its C-index is 0.793. The decision curves showed that the net benefit of the nomogram was significantly superior to that of the other single variables. Four key pathways leading to different prognostic risks were obtained. Six key genes with prognostic value, significant expression differences (P < .05) and significant survival differences (P < .05) between high/low risk groups were obtained from the gene set of all 4 key pathways. This study constructed a prognostic model for COAD using 10 pyroptosis-related genes with prognostic value. This study also revealed significant differences in specific pathways and the tumor immune microenvironment (TME) between the high-risk group and the low-risk group, highlighted the roles of ALDH5A1 and Wnt signaling in promoting COAD and the suppressive effects of the IL-4/IL-13 pathway and RORC on COAD. The study will be helpful for precision therapy.


Subject(s)
Colonic Neoplasms , Nomograms , Pyroptosis , Tumor Microenvironment , Humans , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Pyroptosis/genetics , Prognosis , Colonic Neoplasms/genetics , Colonic Neoplasms/mortality , Colonic Neoplasms/immunology , Risk Assessment/methods , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Male , Female , ROC Curve
4.
J Med Chem ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39287005

ABSTRACT

The biofilm formation of Pseudomonas aeruginosa involves multiple complex regulatory pathways; thus, blocking a single pathway is unlikely to achieve the desired antibiofilm efficacy. Herein, a series of hybrids of 3-hydroxypyridin-4(1H)-ones and long-chain 4-aminoquinolines were synthesized as biofilm inhibitors against P. aeruginosa based on a multipathway antibiofilm strategy. Comprehensive structure-activity relationship studies identified compound 30b as the most valuable antagonist, which significantly inhibited P. aeruginosa biofilm formation (IC50 = 5.8 µM) and various virulence phenotypes. Mechanistic studies revealed that 30b not only targets the three quorum sensing systems but also strongly induces iron deficiency signals in P. aeruginosa. Furthermore, 30b demonstrated a favorable in vitro and in vivo safety profile. Moreover, 30b specifically enhanced the antibacterial activity of tobramycin and polymyxin B in in vitro and in vivo combination therapy. Overall, these results highlight the potential of 30b as a novel anti-infective candidate for treating P. aeruginosa infections.

5.
J Hazard Mater ; 480: 135822, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39276737

ABSTRACT

Triphenyl phosphate (TPHP) and tris(1.3-dichloroisopropyl) phosphate (TDCIPP) are emerging contaminants that pervade diverse ecosystems and impair the thyroid and neural signaling pathways. The intricate interactions between thyroid and neurodevelopmental effects mediated by TPHP and TDCIPP remain elusive. This study integrates in vivo, in vitro, and in silico approaches to elucidate these mechanisms in Cyprinus carpio at varying temperatures. It showed that TPHP and TDCIPP hindered fish growth, particularly at low temperatures, by interfering with thyroid hormone synthesis and transport processes. Both compounds have been identified as environmental hormones that mimic thyroid hormone activity and potentially inhibit acetylcholinesterase, leading to neurodevelopmental disorders characterized by brain tissue damage and disrupted cholinergic synapses, such as axon guidance and regeneration. Notably, the bioaccumulation of TPHP was 881.54 % higher than that of TDCIPP, exhibiting temperature-dependent variations with higher levels of TDCIPP at low temperatures (20.50 % and 250.84 % above optimum and high temperatures, respectively), suggesting that temperature could exacerbate the toxicity effects of OPEs. This study sheds new light on the mechanisms underlying thyroid endocrine disruption and neurodevelopmental toxicity in C. carpio. More importantly, these findings indicate that temperature affects the environmental fate and effects of TPHP and TDCIPP, which could provide an important basis for ecological environmental zoning control of emerging contaminants in the future.

