Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 402
Filter
1.
J Mater Chem B ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984467

ABSTRACT

An increasing number of studies demonstrate that biphasic calcium phosphate (BCP) ceramics can induce bone regeneration. However, the underlying molecular mechanisms involved are still poorly understood. This work was proposed to investigate how PI3K/AKT/mTOR signaling influenced the osteogenesis mediated by BCP ceramics. The results showed that incubation with BCP ceramics promoted the proliferation of murine bone marrow-derived mesenchymal stem cells (BMSCs) in a time-dependent manner. The resulting cell proliferation was then suppressed by the selective inhibition of either PI3K, AKT, or mTOR signaling activation. Next, we confirmed that BCP ceramics up-regulated the phosphorylation levels of AKT and mTOR in BMSCs, suggesting the ability of BCP ceramics to drive the activation of PI3K/AKT/mTOR signaling in BMSCs. Furthermore, the blockade of PI3K/AKT/mTOR signaling prevented BCP ceramics-induced osteogenic differentiation and pro-angiogenesis of BMSCs by down-regulating the expression of genes encoding OPN, RUNX2 or VEGF. Moreover, the PI3K/AKT/mTOR signaling blockade suppressed stem cell infiltration and new bone formation in the implants following intra-muscular implantation of BCP ceramics in mice. Therefore, our results suggested that PI3K/AKT/mTOR signaling played a critical regulatory role in BCP ceramic-induced osteogenesis.

2.
Article in English | MEDLINE | ID: mdl-38953613

ABSTRACT

Osteoblasts and osteoclasts are two of the most important types of cells in bone repair, and their bone-forming and bone-resorbing activities influence the process of bone repair. In this study, we proposed a physicochemical bidirectional regulation strategy via ration by physically utilizing hydroxyapatite nanopatterning to recruit and induce MSCs osteogenic differentiation and by chemically inhibiting osteolysis activity through the loaded zoledronate. The nanorod-like hydroxyapatite coating was fabricated via a modified hydrothermal process while the zoledronic acid was loaded through the chelation within the calcium ions. The fabrication of a hydroxyapatite/zoledronic acid composite biomaterial. This biomaterial promotes bone tissue regeneration by physically utilizing hydroxyapatite nanopatterning to recruit and induce MSCs osteogenic differentiation and by chemically inhibiting osteolysis activity through the loaded zoledronate. The nanorod-like hydroxyapatite coating was fabricated via a modified hydrothermal process while the zoledronic acid was loaded through the chelation within the calcium ions. The in vitro results tested on MSCs and RAW 246.7 indicated that the hydroxyapatite enhanced cells' physical sensing system, therefore enhancing the osteogenesis. At the same time the zoledronic acid inhibited osteolysis by downregulating the RANK-related genes. This research provides a promising strategy for enhancing bone regeneration and contributes to the field of orthopedic implants.

3.
J Mater Chem B ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904349

ABSTRACT

The management of chronic infected wounds poses significant challenges due to frequent bacterial infections, high concentrations of reactive oxygen species, abnormal immune regulation, and impaired angiogenesis. This study introduces a novel, microenvironment-responsive, dual dynamic, and covalently bonded hydrogel, termed OHA-P-TA/G/Mg2+. It is derived from the reaction of tannic acid (TA) with phenylboronic acids (PBA), which are grafted onto oxidized hyaluronic acid (OHA-P-TA), combined with GelMA (G) via a Schiff base and chemical bonds, along with the incorporation of Mg2+. This hydrogel exhibits pH and ROS dual-responsiveness, demonstrating effective antibacterial capacity, antioxidant ability, and the anti-inflammatory ability under distinct acidic and oxidative microenvironments. Furthermore, the release of Mg2+ from the TA-Mg2+ network (TA@Mg2+) promotes the transformation of pro-inflammatory M1 phenotype macrophages to anti-inflammatory M2 phenotype, showing a microenvironment-responsive response. Finally, in vivo results indicate that the OHA-P-TA/G/Mg2+ hydrogel enhances epithelial regeneration, collagen deposition, and neovascularization, showing great potential as an effective dressing for infected wound repair.

