Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 283
Filter
1.
Langmuir ; 40(24): 12721-12728, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38843494

ABSTRACT

Improving the hydrophobic properties of aluminum alloys is crucial for industry. In previous reports, researchers prepared superhydrophobic surfaces by fabricating micro-nanostructures on the metal surface with a nanosecond laser. However, no researchers have formed microquadrangular groove structures on the metal surface. In this article, inspired by the bamboo leaf, a microquadrangular structure is designed and processed using nanosecond laser technology to form a superhydrophobic functional surface. The effects of laser processing parameters, such as laser power, scanning speed, scanning time, defocus and fill spacing on the size, surface morphology features, and wettability of the microquadrangular structure, are investigated by a single-factor experimental method. The experimental results show the optimal size of the processed microquadrangular structure obtained from the experiment with an error of 1.28% from the design size, where the fill spacing has the greatest effect on the size and the scanning time, defocus, and fill spacing have great influence on the surface morphology. The contact angle of water drops on the surface can reach 154.7°, and the power has the greatest influence on the wettability. Laser parameters have distinct effects on the properties of the materials. Therefore, by regulation of the laser parameters, the formation of the microstructure can be availably controlled and the result of hydrophobicity can be achieved.

2.
Biomed Chromatogr ; : e5943, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890009

ABSTRACT

In this study, a targeted nanocarrier was developed by functionalizing graphene oxide with polyethyleneimine and folic acid, intended for loading oridonin. The nanocarrier was successfully synthesized and characterized using an ultraviolet spectrum, Fourier transform infrared spectroscopy and scanning electron microscopy. The nanocarrier demonstrated a remarkable oridonin loading capacity, reaching 424.8 µg/mg, as determined by ultra-high performance liquid chromatography. In vitro drug release experiments exhibited a pH-dependent release profile, with a higher cumulative release in an acidic environment. The release mechanism followed the Ritger-Peppas equation model. Cytotoxicity assays indicated minimal toxicity of the nanocarrier. Enhanced cellular uptake by MCF7 cells was observed for carriers functionalized with folate and polyethyleneimine. These findings highlight the potential of functionalized graphene oxide as a promising carrier for oridonin delivery in biomedical applications.

3.
Mikrochim Acta ; 191(7): 397, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877314

ABSTRACT

A fluorescence biosensor for determination of aflatoxin B1 (AFB1) based on polydiacetylene (PDA) liposomes and exonuclease III (EXO III)-assisted recycling amplification was developed. The AFB1 aptamer partially hybridizes with complementary DNA (cDNA), which is released upon recognition of AFB1 by the aptamer. Subsequently, the cDNA hybridizes with hairpin H to form double-stranded DNA that undergoes digestion by EXO III, resulting in the cyclic release of cDNA and generation of capture DNA for further reaction. The capture DNA then hybridizes with probe modified on PDA liposomes, leading to aggregation of liposomes and subsequent fluorescence production. This strategy exhibited a limit of detection of 0.18 ng/mL within the linear range 1-100 ng/mL with a determination coefficient > 0.99. The recovery ranged from 92.81 to 106.45%, with relative standard deviations (RSD) between 1.73 and 4.26%, for corn, brown rice, peanut butter, and wheat samples. The stability, accuracy, and specificity of the method demonstrated the applicability for real sample analysis.


Subject(s)
Aflatoxin B1 , Biosensing Techniques , Exodeoxyribonucleases , Limit of Detection , Liposomes , Polyacetylene Polymer , Polyacetylene Polymer/chemistry , Liposomes/chemistry , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Biosensing Techniques/methods , Aflatoxin B1/analysis , Aptamers, Nucleotide/chemistry , Nucleic Acid Amplification Techniques/methods , Polyynes/chemistry , Spectrometry, Fluorescence/methods , Zea mays/chemistry , Triticum/chemistry , Oryza/chemistry , Polymers/chemistry , Food Contamination/analysis
4.
Food Chem ; 455: 139844, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38823134