6.
Biochem Pharmacol ; : 116542, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39284500

ABSTRACT

The overexpression of BCL-xL is closely associated with poor prognosis in hepatocellular carcinoma (HCC). While the strategy of combination of BCL-xL and MCL-1 for treating solid tumors has been reported, it presents significant hepatotoxicity. SIAIS361034, a novel proteolysis targeting chimera (PROTAC) agent, selectively induces the ubiquitination and subsequent proteasomal degradation of BCL-xL through the CRBN-E3 ubiquitin ligase. When combined with sorafenib, SIAIS361034 showed a potent synergistic effect in inhibiting hepatocellular carcinoma development both in vitro and in vivo. Since SIAIS361034 exhibits a high degree of selectivity for degrading BCL-xL in hepatocellular carcinoma, the hepatotoxicity typically associated with the combined inhibition of BCL-xL and MCL-1 is significantly reduced, thereby greatly enhancing safety. Mechanistically, BCL-xL and MCL-1 sequester the BH3-only protein BIM on mitochondria at baseline. Treatment with SIAIS361034 and sorafenib destabilizes BIM/BCL-xL and BIM/MCL1 association, resulting in the liberation of more BIM proteins to trigger apoptosis. Additionally, we discovered a novel compensatory regulation mechanism in hepatocellular carcinoma cells. BIM can rapidly respond to changes in the balance between BCL-xL and MCL-1 through their co-transcription factor MEF2C to maintain apoptosis resistance. In summary, the combination therapy of SIAIS361034 and sorafenib represents an effective and safe approach for inhibiting hepatocellular carcinoma progression. The novel balancing mechanism may also provide insights for combination and precision therapies in the treatment of hepatocellular carcinoma.

7.
Cell Death Dis ; 15(9): 661, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256367

ABSTRACT

De novo purine synthesis metabolism plays a crucial role in tumor cell survival and malignant progression. However, the specific impact of this metabolic pathway on chemoresistance in ovarian cancer remains unclear. This study aims to elucidate the influence of de novo purine synthesis on chemoresistance in ovarian cancer and its underlying regulatory mechanisms. We analyzed metabolic differences between chemosensitive and chemoresistant ovarian cancer tissues using mass spectrometry-based metabolomics. Cell growth, metabolism, chemoresistance, and DNA damage repair characteristics were assessed in vitro using cell line models. Tumor growth and chemoresistance were assessed in vivo using ovarian cancer xenograft tumors. Intervention of purines and NEK6-mediated purine metabolism on chemoresistance was investigated at multiple levels. Chemoresistant ovarian cancers exhibited higher purine abundance and NEK6 expression. Inhibiting NEK6 led to decreased de novo purine synthesis, resulting in diminished chemoresistance in ovarian cancer cells. Mechanistically, NEK6 directly interacted with FOXO3, contributing to the phosphorylation of FOXO3 at S7 through its kinase activity, thereby inhibiting its nuclear translocation. Nuclear FOXO3 promoted FBXW7 transcription, leading to c-MYC ubiquitination and suppression of de novo purine synthesis. Paeonol, by inhibiting NEK6, suppressed de novo purine synthesis and enhanced chemosensitivity. The NEK6-mediated reprogramming of de novo purine synthesis emerges as a critical pathway influencing chemoresistance in ovarian cancer. Paeonol exhibits the potential to interfere with NEK6, thereby inhibiting chemoresistance.


Subject(s)
Drug Resistance, Neoplasm , Forkhead Box Protein O3 , NIMA-Related Kinases , Ovarian Neoplasms , Proto-Oncogene Proteins c-myc , Purines , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Drug Resistance, Neoplasm/drug effects , Purines/pharmacology , Purines/metabolism , Cell Line, Tumor , Animals , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , NIMA-Related Kinases/metabolism , NIMA-Related Kinases/genetics , Mice , Mice, Nude , Cell Nucleus/metabolism , F-Box-WD Repeat-Containing Protein 7/metabolism , F-Box-WD Repeat-Containing Protein 7/genetics , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects
8.
Biomed Pharmacother ; 178: 117264, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39146856