4.
Nanoscale ; 16(24): 11762-11773, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38869001

ABSTRACT

Nanohydroxyapatite (nHAp) has attracted significant attention for its tumor suppression and tumor microenvironment modulation capabilities. However, a strong tendency to aggregate greatly affects its anti-tumor efficiency. To address this issue, a hydrogel platform consisting of thiolated hyaluronic acid (HA-SH) modified nanohydroxyapatite (nHAp-HA) and HA-SH was developed for sustained delivery of nHAp for melanoma therapy. The hydrophilic and negatively charged HA-SH significantly improved the size dispersion and stability of nHAp in aqueous media while conferring nHAp targeting effects. Covalent sulfhydryl self-cross-linking between HA-SH and nHAp-HA groups ensured homogeneous dispersion of nHAp in the matrix material. Meanwhile, the modification of HA-SH conferred the targeting properties of nHAp and enhanced cellular uptake through the HA/CD44 receptor. The hydrogel platform could effectively reduce the aggregation of nHAp and release nHAp in a sustained and orderly manner. Antitumor experiments showed that the modified nHAp-HA retained the tumor cytotoxicity of nHAp in vitro and inhibited the growth of highly malignant melanomas up to 78.6% while being able to induce the differentiation of macrophages to the M1 pro-inflammatory and antitumor phenotype. This study will broaden the application of nanohydroxyapatite in tumor therapy.


Subject(s)
Durapatite , Hyaluronic Acid , Hydrogels , Melanoma , Durapatite/chemistry , Durapatite/pharmacology , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Mice , Melanoma/drug therapy , Melanoma/pathology , Melanoma/metabolism , Cell Line, Tumor , Humans , Hyaluronan Receptors/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Nanoparticles/chemistry , RAW 264.7 Cells
5.
Int J Biol Macromol ; : 133202, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38889828

ABSTRACT

Bone tissue engineering has emerged as a pivotal field addressing the critical clinical needs of bone fractures. This study focused on developing multi-composite hydrogels by synergizing biocompatible GelMA macromolecules with synthetic PEGDA and reinforcing them with nanosilicates (SN). The incorporation of SN introduces crucial trace elements such as silicon, magnesium, and lithium, promoting both angiogenesis and osteogenesis. Characterizations revealed that PEGDA significantly reinforced the composite hydrogels' stability, while SN further enhanced the mechanical integrity of the GelMA-PEGDA-SN (GPS) hydrogels. Cell studies designated that GPS improved cell proliferation and migration, angiogenic VEGF/eNOS expression and osteogenic differentiation. In vivo experiments showed that GPS hydrogels effectively enhanced calvarial bone healing, with the GPS-2 formulation (2 % SN) displaying superior bone coverage and increased vascular formation. Assessments of osteogenic formation and the angiogenic marker CD31 validated the comprehensive bone regeneration potential of GPS hydrogels. These findings highlight the significant promise of GPS hydrogels in fostering bone healing with promoted angiogenesis.

6.
J Mater Chem B ; 12(25): 6117-6127, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38841904

ABSTRACT

Typically occurring after trauma or neurosurgery treatments, dura mater defect and the ensuing cerebrospinal fluid (CSF) leakage could lead to a number of serious complications and even patient's death. Although numerous natural and synthetic dura mater substitutes have been reported, none of them have been able to fulfill the essential properties, such as anti-adhesion, leakage blockage, and pro-dura rebuilding. In this study, we devised and prepared a series of robust and biodegradable hydroxyapatite/poly(lactide-co-ε-caprolactone) (nHA/PLCL) membranes for dura repair via an electrospinning technique. In particular, PLLA/PCL (80/20) was selected for electrospinning due to its mechanical properties that most closely resembled natural dural tissue. Studies by SEM, XRD, water contact angle and in vitro degradation showed that the introduction of nHA would destroy PLCL's crystalline structure, which would further affect the mechanical properties of the nHA/PLCL membranes. When the amount of nHA added increased, so did the wettability and in vitro degradation rate, which accelerated the release of nHA. In addition, the high biocompatibility of nHA/PLCL membranes was demonstrated by in vitro cytotoxicity data. The in vivo rabbit dura repair model results showed that nHA/PLCL membranes provided a strong physical barrier to stop tissue adhesion at dura defects. Meanwhile, the nHA/PLCL and commercial group's CSF had a significantly lower number of inflammatory cells than the control groups, validating the nHA/PLCL's ability to effectively lower the risk of intracranial infection. Findings from H&E and Masson-trichrome staining verified that the nHA/PLCL electrospun membrane was more favorable for fostering dural defect repair and skull regeneration. Moreover, the relative molecular weight of PLCL declined dramatically after 3 months of implantation, according to the results of the in vivo degradation test, but it retained the fiber network structure and promoted tissue growth, demonstrating the good stability of the nHA/PLCL membranes. Collectively, the nHA/PLCL electrospun membrane presents itself as a viable option for dura repair.


