Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.250
Filter
1.
Sci Total Environ ; : 174187, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936741

ABSTRACT

Nutrient requirement for crop growth, defined as the amount of nutrient that crops take up from soil to produce a specific grain yield, is a key parameter in determining fertilizer application rate. However, existing studies primarily focus on identifying nitrogen (N), phosphorus (P), and potassium (K) requirements solely in relation to grain yield, neglecting grain protein content, a crucial index for wheat grain quality. Addressing this gap, we conducted multi-site, multi-cultivar, and multi-year field trials across three ecological regions of China from 2016 to 2020 to elucidate variations in nutrient requirements for grain yield and grain protein. The research findings revealed that wheat grain yield ranged from 4.1 to 9.3 Mg ha-1 (average 6.9 Mg ha-1) and grain protein content ranged from 98 to 157 g kg-1 (average 127 g kg-1) across the three regions. Notably, the N requirement exhibited a nonlinear correlation with the wheat grain yield but a linear increase with increasing grain protein, while the P and K requirements positively correlated with grain yield and protein content. Regression models were formulated to determine the nutrient requirements (MENR), enabling the prediction of N, P, and K requirements for leading cultivars with varying grain yields and protein contents. Implementing nutrient requirements based on MENR projections resulted in substantial reductions in fertilizer rates: 22.0 kg ha-1 N (10.7 %), 9.9 kg ha-1 P (20.2 %), and 8.1 kg ha-1 K (16.3 %). This translated to potential savings of 0.4 Mt. N, 0.23 Mt. P, and 0.17 Mt. K, consequently mitigating 5.5 Mt. CO2 greenhouse-gas emission and yielding an economic benefit of 0.8 billion US$ annually in China. These findings underscore the significance of considering grain yield and protein content in estimating nutrient requirements for fertilizer recommendations to realize high-yielding, high-protein wheat production, and minimize overfertilization and associated environmental risks.

2.
Cell Death Discov ; 10(1): 271, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830900

ABSTRACT

The intestinal lumen acts as a critical interface connecting the external environment with the body's internal state. It's essential to prevent the passage of harmful antigens and bacteria while facilitating nutrient and water absorption. The intestinal barriers encompass microbial, mechanical, immunological, and chemical elements, working together to maintain intestinal balance. Numerous studies have associated m6A modification with intestinal homeostasis. This review comprehensively outlines potential mechanisms through which m6A modification could initiate, exacerbate, or sustain barrier damage from an intestinal perspective. The pivotal role of m6A modification in preserving intestinal equilibrium provides new insights, guiding the exploration of m6A modification as a target for optimizing preventive and therapeutic strategies for intestinal homeostasis.

3.
Thorac Cancer ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837605

ABSTRACT

BACKGROUND: This study aimed to investigate the effects of immune checkpoint inhibitors (ICIs) versus chemotherapy on the prognosis of real-world diffuse pleural mesothelioma patients in China. METHODS: Clinical data of 90 patients with diffuse pleural mesothelioma from 2019 to 2022 were collected from Harbin Medical University Cancer Hospital. Patients were divided into two groups: the ICIs-treated group (n = 46) and the chemotherapy-only group (n = 44). The efficacy and safety of immunotherapy relative to chemotherapy at different treatment stages were explored. RESULTS: The median progression-free survival (PFS) was 10.0 and 7.0 months, and the median overall survival (OS) was 24.7 and 15.8 months in the ICIs-treated group and the chemotherapy group, respectively. The ICIs-treated group showed an 11% increase in objective response rate (ORR) (52.2% vs. 41.0%) and an 8.0% increase in disease control rate (DCR) (78.3% vs. 70.0%) compared to the chemotherapy group. The Kaplan-Meier curves demonstrated significant PFS (HR: 0.61; 95% CI: 0.38-0.98; p = 0.038) and OS (HR: 0.47; 95% CI: 0.26-0.86; p = 0.011) benefits of receiving immunotherapy over chemotherapy alone. Subgroup analysis according to treatment timing showed the same trend. CONCLUSION: In patients with nonsurgical diffuse pleural mesothelioma, immunotherapy achieved better survival benefits compared to chemotherapy in both first- and second-/third-line treatments. The early addition of immunotherapy improved survival in patients with nonsurgical diffuse pleural mesothelioma.