ABSTRACT

Paclitaxel, a potent anti-tumor drug widely recognized for its therapeutic efficacy, has faced limitations in clinical application due to its poor solubility. The use of Cremophor EL (CrEL) as a cosolvent in paclitaxel injections has been associated with hypersensitivity reactions in some patients. To overcome these challenges, we have developed a novel conjugate by linking a neuropilin-1 targeting peptide, RPPR, to paclitaxel, resulting in PTX-RPPR. This innovative approach has significantly enhanced the solubility of paclitaxel, achieving a 3.8 mg/mL concentration, a remarkable 90-fold increase over the native drug. PTX-RPPR has shown potent anti-tumor activity, inhibiting tumor cell proliferation with an IC50 ranging from 0.26 to 1.64 µM and effectively suppressing migration, invasion, and angiogenesis at a concentration of 75 nM. Notably, in a 4T1 mammary carcinoma model, PTX-RPPR administered at a dose of 0.7 µmol/kg exhibited tumor growth inhibition comparable to that of paclitaxel at a higher dose of 3.5 µmol/kg, with superior efficacy in preventing lung metastasis. Furthermore, PTX-RPPR effectively reduced NRP-1 expression in both tumors and lungs post-treatment. In contrast to paclitaxel formulated with CrEL, PTX-RPPR did not induce IL-6 expression, suggesting a safer profile in terms of immunological response. Characterized by a particle size of 200 nm and a zeta potential of +30 mV, the nano-formulation of PTX-RPPR demonstrated remarkable stability over seven days. This study introduced PTX-RPPR as a promising peptide-drug conjugate that addresses the solubility and hypersensitivity issues associated with paclitaxel, offering a safer therapeutic strategy for cancer treatment.


Subject(s)
Cell Proliferation , Mice, Inbred BALB C , Neuropilin-1 , Paclitaxel , Paclitaxel/pharmacology , Neuropilin-1/metabolism , Animals , Female , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Mice , Antineoplastic Agents, Phytogenic/pharmacology , Peptides/pharmacology , Peptides/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Cell Movement/drug effects , Neoplasm Metastasis/prevention & control , Solubility
9.
Cell Mol Life Sci ; 81(1): 373, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196292

ABSTRACT

Dental pulp stem cells (DPSCs) are responsible for maintaining pulp structure and function after pulp injury. DPSCs migrate directionally to the injury site before differentiating into odontoblast-like cells, which is a prerequisite and a determinant in pulp repair. Increasing evidence suggests that sensory neuron-stem cell crosstalk is critical for maintaining normal physiological functions, and sensory nerves influence stem cells mainly by neuropeptides. However, the role of sensory nerves on DPSC behaviors after pulp injury is largely unexplored. Here, we find that sensory nerves released significant amounts of calcitonin gene-related peptide (CGRP) near the injury site, acting directly on DPSCs via receptor activity modifying protein 1 (RAMP1) to promote collective migration of DPSCs to the injury site, and ultimately promoting pulp repair. Specifically, sensory denervation leads to poor pulp repair and ectopic mineralization, in parallel with that DPSCs failed to be recruited to the injury site. Furthermore, in vitro evidence shows that sensory nerve-deficient microenvironment suppressed DPSC migration prominently among all related behaviors. Mechanistically, the CGRP-Ramp1 axis between sensory neurons and DPSCs was screened by single-cell RNA-seq analysis and immunohistochemical studies confirmed that the expression of CGRP rather than Ramp1 increases substantially near the damaged site. We further demonstrated that CGRP released by sensory nerves binds the receptor Ramp1 on DPSCs to facilitate cell collective migration by an indirect co-culture system using conditioned medium from trigeminal neurons, CGRP recombinant protein and antagonists BIBN4096. The treatment with exogenous CGRP promoted the recruitment of DPSCs, and ultimately enhanced the quality of pulp repair. Targeting the sensory nerve could therefore provide a new strategy for stem cell-based pulp repair and regeneration.


Subject(s)
Calcitonin Gene-Related Peptide , Cell Movement , Dental Pulp , Receptor Activity-Modifying Protein 1 , Sensory Receptor Cells , Stem Cells , Dental Pulp/cytology , Dental Pulp/metabolism , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/genetics , Receptor Activity-Modifying Protein 1/metabolism , Receptor Activity-Modifying Protein 1/genetics , Stem Cells/metabolism , Stem Cells/cytology , Animals , Humans , Sensory Receptor Cells/metabolism , Mice , Male , Wound Healing/physiology , Cell Differentiation , Signal Transduction , Cells, Cultured , Rats
10.
Front Psychiatry ; 15: 1423715, 2024.
Article in English | MEDLINE | ID: mdl-39109368