Subject(s)
Biocompatible Materials , Dura Mater , Durapatite , Polyesters , Dura Mater/surgery , Dura Mater/drug effects , Polyesters/chemistry , Polyesters/pharmacology , Animals , Durapatite/chemistry , Durapatite/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Rabbits , Membranes, Artificial , Materials Testing
7.
Acta Biomater ; 181: 440-452, 2024 06.
Article in English | MEDLINE | ID: mdl-38729546

ABSTRACT

The treatment of full-thickness skin injuries complicated by severe infection is hampered by the lack of comprehensive solutions that can regulate the various stages of wound healing. Consequently, there is an urgent need for a multifunctional dressing capable of multi-level regulation. In this study, we propose a novel solution by covalently integrating ε-poly-l-lysine-grafted gallic acid (EG) and in situ bioreduced silver nanoparticles (AgNPs) onto nano-hydroxyapatite (nHAP), thereby developing a multi-layered, multifunctional nanoplatform (nHEA). Cell experiments have shown that, compared to nHAP and nHAP loaded only with EG (nHEG), the addition of AgNPs to nHEA confers excellent antibacterial properties while maintaining optimal biocompatibility. The incorporation of EG onto nHEG and nHEA imparts antioxidation, anti-inflammatory, and pro-angiogenic functions, and the release of Ca2+ and EG further enhances fibroblast migration and collagen secretion. In a rat model of full-thickness skin injury with severe infection, nHEA demonstrates remarkable antibacterial and anti-inflammatory effects, along with promoting collagen remodeling and regeneration. Together, both cell experiments and animal studies confirm the significant potential of this innovative multifunctional nanoplatform in the treatment of full-thickness skin injuries with severe infection. STATEMENT OF SIGNIFICANCE: Treating infected full-thickness skin injuries poses a longstanding challenge due to the lack of comprehensive solutions that can regulate different stages of wound healing. This study introduces a novel multifunctional nanoplatform, nHEA, developed by covalently integrating ε-poly-l-lysine grafted with gallic acid (EG) and in situ bioreduced AgNPs onto nano-hydroxyapatite (nHAP). Cell experiments reveal that the integration of AgNPs enhances nHEA's antibacterial performance while maintaining optimal biocompatibility. The inclusion of EG bestows antioxidant, inflammation-regulating, and angiogenetic properties upon nHEA, and the release of Ca2+ and EG stimulates the migration and collagen secretion of fibroblast cells. Consequently, nHEA exhibits superior antibacterial and inflammation-regulating efficacy, and stimulates collagen remodeling and regeneration in vivo, making it a promising treatment for severely infected skin injuries.


Subject(s)
Durapatite , Skin , Animals , Durapatite/chemistry , Durapatite/pharmacology , Skin/pathology , Skin/drug effects , Skin/injuries , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gallic Acid/pharmacology , Gallic Acid/chemistry , Wound Healing/drug effects , Rats , Rats, Sprague-Dawley , Humans , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Male , Mice
8.
Biomaterials ; 309: 122601, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38713973

ABSTRACT

Injectable hydrogels are promising for treatment of bone defects in clinic owing to their minimally invasive procedure. Currently, there is limited emphasis on how to utilize injectable hydrogels to mobilize body's regenerative potential for enhancing bone regeneration. Herein, an injectable bone-mimicking hydrogel (BMH) scaffold assembled from nanocomposite microgel building blocks was developed, in which a highly interconnected microporous structure and an inorganic/organic (methacrylated hydroxyapatite and methacrylated gelatin) interweaved nano structure were well-designed. Compared with hydrogels lacking micro-nano structures or only showing microporous structure, the BMH scaffold enhanced the ingrowth of vessels and promoted the formation of dense cellular networks (including stem cells and M2 macrophages), across the entire scaffold at early stage after subcutaneous implantation. Moreover, the BMH scaffold could not only directly trigger osteogenic differentiation of the infiltrated stem cells, but also provided an instructive osteo-immune microenvironment by inducing macrophages into M2 phenotype. Mechanistically, our results reveal that the nano-rough structure of the BMH plays an essential role in inducing macrophage M2 polarization through activating mechanotransduction related RhoA/ROCK2 pathway. Overall, this work offers an injectable hydrogel with micro-nano structure driven bio-responsive abilities, highlighting harnessing body's inherent regenerative potential to realize bone regeneration.