ABSTRACT

In this study, a sensitive dual-signal electrochemiluminescence (ECL) immunosensor was developed for okadaic acid (OA) detection utilizing copper nanoclusters (CuNCs) and Ru(bpy)32+-doped silica nanoparticles (RuSiNPs). Interestingly, the CuNCs could simultaneously enhance both cathodic (-0.95 V) and anodic (+1.15 V) ECL signals of RuSiNPs, forming a dual-signal ECL sensing platform. Further, RuSiNPs@CuNCs were used as immunomarkers by covalently conjugating them with an anti-OA monoclonal antibody (mAb) to form probes. Finally, dual ECL signals of the immunosensor were fabricated and showed good linear relationships with OA concentrations in the range of 0.05-70 ng mL-1, having a median inhibitory concentration (IC50) of 1.972 ng mL-1 and a limit of detection of 0.039 ng mL-1. Moreover, the constant ratio of the cathodic and anodic ECL peaks achieved self-calibration of the detection signal and improved the reliability of the results. Finally, we successfully applied the ECL sensor to detect OA in spiked oyster samples.

5.
World J Microbiol Biotechnol ; 40(7): 208, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767676

ABSTRACT

Chlorinated organic compounds (COCs) are typical refractory organic compounds, having high biological toxicity. These compounds are a type of pervasive pollutants that can be present in polluted soil, air, and various types of waterways, such as groundwater, rivers, and lakes, posing a significant threat to the ecological environment and human health. Bioelectrochemical systems (BESs) are an effective strategy for the degradation of bio-refractory compounds. BESs improve the waste treatment efficiency through the application of weak electrical stimulation. This review discusses the processes of BESs configurations and degradation performances in different environmental media including wastewater, soil, waste gas and groundwater. In addition, the degradation mechanisms and performance-enhancing additives are summarized. The future challenges and perspectives on the development of BES for COCs removal are briefly discussed.


Subject(s)
Biodegradation, Environmental , Electrochemical Techniques , Wastewater/chemistry , Hydrocarbons, Chlorinated/metabolism , Water Pollutants, Chemical/metabolism , Groundwater/chemistry , Organic Chemicals/metabolism
6.
Hum Resour Health ; 22(1): 31, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802822

ABSTRACT

BACKGROUND: The Chinese government has formulated a series of policies and strengthened training of general practitioners (GPs) to support their role as "gatekeepers" of residents' health. This study aimed to explore the core competencies of Chinese GPs and develop a competency framework in line with China's actual conditions, which can provide a more scientific basis for the education, training, and evaluation of GPs. METHODS: Literature analysis and behaviour event interviews were conducted to build the competency dictionary and the initial version of the competency model. Two rounds of Delphi were performed to gain consensus on the final model. The questionnaire survey was carried out in 10 provinces (municipalities, autonomous regions) of China, and GPs were invited to score the importance of each competency item. The total sample was randomly divided into two groups. One group was for exploratory factor analysis (EFA), and the other was for confirmatory factor analysis (CFA) to examine the scale's reliability and validity. RESULTS: The dictionary of general practitioners' competency including 107 competency items was constructed. After two rounds of Delphi, a consensus was reached on 60 competencies in 6 domains. A total of 1917 valid questionnaires were obtained in the nationwide survey. The average importance score of all second-level indicators is 4.53 ± 0.45. The Cronbach's α coefficient is 0.984. The results of the five factors extracted by EFA showing the 68.16% cumulative explained variance variation is considered to be consistent with the six dimensions obtained by Delphi after thorough discussion. The model fitness indexes obtained by CFA were acceptable (χ2/df = 4.909, CFI = 0.869, NFI = 0.841, RMSEA = 0.065). The values of the composite reliability (CR) of the six dimensions were all greater than 0.7 (0.943, 0.927, 0.937, 0.927, 0.943, 0.950), and the average of variance extracted (AVE) were all greater than 0.5 (0.562, 0.613, 0.649, 0.563, 0.626, 0.635). The results showed that the model has good reliability and validity. CONCLUSION: A competency model for GPs suited to China has been developed, which may offer guidance for future training and medical licensing examinations of GPs.