ABSTRACT

The prevalence of insomnia has increased in recent years, significantly affecting the lives of many individuals. Coronavirus disease 2019 (COVID-19) infection has been found to have a substantial impact on the human gut microbiota (GM). Clinical studies have shown that the high prevalence, prolonged duration, and refractory treatment of insomnia symptoms following the COVID-19 pandemic may be related to the effect of COVID-19 infection on the GM. Therefore, the GM may be a potential target for the treatment of insomnia following COVID-19 infection. However, relevant studies have not been well-documented, and the GM has not been sufficiently analyzed in the context of insomnia treatment. Herein, we review the interaction between sleep and the GM, summarize the characteristics of COVID-19-induced abnormal changes in the GM and metabolites in patients with insomnia, and discuss potential mechanisms, including metabolic, immune, and neural pathways, by which these abnormal changes in the GM cause insomnia as well as the factors affecting the GM. Finally, we discuss the prospect of modulating the host GM community for the effective treatment of insomnia after COVID-19 infection and the need for further clinical studies.

11.
Front Immunol ; 15: 1418965, 2024.
Article in English | MEDLINE | ID: mdl-39161764

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common cancers and the third leading cause of death worldwide. surgery, transarterial chemoembolization (TACE), systemic therapy, local ablation therapy, radiotherapy, and targeted drug therapy with agents such as sorafenib. However, the tumor microenvironment of liver cancer has a strong immunosuppressive effect. Therefore, new treatments for liver cancer are still necessary. Immune checkpoint molecules, such as programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T lymphocyte antigen-4 (CTLA-4), along with high levels of immunosuppressive cytokines, induce T cell inhibition and are key mechanisms of immune escape in HCC. Recently, immunotherapy based on immune checkpoint inhibitors (ICIs) as monotherapy or in combination with tyrosine kinase inhibitors, anti-angiogenesis drugs, chemotherapy agents, and topical therapies has offered great promise in the treatment of liver cancer. In this review, we discuss the latest advances in ICIs combined with targeted drugs (targeted-immune combination) and other targeted-immune combination regimens for the treatment of patients with advanced HCC (aHCC) or unresectable HCC (uHCC), and provide an outlook on future prospects. The literature reviewed spans the last five years and includes studies identified using keywords such as "hepatocellular carcinoma," "immune checkpoint inhibitors," "targeted therapy," "combination therapy," and "immunotherapy".


Subject(s)
Carcinoma, Hepatocellular , Immune Checkpoint Inhibitors , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/immunology , Liver Neoplasms/therapy , Liver Neoplasms/immunology , Immune Checkpoint Inhibitors/therapeutic use , Tumor Microenvironment/immunology , Molecular Targeted Therapy , Animals , Immunotherapy/methods , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
12.
J Org Chem ; 89(14): 9721-9732, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38949994

ABSTRACT

The enantioselective and diastereoselective control of 1,3-dipolar cycloaddition reactions to ß-substituted cyclic enones has been developed. The 1,3-dipolar cycloaddition of phthalazinium dicyanomethanides with cyclic dienones affords chiral tetrahydropyrrolo[2,1-a]phthalazine derivatives 3 through vinylogous iminium ion activation by combining a cinchona-based primary amine C3 and a chiral camphorsulfonic acid additive. Conversely, with a weaker 3,5-bis(trifluoromethyl)benzoic acid additive, the 1,3-dipolar cycloaddition of phthalazinium dicyanomethanides with ß-substituted cyclic enones leads to chiral hexahydroisoindolo[1,2-a]phthalazin-10(8H)-one derivatives 4 with excellent stereocontrol via endo-dienamine activation.