Subject(s)
Bone Regeneration , Hydrogels , Nanocomposites , Osteogenesis , Tissue Scaffolds , Bone Regeneration/drug effects , Hydrogels/chemistry , Nanocomposites/chemistry , Animals , Tissue Scaffolds/chemistry , Osteogenesis/drug effects , Macrophages/metabolism , Macrophages/drug effects , Macrophages/cytology , Mice , Cell Differentiation/drug effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , RAW 264.7 Cells , Durapatite/chemistry , Tissue Engineering/methods , Injections , Gelatin/chemistry
9.
ACS Nano ; 18(20): 12870-12884, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38727063

ABSTRACT

Epirubicin (EPI) alone can trigger mildly protective autophagy in residual tumor cells, resulting in an immunosuppressive microenvironment. This accelerates the recurrence of residual tumors and leads to antiprogrammed death ligand 1 (anti-PD-1)/PD-L1 therapy resistance, posing a significant clinical challenge in tumor immunotherapy. The combination of checkpoint inhibitors targeting the PD-1/PD-L1 pathway and amplifying autophagy presents an innovative approach to tumor treatment, which can prevent tumor immune escape and enhance therapeutic recognition. Herein, we aimed to synthesize a redox-triggered autophagy-induced nanoplatform with SA&EA-induced PD-L1 inhibition. The hyaluronic acid (HA) skeleton and arginine segment promoted active nanoplatform targeting, cell uptake, and penetration. The PLGLAG peptide was cleaved by overexpressing matrix metalloproteinase-2 (MMP-2) in the tumor microenvironment, and the PD-L1 inhibitor D-PPA was released to inhibit tumor immune escape. The intense autophagy inducers, STF-62247 and EPI, were released owing to the cleavage of disulfide bonds influenced by the high glutathione (GSH) concentration in tumor cells. The combination of EPI and STF induced apoptosis and autophagic cell death, effectively eliminating a majority of tumor cells. This indicated that the SA&EA nanoplatform has better therapeutic efficacy than the single STF@AHMPP and EPI@AHMPTP groups. This research provided a way to set up a redox-triggered autophagy-induced nanoplatform with PD-L1 inhibition to enhance chemo-immunotherapy.


Subject(s)
Autophagy , B7-H1 Antigen , Immunotherapy , Nanoparticles , Oxidation-Reduction , Autophagy/drug effects , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Animals , Humans , Mice , Nanoparticles/chemistry , Tumor Microenvironment/drug effects , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Drug Screening Assays, Antitumor
10.
Biomed Mater ; 19(4)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38815599

ABSTRACT

Literature on osteoimmunology has demonstrated that macrophages have a great influence on biomaterial-induced bone formation. However, there are almost no reports clarifying the osteo-immunomodulatory capacity of macrophage-derived extracellular vesicles (EVs). This study comprehensively investigated the effects of EVs derived from macrophages treated with biphasic calcium phosphate (BCP) ceramics (BEVs) on vital events associated with BCP-induced bone formation such as immune response, angiogenesis, and osteogenesis. It was found that compared with EVs derived from macrophages alone (control, CEVs), BEVs preferentially promoted macrophage polarization towards a wound-healing M2 phenotype, enhanced migration, angiogenic differentiation, and tube formation of human umbilical vein endothelial cells, and induced osteogenic differentiation of mesenchymal stem cells. Analysis of 15 differentially expressed microRNAs (DEMs) related to immune, angiogenesis, and osteogenesis suggested that BEVs exhibited good immunomodulatory, pro-angiogenic, and pro-osteogenic abilities, which might be attributed to their specific miRNA cargos. These findings not only deepen our understanding of biomaterial-mediated osteoinduction, but also suggest that EVs derived from biomaterial-treated macrophages hold great promise as therapeutic agents with desired immunomodulatory capacity for bone regeneration.