Subject(s)
Clinical Competence , Delphi Technique , General Practitioners , Humans , Clinical Competence/standards , China , Surveys and Questionnaires , Male , Female , Reproducibility of Results , Adult , Middle Aged , Factor Analysis, Statistical , Consensus
7.
Research (Wash D C) ; 7: 0355, 2024.
Article in English | MEDLINE | ID: mdl-38694202

ABSTRACT

Proper timing of vigilance states serves fundamental brain functions. Although disturbance of sleep onset rapid eye movement (SOREM) sleep is frequently reported after orexin deficiency, their causal relationship still remains elusive. Here, we further study a specific subgroup of orexin neurons with convergent projection to the REM sleep promoting sublaterodorsal tegmental nucleus (OXSLD neurons). Intriguingly, although OXSLD and other projection-labeled orexin neurons exhibit similar activity dynamics during REM sleep, only the activation level of OXSLD neurons exhibits a significant positive correlation with the post-inter-REM sleep interval duration, revealing an essential role for the orexin-sublaterodorsal tegmental nucleus (SLD) neural pathway in relieving REM sleep pressure. Monosynaptic tracing reveals that multiple inputs may help shape this REM sleep-related dynamics of OXSLD neurons. Genetic ablation further shows that the homeostatic architecture of sleep/wakefulness cycles, especially avoidance of SOREM sleep-like transition, is dependent on this activity. A positive correlation between the SOREM sleep occurrence probability and depression states of narcoleptic patients further demonstrates the possible significance of the orexin-SLD pathway on REM sleep homeostasis.

8.
Medicine (Baltimore) ; 103(19): e38113, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728495

ABSTRACT

To explore the potential mechanism in Cuscuta sinensis on diarrhea-type irritable bowel syndrome using network pharmacology and molecular docking techniques. First, the active components and related targets of Cuscuta were found setting oral utilization >30% and drug-like properties greater than or equal to 0.18 as filter information from TCMSP database. The targets of diarrheal irritable bowel syndrome were compiled by searching DrugBank, GeneCards, OMIM, PharmGkb, and TTD databases. The intersections of drugs and targets related to the disease were taken for gene ontology enrichment and Kyoto encyclopedia of genes and genomes enrichment analyses, to elucidate the potential molecular mechanisms and pathway information of Cuscuta sinensis for the treatment of diarrheal irritable bowel syndrome. The protein-protein interaction network was constructed by using the STRING database and visualized with Cytoscape_v3.10.0 software to find the protein-protein interaction network core At last, molecular docking was performed to validate the combination of active compounds with the core target. The target information of Cuscuta and diarrhea-type irritable bowel syndrome was compiled, which can be resulted in 11 active compounds such as quercetin, kaempferol, isorhamnetin, ß-sitosterol, and another 17 core targets such as TP53, IL6, AKT1, IL1B, TNF, EGFR, etc, whose Kyoto encyclopedia of genes and genomes was enriched in the pathways of lipids and atherosclerosis, chemical carcinogenesis-receptor activation, PI3K-Akt signaling pathway, and fluid shear stress and atherosclerosis, etc. Docking demonstrated that the core targets and the active compounds were able to be better combined. Cuscuta chinensis may exert preventive effects on diarrhea-type irritable bowel syndrome by reducing intestinal inflammation, protecting intestinal mucosa, and playing an important role in antioxidant response through multi-targets and multi-pathways.


Subject(s)
Cuscuta , Diarrhea , Irritable Bowel Syndrome , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Irritable Bowel Syndrome/drug therapy , Humans , Diarrhea/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
9.
Food Chem ; 451: 139449, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38678654

ABSTRACT

The addition of corn starch (CS) enhances the interfacial adhesion of the film-forming liquids (FFLs), weakening the internal relative molecular motion. As a result, the rheological properties and zeta potential values of the FFLs were affected. A tight spatial network structure between capsicum leaf protein (CLP), lignocellulose nanocrystals (LNCs) and CS can be formed through intermolecular entanglement and hydrogen bonding interactions. The crystallinity, thermal degradation temperature, tensile strength and water contact angle of the protein-based bionanocomposite films (PBBFs) increased with increasing CS addition. This is due to the transformation of the secondary space structure of the CLP inside the PBBFs and the increase in cohesion. However, the excessive addition of CS forms aggregated clusters on the surface of PBBFs, which increases the surface roughness of PBBFs and causes more light scattering. Therefore, the brightness and yellowness values of the PBBFs increase, and the transmittance decreases.