13.
Article in English | MEDLINE | ID: mdl-38836741

ABSTRACT

Objective: To investigate the influence of preoperative detrusor muscle activity on the short-term prognosis of elderly patients diagnosed with benign prostatic hyperplasia (BPH) undergoing 1470 nm semiconductor laser surgery. Methods: A retrospective study was conducted on clinical data from 165 elderly BPH patients who underwent 1470 nm semiconductor laser surgery between May 2019 and April 2023. Patients were stratified based on preoperative urodynamic study findings, specifically their bladder contractility index (BCI). Patients with a BCI ≤100 constituted the detrusor underactivity (DU) group (n=64), while those with a BCI >100 formed the non-DU group (n=101). Surgical parameters, including duration, intraoperative blood loss, postoperative hospital stay, bladder irrigation, and catheterization duration, were compared. Additionally, changes in International Prostate Symptom Score (IPSS), Quality of Life (QOL) score, residual urine volume, and peak urinary flow rate (Qmax) were assessed before and three months after surgery in both groups. Results: There were no statistically significant differences observed between the DU and non-DU groups concerning surgical duration, intraoperative blood loss, postoperative hospitalization duration, bladder irrigation duration, and postoperative catheterization duration (P > .05). Similarly, no significant disparities were noted in the IPSS and QOL scores preoperatively and at the three-month follow-up in both groups (P > .05). Both cohorts exhibited no significant differences in residual urine volume before surgery and at the three-month mark postoperatively (P > .05). However, the postoperative Qmax was significantly reduced in the DU group compared to the non-DU group (P < .05). Conclusions: Detrusor muscle activity does not exert a significant impact on clinical symptom improvement and quality of life in elderly BPH patients treated with 1470 nm semiconductor laser surgery. However, patients with DU exhibited inferior postoperative recovery in Qmax, underscoring the importance of preoperative urodynamic studies for early intervention and enhanced surgical outcomes in this patient population.

14.
Redox Biol ; 73: 103179, 2024 07.
Article in English | MEDLINE | ID: mdl-38733909

ABSTRACT

Increasing evidences demonstrate that environmental stressors are important inducers of acute kidney injury (AKI). This study aimed to investigate the impact of exposure to Cd, an environmental stressor, on renal cell ferroptosis. Transcriptomics analyses showed that arachidonic acid (ARA) metabolic pathway was disrupted in Cd-exposed mouse kidneys. Targeted metabolomics showed that renal oxidized ARA metabolites were increased in Cd-exposed mice. Renal 4-HNE, MDA, and ACSL4, were upregulated in Cd-exposed mouse kidneys. Consistent with animal experiments, the in vitro experiments showed that mitochondrial oxidized lipids were elevated in Cd-exposed HK-2 cells. Ultrastructure showed mitochondrial membrane rupture in Cd-exposed mouse kidneys. Mitochondrial cristae were accordingly reduced in Cd-exposed mouse kidneys. Mitochondrial SIRT3, an NAD+-dependent deacetylase that regulates mitochondrial protein stability, was reduced in Cd-exposed mouse kidneys. Subsequently, mitochondrial GPX4 acetylation was elevated and mitochondrial GPX4 protein was reduced in Cd-exposed mouse kidneys. Interestingly, Cd-induced mitochondrial GPX4 acetylation and renal cell ferroptosis were exacerbated in Sirt3-/- mice. Conversely, Cd-induced mitochondrial oxidized lipids were attenuated in nicotinamide mononucleotide (NMN)-pretreated HK-2 cells. Moreover, Cd-evoked mitochondrial GPX4 acetylation and renal cell ferroptosis were alleviated in NMN-pretreated mouse kidneys. These results suggest that mitochondrial GPX4 acetylation, probably caused by SIRT3 downregulation, is involved in Cd-evoked renal cell ferroptosis.


Subject(s)
Cadmium , Ferroptosis , Mitochondria , Phospholipid Hydroperoxide Glutathione Peroxidase , Sirtuin 3 , Animals , Ferroptosis/drug effects , Mice , Cadmium/toxicity , Cadmium/adverse effects , Sirtuin 3/metabolism , Sirtuin 3/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Acetylation , Humans , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Cell Line , Male , Mice, Knockout , Coenzyme A Ligases
15.
Neuroendocrinology ; 114(8): 786-798, 2024.
Article in English | MEDLINE | ID: mdl-38815558