Subject(s)
Bone Regeneration , Cell Differentiation , Ceramics , Extracellular Vesicles , Human Umbilical Vein Endothelial Cells , Macrophages , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Bone Regeneration/drug effects , Extracellular Vesicles/metabolism , Humans , Macrophages/metabolism , Macrophages/drug effects , Osteogenesis/drug effects , Ceramics/chemistry , Ceramics/pharmacology , MicroRNAs/metabolism , Animals , Cell Differentiation/drug effects , Mice , Mesenchymal Stem Cells/cytology , RAW 264.7 Cells , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Hydroxyapatites/chemistry , Hydroxyapatites/pharmacology , Neovascularization, Physiologic/drug effects , Cell Movement/drug effects
11.
J Colloid Interface Sci ; 671: 312-324, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38815368

ABSTRACT

The skin has a multilayered structure, and deep-seated injuries are exposed to external microbial invasion and in vivo microenvironmental destabilization. Here, a bilayer bionic skin scaffold (Bilayer SF) was developed based on methacrylated sericin protein to mimic the skin's multilayered structure and corresponding functions. The outer layer (SF@TA), which mimics the epidermal layer, was endowed with the function of resisting external bacterial and microbial invasion using a small pore structure and bio-crosslinking with tannic acid (TA). The inner layer (SF@DA@Gel), which mimics the dermal layer, was used to promote cellular growth using a large pore structure and introducing dopamine (DA) to regulate the wound microenvironment. This Bilayer SF showed good mechanical properties and structural stability, satisfactory antioxidant and promote cell proliferation and migration abilities. In vitro studies confirmed the antimicrobial properties of the outer layer and the pro-angiogenic ability of the inner layer. In vivo animal studies demonstrated that the bilayer scaffolds promoted collagen deposition, neovascularization, and marginal hair follicle formation, which might be a promising new bionic skin scaffold.


Subject(s)
Cell Proliferation , Hydrogels , Neovascularization, Physiologic , Skin , Porosity , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Cell Proliferation/drug effects , Neovascularization, Physiologic/drug effects , Skin/drug effects , Regeneration/drug effects , Humans , Mice , Tissue Scaffolds/chemistry , Sericins/chemistry , Sericins/pharmacology , Surface Properties , Cell Movement/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Angiogenesis
12.
Regen Biomater ; 11: rbae038, 2024.
Article in English | MEDLINE | ID: mdl-38799701

ABSTRACT

Despite a growing body of studies demonstrating the specific anti-tumor effect of nano-hydroxyapatite (n-HA), the underlying mechanism remained unclear. Endoplasmic reticulum (ER) and mitochondria are two key players in intracellular Ca2+ homeostasis and both require Ca2+ to participate. Moreover, the ER-mitochondria interplay coordinates the maintenance of cellular Ca2+ homeostasis to prevent any negative consequences from excess of Ca2+, hence there needs in-depth study of n-HA effect on them. In this study, we fabricated needle-like n-HA to investigate the anti-tumor effectiveness as well as the underlying mechanisms from cellular and molecular perspectives. Data from in vitro experiments indicated that the growth and invasion of glioma cells were obviously reduced with the aid of n-HA. It is interesting to note that the expression of ER stress biomarkers (GRP78, p-IRE1, p-PERK, PERK, and ATF6) were all upregulated after n-HA treatment, along with the activation of the pro-apoptotic transcription factor CHOP, showing that ER stress produced by n-HA triggered cell apoptosis. Moreover, the increased expression level of intracellular reactive oxygen species and the mitochondrial membrane depolarization, as well as the downstream cell apoptotic signaling activation, further demonstrated the pro-apoptotic roles of n-HA induced Ca2+ overload through inducing mitochondria damage. The in vivo data provided additional evidence that n-HA caused ER stress and mitochondria damage in cells and effectively restrain the growth of glioma tumors. Collectively, the work showed that n-HA co-activated intracellular ER stress and mitochondria damage are critical triggers for cancer cells apoptosis, offering fresh perspectives on ER-mitochondria targeted anti-tumor therapy.