Subject(s)
Capsicum , Food Packaging , Nanocomposites , Plant Leaves , Plant Proteins , Starch , Zea mays , Nanocomposites/chemistry , Capsicum/chemistry , Starch/chemistry , Plant Leaves/chemistry , Food Packaging/instrumentation , Plant Proteins/chemistry , Zea mays/chemistry , Tensile Strength
10.
Stat Methods Med Res ; 33(6): 1043-1054, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38654396

ABSTRACT

Ordinal response is commonly found in medicine, biology, and other fields. In many situations, the predictors for this ordinal response are compositional, which means that the sum of predictors for each sample is fixed. Examples of compositional data include the relative abundance of species in microbiome data and the relative frequency of nutrition concentrations. Moreover, the predictors that are strongly correlated tend to have similar influence on the response outcome. Conventional cumulative logistic regression models for ordinal responses ignore the fixed-sum constraint on predictors and their associated interrelationships, and thus are not appropriate for analyzing compositional predictors.To solve this problem, we proposed Bayesian Compositional Models for Ordinal Response to analyze the relationship between compositional data and an ordinal response with a structured regularized horseshoe prior for the compositional coefficients and a soft sum-to-zero restriction on coefficients through the prior distribution. The method was implemented with R package rstan using efficient Hamiltonian Monte Carlo algorithm. We performed simulations to compare the proposed approach and existing methods for ordinal responses. Results revealed that our proposed method outperformed the existing methods in terms of parameter estimation and prediction. We also applied the proposed method to a microbiome study HMP2Data, to find microorganisms linked to ordinal inflammatory bowel disease levels. To make this work reproducible, the code and data used in this paper are available at https://github.com/Li-Zhang28/BCO.


Subject(s)
Algorithms , Bayes Theorem , Microbiota , Models, Statistical , Monte Carlo Method , Humans , Inflammatory Bowel Diseases , Computer Simulation , Logistic Models
11.
Infect Dis Model ; 9(3): 689-700, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38646061

ABSTRACT

The complex interactions were performed among non-pharmaceutical interventions, vaccinations, and hosts for all epidemics in mainland China during the spread of COVID-19. Specially, the small-scale epidemic in the city described by SVEIR model was less found in the current studies. The SVEIR model with control was established to analyze the dynamical and epidemiological features of two epidemics in Jinzhou City led by Omicron variants before and after Twenty Measures. In this study, the total population (N) of Jinzhou City was divided into five compartments: the susceptible (S), the vaccinated (V), the exposed (E), the infected (I), and the recovered (R). By surveillance data and the SVEIR model, three methods (maximum likelihood method, exponential growth rate method, next generation matrix method) were governed to estimate basic reproduction number, and the results showed that an increasing tendency of basic reproduction number from Omicron BA.5.2 to Omicron BA.2.12.1. Meanwhile, the effective reproduction number for two epidemics were investigated by surveillance data, and the results showed that Jinzhou wave 1 reached the peak on November 1 and was controlled 7 days later, and that Jinzhou wave 2 reached the peak on November 28 and was controlled 5 days later. Moreover, the impacts of non-pharmaceutical interventions (awareness delay, peak delay, control intensity) were discussed extensively, the variations of infection scales for Omicron variant and EG.5 variant were also discussed. Furthermore, the investigations on peaks and infection scales for two epidemics in dynamic zero-COVID policy were operated by the SVEIR model with control. The investigations on public medical requirements of Jinzhou City and Liaoning Province were analyzed by using SVEIR model without control, which provided a possible perspective on variant evolution in the future.