ABSTRACT

INTRODUCTION: Dimenhydrinate and scopolamine are frequently used drugs, but they cause drowsiness and performance decrement. Therefore, it is crucial to find peripheral targets and develop new drugs without central side effects. This study aimed to investigate the anti-motion sickness action and inner ear-related mechanisms of atrial natriuretic peptide (ANP). METHODS: Endolymph volume in the inner ear was measured with magnetic resonance imaging and expression of AQP2 and p-AQP2 was detected with Western blot analysis and immunofluorescence method. RESULTS: Both rotational stimulus and intraperitoneal arginine vasopressin (AVP) injection induced conditioned taste aversion (CTA) to 0.15% sodium saccharin solution and an increase in the endolymph volume of the inner ear. However, intraperitoneal injection of ANP effectively alleviated the CTA behaviour and reduced the increase in the endolymph volume after rotational stimulus. Intratympanic injection of ANP also inhibited rotational stimulus-induced CTA behaviour, but anantin peptide, an inhibitor of ANP receptor A (NPR-A), blocked this inhibitory effect of ANP. Both rotational stimulus and intraperitoneal AVP injection increased the expression of AQP2 and p-AQP2 in the inner ear of rats, but these increases were blunted by ANP injection. In in vitro experiments, ANP addition decreased AVP-induced increases in the expression and phosphorylation of AQP2 in cultured endolymphatic sac epithelial cells. CONCLUSION: Therefore, the present study suggests that ANP could alleviate motion sickness through regulating endolymph volume of the inner ear increased by AVP, and this action of ANP is potentially mediated by activating NPR-A and antagonising the increasing effect of AVP on AQP2 expression and phosphorylation.


Subject(s)
Arginine Vasopressin , Atrial Natriuretic Factor , Endolymph , Motion Sickness , Animals , Atrial Natriuretic Factor/pharmacology , Atrial Natriuretic Factor/metabolism , Atrial Natriuretic Factor/administration & dosage , Arginine Vasopressin/pharmacology , Arginine Vasopressin/administration & dosage , Arginine Vasopressin/metabolism , Motion Sickness/drug therapy , Male , Endolymph/drug effects , Endolymph/metabolism , Ear, Inner/drug effects , Rats, Sprague-Dawley , Aquaporin 2/metabolism , Rats
17.
Small ; : e2401892, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38794995

ABSTRACT

Inorganic solid-state electrolytes have attracted enormous attention due to their potential safety, increased energy density, and long cycle-life benefits. However, their application in solid-state batteries is limited by unstable electrode-electrolyte interface, poor point-to-point physical contact, and low utilization of metallic anodes. Herein, interfacial engineering based on sodium (Na)-conductive polymeric solid-state interfacial adhesive is studied to improve interface stability and optimize physical contacts, constructing a robust organic-rich solid electrolyte interphase layer to prevent dendrite-induced crack propagation and security issues. The interfacial adhesive strategy significantly increases the room-temperature critical current density of inorganic Na-ion conductors from 0.8 to 3.2 mA cm-2 and markedly enhances the cycling performance of solid-state batteries up to 500 cycles, respectively. Particularly, the Na3V2(PO4)3-based full solid-state batteries with high cathode loading of 10.16 mg cm-2 also deliver an excellent cycling performance, further realizing the stable operation of solid-state laminated pouch cells. The research provides fundamental perspectives into the role of interfacial chemistry and takes the field a step closer to realizing practical solid-state batteries.

18.
Biomolecules ; 14(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38785921

ABSTRACT

Musculoskeletal diseases (MSDs), including osteoarthritis (OA), osteosarcoma (OS), multiple myeloma (MM), intervertebral disc degeneration (IDD), osteoporosis (OP), and rheumatoid arthritis (RA), present noteworthy obstacles associated with pain, disability, and impaired quality of life on a global scale. In recent years, it has become increasingly apparent that N6-methyladenosine (m6A) is a key regulator in the expression of genes in a multitude of biological processes. m6A is composed of 0.1-0.4% adenylate residues, especially at the beginning of 3'-UTR near the translation stop codon. The m6A regulator can be classified into three types, namely the "writer", "reader", and "eraser". Studies have shown that the epigenetic modulation of m6A influences mRNA processing, nuclear export, translation, and splicing. Regulated cell death (RCD) is the autonomous and orderly death of cells under genetic control to maintain the stability of the internal environment. Moreover, distorted RCDs are widely used to influence the course of various diseases and receiving increasing attention from researchers. In the past few years, increasing evidence has indicated that m6A can regulate gene expression and thus influence different RCD processes, which has a central role in the etiology and evolution of MSDs. The RCDs currently confirmed to be associated with m6A are autophagy-dependent cell death, apoptosis, necroptosis, pyroptosis, ferroptosis, immunogenic cell death, NETotic cell death and oxeiptosis. The m6A-RCD axis can regulate the inflammatory response in chondrocytes and the invasive and migratory of MM cells to bone remodeling capacity, thereby influencing the development of MSDs. This review gives a complete overview of the regulatory functions on the m6A-RCD axis across muscle, bone, and cartilage. In addition, we also discuss recent advances in the control of RCD by m6A-targeted factors and explore the clinical application prospects of therapies targeting the m6A-RCD in MSD prevention and treatment. These may provide new ideas and directions for understanding the pathophysiological mechanism of MSDs and the clinical prevention and treatment of these diseases.