13.
J Mater Chem B ; 12(17): 4217-4231, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38596904

ABSTRACT

Numerous studies have shown that there are multiple neural activities involved in the process of bone resorption and bone regeneration, and promoting osteogenesis by promoting neural network reconstruction is an effective strategy for repairing critical size bone defects. However, traumatic bone defects often cause activation of the sympathetic nervous system (SNS) in the damaged area, releasing excess catecholamines (CAs), resulting in a decrease in the rate of bone formation. Herein, a 3D-printed scaffold loaded with propranolol (PRN) is proposed to reduce CA concentrations in bone defect areas and promote bone regeneration through drug release. For this purpose, PRN-loaded methacrylated gelatin (GelMA) microspheres were mixed with low-concentration GelMA and perfused into a 3D-printed porous hydroxyapatite (HAp) scaffold. By releasing PRN, which can block ß-adrenergic receptors, it hinders the activation of sympathetic nerves and inhibits the release of excess CA by the SNS. At the same time, the composite scaffold recruits bone marrow mesenchymal stem cells (BMSCs) and promotes the differentiation of BMSCs in the direction of osteoblasts, which effectively promotes bone regeneration in the rabbit femoral condyle defect model. The results of the study showed that the release of PRN from the composite scaffold could effectively hinder the activation of sympathetic nerves and promote bone regeneration, providing a new strategy for the treatment of bone defects.


Subject(s)
Bone Regeneration , Mesenchymal Stem Cells , Printing, Three-Dimensional , Sympathetic Nervous System , Tissue Scaffolds , Bone Regeneration/drug effects , Animals , Rabbits , Sympathetic Nervous System/drug effects , Mesenchymal Stem Cells/drug effects , Tissue Scaffolds/chemistry , Propranolol/pharmacology , Propranolol/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Gelatin/chemistry , Osteogenesis/drug effects , Durapatite/chemistry , Durapatite/pharmacology
14.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673726

ABSTRACT

Bone tumors, particularly osteosarcoma, are prevalent among children and adolescents. This ailment has emerged as the second most frequent cause of cancer-related mortality in adolescents. Conventional treatment methods comprise extensive surgical resection, radiotherapy, and chemotherapy. Consequently, the management of bone tumors and bone regeneration poses significant clinical challenges. Photothermal tumor therapy has attracted considerable attention owing to its minimal invasiveness and high selectivity. However, key challenges have limited its widespread clinical use. Enhancing the tumor specificity of photosensitizers through targeting or localized activation holds potential for better outcomes with fewer adverse effects. Combinations with chemotherapies or immunotherapies also present avenues for improvement. In this review, we provide an overview of the most recent strategies aimed at overcoming the limitations of photothermal therapy (PTT), along with current research directions in the context of bone tumors, including (1) target strategies, (2) photothermal therapy combined with multiple therapies (immunotherapies, chemotherapies, and chemodynamic therapies, magnetic, and photodynamic therapies), and (3) bifunctional scaffolds for photothermal therapy and bone regeneration. We delve into the pros and cons of these combination methods and explore current research focal points. Lastly, we address the challenges and prospects of photothermal combination therapy.


Subject(s)
Bone Neoplasms , Infrared Rays , Photothermal Therapy , Humans , Bone Neoplasms/therapy , Photothermal Therapy/methods , Infrared Rays/therapeutic use , Animals , Photosensitizing Agents/therapeutic use , Osteosarcoma/therapy , Osteosarcoma/pathology , Combined Modality Therapy/methods , Immunotherapy/methods , Photochemotherapy/methods , Bone Regeneration
15.
Acta Biomater ; 179: 95-105, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38513723