12.
RSC Adv ; 14(16): 10905-10919, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38577425

ABSTRACT

Nitrate-nitrogen pertains to the nitrogen component of the overall nitrate present in a given sample in order to reduce nitrate nitrogen pollution in water, nitrate nitrogen removal methods based on iron-carbon micro-electrolysis have become a key research focus. The process and mechanism of nitrate nitrogen removal by microbial coupling was comprehensively explored in a novel iron-carbon micro-electrolysis (ICME) system. In order to establish the transformation pathway of nitrate nitrogen in water, the transformation paths of nitrate nitrogen in water before and after coupling microorganisms in three groups of continuous flow reaction devices, namely sponge iron (s-Fe0), sponge iron + biochar (s-Fe0/BC) and sponge iron + biochar + manganese sand (s-Fe0/BC/MS), were studied. The morphology and composition changes of sponge iron were analyzed by means of characterization, and the microbial population changes in the three groups were analyzed by high-throughput sequencing. Results showed that the nitrate conversion rate in the s-Fe0, s-Fe0/BC and s-Fe0/BC/MS systems reached 99.48%, 99.57% and 99.36%, respectively, with corresponding ammonia nitrogen generation, rates of 3.77%, 9.34% and 11.24% and nitrogen generation rates of 95.71%, 90.23% and 88.12%. Scanning electron microscopy imaging showed that in the s-Fe0/BC and s-Fe0/BC/MS systems the surface of sponge iron was highly corroded, with granular substances in the corrosion product clusters. X-ray photoelectron spectroscopy analysis found that the relative contents of Fe2O3 in the surface oxides of sponge iron after microbial coupling were 38.02% and 71.27% in the s-Fe0/BC and s-Fe0/BC/MS systems, while the relative Fe3O4 contents were 61.98% and 28.72%, respectively. Microbial high-throughput sequencing analysis revealed that the Chao and Ace index values in the s-Fe0 system were 871.89 and 880.78, while in the s-Fe0/BC system they were 1012.05 and 1017.29, and in the s-Fe0/BC/MS system were 1241.09 and 1198.29, respectively. The relative proportion of Thauera in the s-Fe0, s-Fe0/BC, and s-Fe0/BC/MS systems was 16.76%,14.25% and 10.01%, while the proportion of Acetoanaerobium was 15.36%, 13.27% and 11.11%, and the proportion of Chloroflexi was 0%, 1.11% and 2.18%, respectively. Furthermore, FAPROTAX function annotation found that the expression levels of chemoheterotrophs in the s-Fe0, s-Fe0/BC and s-Fe0/BC/MS systems were 43 316 OTU, 37 289 OTU and 34 205 OTU, while nitrate respiration expression levels were 16 230 OTU, 15 483 OTU and 9149 OTU, with nitrogen respiration expression levels of 16 328 OTU, 15 493 OTU and 9154 OTU, respectively. These findings suggest that nitrate is converted into nitrogen gas and ammonia nitrogen through the actions of the coupled system of sponge iron/biochar/manganese sand and microorganisms. The catalytic effect of MnO2 promotes the conversion of Fe2+ to Fe3+, generating more electrons, allowing denitrifying bacteria to reduce more nitrate nitrogen, effectively coupling the manganese-catalyzed ICME reaction and microbial denitrification. The micro-electrolysis system and the addition of manganese sand enhanced biodiversity within the s-Fe0/BC/MS system. The heterotrophic bacteria Thauera and Acetoanaerobium were the dominant microorganisms in all three systems, although the micro-electrolysis system with added manganese sand significantly reduced the proportion of facultative bacteria Thauera and Acetoanaerobium and promoted the growth of autotrophic Chloroflexi bacteria. The ecological functions of the three systems were mainly nitrate respiration and nitrogen respiration. By comparing the expression levels of nitrate respiration and nitrogen respiration in s-Fe0/BC and s-Fe0/BC/MS systems, it can be seen that the addition of manganese sand reduced microbial activity.

13.
Adv Healthc Mater ; : e2304675, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688026

ABSTRACT

The mitochondrial enzyme arginase-2 (Arg-2) is implicated in the pathophysiology of contrast-induced acute kidney injury (CI-AKI). Therefore, Arg-2 represents a candid target for CI-AKI prevention. Here, layer-by-layer (LbL) assembled renal-targeting polymeric nanoparticles are developed to efficiently deliver small interfering RNA (siRNA), knockdown Arg-2 expression in renal tubules, and prevention of CI-AKI is evaluated. First, near-infrared dye-loaded poly(lactic-co-glycolic acid) (PLGA) anionic cores are electrostatically coated with cationic chitosan (CS) to facilitate the adsorption and stabilization of Arg-2 siRNA. Next, nanoparticles are coated with anionic hyaluronan (HA) to provide protection against siRNA leakage and shielding against early clearance. Sequential electrostatic layering of CS and HA improves loading capacity of Arg-2 siRNA and yields LbL-assembled nanoparticles. Renal targeting and accumulation is enhanced by modifying the outermost layer of HA with a kidney targeting peptide (HA-KTP). The resultant kidney-targeting and siRNA loaded nanoparticles (PLGA/CS/HA-KTP siRNA) exhibit proprietary accumulation in kidneys and proximal tubular cells at 24 h post-tail vein injection. In iohexol-induced in vitro and in vivo CI-AKI models, PLGA/CS/HA-KTP siRNA delivery alleviates oxidative and nitrification stress, and rescues mitochondrial dysfunction while reducing apoptosis, thereby demonstrating a robust and satisfactory therapeutic effect. Thus, PLGA/CS/HA-KTP siRNA nanoparticles offer a promising candidate therapy to protect against CI-AKI.