Subject(s)
Adenosine , Musculoskeletal Diseases , Humans , Musculoskeletal Diseases/genetics , Musculoskeletal Diseases/metabolism , Musculoskeletal Diseases/pathology , Adenosine/analogs & derivatives , Adenosine/metabolism , Cell Death/genetics , Animals , Epigenesis, Genetic
19.
Nat Commun ; 15(1): 4624, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816389

ABSTRACT

Variations in chromosome number are occasionally observed among oomycetes, a group that includes many plant pathogens, but the emergence of such variations and their effects on genome and virulence evolution remain ambiguous. We generated complete telomere-to-telomere genome assemblies for Phytophthora sojae, Globisporangium ultimum, Pythium oligandrum, and G. spinosum. Reconstructing the karyotype of the most recent common ancestor in Peronosporales revealed that frequent chromosome fusion and fission drove changes in chromosome number. Centromeres enriched with Copia-like transposons may contribute to chromosome fusion and fission events. Chromosome fusion facilitated the emergence of pathogenicity genes and their adaptive evolution. Effectors tended to duplicate in the sub-telomere regions of fused chromosomes, which exhibited evolutionary features distinct to the non-fused chromosomes. By integrating ancestral genomic dynamics and structural predictions, we have identified secreted Ankyrin repeat-containing proteins (ANKs) as a novel class of effectors in P. sojae. Phylogenetic analysis and experiments further revealed that ANK is a specifically expanded effector family in oomycetes. These results revealed chromosome dynamics in oomycete plant pathogens, and provided novel insights into karyotype and effector evolution.


Subject(s)
Evolution, Molecular , Oomycetes , Phylogeny , Telomere , Telomere/genetics , Oomycetes/genetics , Oomycetes/pathogenicity , Virulence/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Pythium/genetics , Pythium/pathogenicity , Phytophthora/genetics , Phytophthora/pathogenicity , Chromosomes/genetics , Plants/microbiology , Plants/genetics , Genome/genetics
20.
Glob Adv Integr Med Health ; 13: 27536130241241259, 2024.
Article in English | MEDLINE | ID: mdl-38585239

ABSTRACT

Background: Assessing the use and effectiveness of complementary and integrative health (CIH) therapies via survey can be complicated given CIH therapies are used in various locations and formats, the dosing required to have an effect is unclear, the potential health and well-being outcomes are many, and describing CIH therapies can be challenging. Few surveys assessing CIH therapy use and effectiveness exist, and none sufficiently reflect these complexities. Objective: In a large-scale Veterans Health Administration (VA) quality improvement effort, we developed the "Complementary and Integrative Health Therapy Patient Experience Survey", a longitudinal, electronic patient self-administered survey to comprehensively assess CIH therapy use and outcomes. Methods: We obtained guidance from the literature, subject matter experts, and Veteran patients who used CIH therapies in designing the survey. As a validity check, we completed cognitive testing and interviews with those patients. We conducted the survey (March 2021-April 2023), inviting 15,608 Veterans with chronic musculoskeletal pain with a recent CIH appointment or referral identified in VA electronic medical records (EMR) to participate. As a second validity check, we compared VA EMR data and patient self-reports of CIH therapy utilization a month after survey initiation and again at survey conclusion. Results: The 64-item, electronic survey assesses CIH dosing (amount and timing), delivery format and location, provider location, and payor. It also assesses 7 patient-reported outcomes (pain, global mental health, global physical health, depression, quality of life, stress, and meaning/purpose in life), and 3 potential mediators (perceived health competency, healthcare engagement, and self-efficacy for managing diseases). The survey took 17 minutes on average to complete and had a baseline response rate of 45.3%. We found high degrees of concordance between self-reported and EMR data for all therapies except meditation. Conclusions: Validly assessing patient-reported CIH therapy use and outcomes is complex, but possible.

SELECTION OF CITATIONS
SEARCH DETAIL