ABSTRACT

The osteoarthritic (OA) environment within articular cartilage poses significant challenges, resulting in chondrocyte dysfunction and cartilage matrix degradation. While intra-articular injections of anti-inflammatory drugs, biomaterials, or bioactive agents have demonstrated some effectiveness, they primarily provide temporary relief from OA pain without arresting OA progression. This study presents an injectable cartilage-coating composite, comprising hyaluronic acid and decellularized cartilage matrix integrated with specific linker polymers. It enhances the material retention, protection, and lubrication on the cartilage surface, thereby providing an effective physical barrier against inflammatory factors and reducing the friction and shear force associated with OA joint movement. Moreover, the composite gradually releases nutrients, nourishing OA chondrocytes, aiding in the recovery of cellular function, promoting cartilage-specific matrix production, and mitigating OA progression in a rat model. Overall, this injectable cartilage-coating composite offers promising potential as an effective cell-free treatment for OA. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) in the articular cartilage leads to chondrocyte dysfunction and cartilage matrix degradation. This study introduces an intra-articular injectable composite material (HDC), composed of decellularized cartilage matrix (dECMs), hyaluronan (HA), and specially designed linker polymers to provide an effective cell-free OA treatment. The linker polymers bind HA and dECMs to form an integrated HDC structure with an enhanced degradation rate, potentially reducing the need for frequent injections and associated trauma. They also enable HDC to specifically coat the cartilage surface, forming a protective and lubricating layer that enhances long-term retention, acts as a barrier against inflammatory factors, and reduces joint movement friction. Furthermore, HDC nourishes OA chondrocytes through gradual nutrient release, aiding cellular function recovery, promoting cartilage-specific matrix production, and mitigating OA progression.


Subject(s)
Cartilage, Articular , Chondrocytes , Osteoarthritis , Rats, Sprague-Dawley , Animals , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Osteoarthritis/pathology , Osteoarthritis/drug therapy , Osteoarthritis/therapy , Cartilage, Articular/pathology , Cartilage, Articular/drug effects , Rats , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Lubrication , Male , Cattle , Injections, Intra-Articular
16.
J Mater Chem B ; 12(9): 2282-2293, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38323909

ABSTRACT

Skin has a protein microenvironment dominated by functional collagen fibers, while oxidative stress caused by injury can greatly slow down the progress of wound healing. Here, methacrylated dopamine was incorporated into methacrylated silk fibroin molecule chains to develop an injectable hydrogel with photocuring properties for constructing an antioxidant skin protein microenvironment. This silk fibroin-based hydrogel (SF-g-SDA) showed good tensile and adhesion properties for adapting to the wound shape and skin movement, exhibited stable mechanical properties, good biodegradability and cytocompatibility, and promoted cell adhesion and vascularization in vitro. In addition, its phenolic hydroxyl-mediated antioxidant properties effectively protected cells from damage caused by oxidative stress and supported normal cellular life activities. In animal experiments, SF-g-SDA achieved better skin repair effects in comparison to commercial Tegaderm™ in vivo, showing its ability to accelerate wound healing, improve collagen deposition and alignment in newly fabricated tissues, and promote neovascularization and hair follicle formation. These experimental results indicated that the SF-g-SDA hydrogel is a promising wound dressing.


Subject(s)
Fibroins , Animals , Fibroins/pharmacology , Antioxidants/pharmacology , Hydrogels/pharmacology , Wound Healing , Collagen/metabolism
17.
Small ; : e2310689, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421135

ABSTRACT

Improving the interconnected structure and bioregulatory function of natural chitosan is beneficial for optimizing its performance in bone regeneration. Here, a facile immunoregulatory constructional design is proposed for developing instructive chitosan by directional freezing and alkaline salting out. The molecular dynamics simulation confirmed the assembly kinetics and structural features of various polyphenols and chitosan molecules. Along with the in vitro anti-inflammatory, antioxidative, promoting bone mesenchymal stem cell (BMSC) adhesion and proliferation performance, proanthocyanidin optimizing chitosan (ChiO) scaffold presented an optimal immunoregulatory structure with the directional microchannel. Transcriptome analysis in vitro further revealed the cytoskeleton- and immune-regulation effect of ChiO are the key mechanism of action on BMSC. The rabbit cranial defect model (Φ = 10 mm) after 12 weeks of implantation confirmed the significantly enhanced bone reconstitution. This facile immunoregulatory directional microchannel design provides effective guidance for developing inducible chitosan scaffolds.