14.
Waste Manag ; 181: 34-43, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38581750

ABSTRACT

The main disposal method for municipal solid waste (MSW), including the growing worldwide volumes of kitchen waste, involves transport to landfills. Because kitchen waste is mainly composed of organic matter and has a high moisture content, large amounts of leachate and landfill gas are generated when it is sent to landfills. Therefore, rapid waste stabilization is essential. In this study, four semi-aerobic bioreactors (named NS, SS, MS, and LS) were established with void fractions of 33.76%, 39.84%, 44.62%, and 41.31%, respectively. The results showed that the void fractions of landfill directly affected the gas flow path. When the landfill void fraction was small (e.g., NS), most airflow traveled directly through the pipeline and minimal airflow entered the waste layer. When the landfill void fraction was large (e.g., MS), air easily entered the waste layer and some air flowed into the gas vent with the landfill gas. As the reaction proceeded, the void fraction gradually decreased due to gravity-induced sedimentation. During the water addition experiment, the voids were occupied by water, leading to formation of an anaerobic area. Among the four bioreactors, only MS had negligible formation of an anaerobic zone in the center. Methane (CH4) generation was detected only at the connection between the gas vent and the leachate collection pipe. A larger void fraction led to formation of a smaller anaerobic zone. The ratio of air flowing in pipeline was lowest in MS. These results indicated that a large void fraction promotes the decomposition of organic matter.


Subject(s)
Bioreactors , Refuse Disposal , Waste Disposal Facilities , Refuse Disposal/methods , Aerobiosis , Solid Waste/analysis
15.
Article in English | MEDLINE | ID: mdl-38593387

ABSTRACT

Upcycling plastic waste into valuable commodity chemicals with clean energy is an appealing strategy for mitigating environmental issues. Polylactic acid (PLA), a biodegradable plastic that is produced annually in millions of tons, can be chemically recycled to valuable products instead of being degraded to carbon dioxide. Here, we demonstrate an electrochemical reforming of PLA hydrolysate to acetate and acetonate using nickel phosphide nanosheets on nickel foam (Ni2P/NF) as the catalyst. The Ni2P/NF catalyst was synthesized by electrochemical deposition and phosphide treatment and showed excellent catalytic activity and ∼100% Faraday efficiency for electroreforming PLA to acetate and acetonate in an H-cell. Moreover, a stable performance of more than 90% Faraday efficiency for value-added organics was achieved for a duration of 100 h in a flow cell at a current density of 100 mA cm-2 and a potential below 1.5 V vs. RHE. In situ characterization revealed that the catalyst underwent electrochemical reforming during the reaction to produce γ-phase NiOOH with high electrochemical activity. This work introduces a new and green solution for the treatment of waste PLA, presenting a low-cost and highly efficient strategy for electrically reforming plastics.

17.
Macromol Rapid Commun ; : e2400102, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38648071

ABSTRACT

The II-I phase transition of isotactic poly(1-butene) (iPBu) leads to improved mechanical performance. However, this will take several weeks and increase storage and processing costs. In this work, shear forces are introduced into the supercooled iPBu melt, and the effects of isothermal crystallization temperature (Tc) and shear temperature (Tshear) on crystallization and phase transition are explored. Shear-induced transcrystalline morphology of Form II with a significantly shortened crystallization induction period can be observed at relatively high Tc (105 °C). Besides, the shear-induced Form II can transit to Form I faster than the unsheared one. In addition, the phase transition rate increases as the Tshear decreases, with the fastest rate occurring at Tshear of 120 °C. The half transition time (t1/2) is measured as 6.3 h when Tc = 105 °C, Tshear = 120 °C, which is much shorter than the 20.7 h required for unsheared samples. The accelerated phase transition of iPBu can be attributed to the stretching of molecular chains, resulting from shear treatment. This study provides a quantitative analysis of the influence of the shear treatment and the Tshear on the II-I phase transition rate. It also presents a cost-effective and straightforward approach for expediting the phase transition process.