18.
Nat Commun ; 15(1): 1488, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374253

ABSTRACT

The assembly of oligopeptide and polypeptide molecules can reconstruct various ordered advanced structures through intermolecular interactions to achieve protein-like biofunction. Here, we develop a "molecular velcro"-inspired peptide and gelatin co-assembly strategy, in which amphiphilic supramolecular tripeptides are attached to the molecular chain of gelatin methacryloyl via intra-/intermolecular interactions. We perform molecular docking and dynamics simulations to demonstrate the feasibility of this strategy and reveal the advanced structural transition of the co-assembled hydrogel, which brings more ordered ß-sheet content and 10-fold or more compressive strength improvement. We conduct transcriptome analysis to reveal the role of co-assembled hydrogel in promoting cell proliferation and chondrogenic differentiation. Subcutaneous implantation evaluation confirms considerably reduced inflammatory responses and immunogenicity in comparison with type I collagen. We demonstrate that bone mesenchymal stem cells-laden co-assembled hydrogel can be stably fixed in rabbit knee joint defects by photocuring, which significantly facilitates hyaline cartilage regeneration after three months. This co-assembly strategy provides an approach for developing cartilage regenerative biomaterials.


Subject(s)
Cartilage, Articular , Cartilage , Animals , Rabbits , Molecular Docking Simulation , Cartilage/physiology , Hydrogels/chemistry , Biocompatible Materials/chemistry , Cell Differentiation , Peptides , Protein Conformation , Tissue Engineering , Chondrogenesis
19.
Adv Healthc Mater ; 13(12): e2303600, 2024 05.
Article in English | MEDLINE | ID: mdl-38303119

ABSTRACT

Bone regenerative scaffolds with a bionic natural bone hierarchical porous structure provide a suitable microenvironment for cell migration and proliferation. Here, a bionic scaffold (DP-PLGA/HAp) with directional microchannels is prepared by combining 3D printing and directional freezing technology. The 3D printed framework provides structural support for new bone tissue growth, while the directional pore embedded in the scaffolds provides an express lane for cell migration and nutrition transport, facilitating cell growth and differentiation. The hierarchical porous scaffolds achieve rapid infiltration and adhesion of bone marrow mesenchymal stem cells (BMSCs) and improve the expression of osteogenesis-related genes. The rabbit cranial defect experiment presents significant new bone formation, demonstrating that DP-PLGA/HAp offers an effective means to guide cranial bone regeneration. The combination of 3D printing and directional freezing technology might be a promising strategy for developing bone regenerative biomaterials.


Subject(s)
Bone Regeneration , Mesenchymal Stem Cells , Osteogenesis , Printing, Three-Dimensional , Tissue Scaffolds , Bone Regeneration/physiology , Animals , Rabbits , Tissue Scaffolds/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects , Osteogenesis/physiology , Porosity , Cell Differentiation , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Tissue Engineering/methods , Cell Proliferation , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Durapatite/chemistry
20.
Adv Mater ; 36(19): e2310876, 2024 May.
Article in English | MEDLINE | ID: mdl-38321645

ABSTRACT

Structural and physiological cues provide guidance for the directional migration and spatial organization of endogenous cells. Here, a microchannel scaffold with instructive niches is developed using a circumferential freeze-casting technique with an alkaline salting-out strategy. Thereinto, polydopamine-coated nano-hydroxyapatite is employed as a functional inorganic linker to participate in the entanglement and crystallization of chitosan molecules. This scaffold orchestrates the advantage of an oriented porous structure for rapid cell infiltration and satisfactory immunomodulatory capacity to promote stem cell recruitment, retention, and subsequent osteogenic differentiation. Transcriptomic analysis as well as its in vitro and in vivo verification demonstrates that essential colony-stimulating factor-1 (CSF-1) factor is induced by this scaffold, and effectively bound to the target colony-stimulating factor-1 receptor (CSF-1R) on the macrophage surface to activate the M2 phenotype, achieving substantial endogenous bone regeneration. This strategy provides a simple and efficient approach for engineering inducible bone regenerative biomaterials.


Subject(s)
Bone Regeneration , Durapatite , Macrophage Colony-Stimulating Factor , Osteogenesis , Polymers , Receptor, Macrophage Colony-Stimulating Factor , Tissue Scaffolds , Bone Regeneration/drug effects , Tissue Scaffolds/chemistry , Animals , Mice , Durapatite/chemistry , Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/pharmacology , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Receptor, Macrophage Colony-Stimulating Factor/chemistry , Polymers/chemistry , Cell Differentiation , Chitosan/chemistry , Indoles/chemistry , Signal Transduction , Tissue Engineering/methods , Macrophages/metabolism , Macrophages/cytology , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...