18.
J Sci Food Agric ; 104(10): 6242-6251, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38456730

ABSTRACT

BACKGROUND: The pickling process with NaCl is an essential step for pork preservation. This study aimed to investigate the effect of different ultrasonic intensities of tri-frequency simultaneous ultrasound (TSIU) pickling on the NaCl content and quality of pork (longissimus dorsi). After 30 min pickling, the NaCl content, moisture content, pickling yield, cooking loss, textural properties, color, pH, moisture migration and distribution as well as microstructure of pork were assessed. RESULTS: Results showed that among all the ultrasonic treatment intensities (85-150 W L-1), the NaCl content of the sample pickled by an intensity of 101.3 W L-1 was higher than that of other intensities. TSIU 101.3 W L-1 showed 59.95% higher NaCl content than the control sample. In addition, the sample treated with TSIU of 101.3 W L-1 had higher pickling yield and moisture content, better textural properties of pork (including hardness and chewiness), and less cooking loss. The results of the low-field nuclear magnetic resonance showed that, compared with the control group, the relaxation time T21 of the ultrasound-assisted pickling samples increased, while the proportion of T22 (A22) reduction ranged from 175.0% to 379.9%. The microstructure designated that the ultrasonic treatment could facilitate changes in meat texture. CONCLUSION: Ultrasound marination of different intensities promoted the diffusion of NaCl and affected the quality of pork tenderloins. The TSIU at 101.3 W L-1 could better accelerate NaCl transport and homogeneous distribution on meat, thereby improving the sample quality. © 2024 Society of Chemical Industry.


Subject(s)
Cooking , Food Handling , Sodium Chloride , Animals , Sodium Chloride/chemistry , Sodium Chloride/analysis , Swine , Food Handling/methods , Cooking/methods , Quality Improvement , Ultrasonics/methods , Meat Products/analysis , Food Preservation/methods , Color , Muscle, Skeletal/chemistry , Muscle, Skeletal/radiation effects
19.
Food Chem ; 447: 138950, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38492292

ABSTRACT

To better understanding the effects of ultrasonic marination on the porcine tissue, the moisture migration and microstructure were investigated in this study. Additionally, the acoustic field distribution was analysis using COMSOL Multiphysics. The low-filed NMR results demonstrated that ultrasonic curing induced a leftward shift in T21 and a rightward shift in T22, accompanied by a significant reduction in A22, thereby enhancing the water-holding capacity of pork. The SEM and TEM observation showed that the presence of larger interstitial gaps between muscle fibers facilitated the diffusion of NaCl. The simulation analysis revealed that the acoustic field at 26.8 kHz showed minimal standing wave effects and more pronounced cavitation, which was the main reason for the best curing effect at this frequency. The scale-up test showed the NaCl content in pork reached 1% after ultrasound curing, indicating the potential application of ultrasonic marination technology in domestic refrigerators.


Subject(s)
Pork Meat , Red Meat , Animals , Swine , Sodium Chloride/chemistry , Chemical Phenomena , Diffusion , Water/chemistry
20.
Int J Biol Macromol ; 265(Pt 2): 130904, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553392

ABSTRACT

This study aims to enhance the functionality of conventional protein-based nanocellulose composite films (PNCF) to meet the high demand for natural antimicrobial packaging films. Capsicum leaf protein (CLP) and cellulose nanocrystals (CNCs) extracted from capsicum leaves were used as raw materials. Capsaicin, an essential antibacterial active ingredient in the capsicum plant, was used as an additive. The influence of different capsaicin loads on PNCF physicochemical and material properties was investigated under alkaline conditions. The results show that all film-forming liquids (FFLs) are non-Newtonian fluids with shear thinning behavior. When the capsaicin loading exceeds 20 %, the surface microstructure of PNCF changes from dense lamellar to rod-like. Capsaicin did not alter the PNCF crystal structure, thermal stability or chemical bonding. Capsaicin can be loaded onto the PNCF surface by intermolecular hydrogen bonding reactions with CLP and CNC, preserving capsaicin's biological activity. With increasing capsaicin loads from 0 % to 50 %, the mechanical and hydrophobic properties of PNCF decreased, whereas the diameter of the inhibition zone increased. All PNCFs have UV-blocking properties with potential applications in developing biodegradable food packaging materials. The results of this study provide a theoretical basis for the high-value utilization of capsicum cultivation waste and the preparation of novel PNCF.


Subject(s)
Capsicum , Nanoparticles , Capsicum/chemistry , Capsaicin/pharmacology , Tensile Strength , Cellulose/chemistry , Nanoparticles/chemistry , Camphor , Menthol , Vegetables , Plant Leaves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...