4.
Int J Cardiol ; 411: 132246, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851539

ABSTRACT

BACKGROUND: Left ventricular diastolic dysfunction indicated by elevated pulmonary capillary wedge pressure (ePCWP) may worsen cardiorespiratory status in bronchopulmonary dysplasia (BPD), but the scope of ePCWP by cardiac catheterization is not well described. METHODS: This single-center retrospective cohort study included infants with BPD without congenital heart disease, significant intracardiac shunts, or pulmonary vein stenosis who underwent cardiac catheterization from 2010 to 2021. ePCWP was defined as >10 mmHg. Quantitative measures of ventricular systolic and diastolic function were performed on existing echocardiograms. Patients with and without ePCWP were compared using the Chi-squared or Wilcoxon rank-sum tests. Associations between catheterization hemodynamics and echocardiographic parameters were assessed by simple linear regression. RESULTS: Seventy-one infants (93% Grade 2 or 3 BPD) met inclusion criteria, and 30 (42%) had ePCWP. Patients with ePCWP were older at catheterization (6.7 vs. 4.5 months, p < 0.001), more commonly underwent tracheostomy (66.7% vs. 29.3%, p = 0.003), and had higher mean systemic blood pressure [64.5 (56.0, 75.0) vs. 47.0 (43.0, 55.0) mm Hg, p < 0.001], higher systemic vascular resistance [11.9 (10.4, 15.6) vs. 8.7 (6.7, 11.2) WU*m2, p < 0.001), and lower cardiac index [3.9 (3.8, 4.9) vs. 4.7 (4.0, 6.3) L/min/m2, p = 0.03] at catheterization. Mean pulmonary artery pressure, pulmonary vascular resistance, and mortality were similar between the groups. Echocardiographic indices of left ventricular diastolic dysfunction did not correlate with PCWP. CONCLUSIONS: ePCWP was common in infants with severe BPD who underwent cardiac catheterization in this cohort. The association between ePCWP and higher systemic blood pressure supports further study of afterload reduction in this population.

5.
Front Genet ; 15: 1395805, 2024.
Article in English | MEDLINE | ID: mdl-38903753

ABSTRACT

Mitochondria are semi-autonomous organelles in eukaryotic cells with their own genome. Plant mitogenomes differ from animal mitogenomes in size, structure, and repetitive DNA sequences. Despite larger sizes, plant mitogenomes do not have significantly more genes. They exhibit diverse structures due to variations in size, repetitive DNA, recombination frequencies, low gene densities, and reduced nucleotide substitution rates. In this study, we analyzed the mitochondrial genome of Stemona sessilifolia using Nanopore and Illumina sequencing. De-novo assembly and annotation were conducted using Unicycler, Geseq, tRNAscan-SE and BLASTN, followed by codon usage, repeat sequence, RNA-editing, synteny, and phylogenetic analyses. S. sessilifolia's mitogenome consisted of one linear contig and six circular contigs totaling 724,751 bp. It had 39 protein-coding genes, 27 tRNA genes, and 3 rRNA genes. Transfer of chloroplast sequences accounted for 13.14% of the mitogenome. Various analyses provided insights into genetic characteristics, evolutionary dynamics, and phylogenetic placement. Further investigations can explore transferred genes' functions and RNA-editing's role in mitochondrial gene expression in S. sessilifolia.

6.
Autophagy ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38873928

ABSTRACT

Osteopenia and osteoporosis are among the most common metabolic bone diseases and represent major public health problems, with sufferers having an increased fracture risk. Diabetes is one of the most common diseases contributing to osteopenia and osteoporosis. However, the mechanisms underlying diabetes-induced osteopenia and osteoporosis remain unclear. Bone reconstruction, including bone formation and absorption, is a dynamic process. Large-conductance Ca2+-activated K+ channels (BK channels) regulate the function of bone marrow-derived mesenchymal stem cells, osteoblasts, and osteoclasts. Our previous studies revealed the relationship between BK channels and the function of osteoblasts via various pathways under physiological conditions. In this study, we reported a decrease in the expression of BK channels in mice with diabetes-induced osteopenia. BK deficiency enhanced mitochondrial Ca2+ and activated classical PINK1 (PTEN induced putative kinase 1)-PRKN/Parkin (parkin RBR E3 ubiquitin protein ligase)-dependent mitophagy, whereas the upregulation of BK channels inhibited mitophagy in osteoblasts. Moreover, SLC25A5/ANT2 (solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocator), member 5), a critical inner mitochondrial membrane protein participating in PINK1-PRKN-dependent mitophagy, was also regulated by BK channels. Overall, these data identified a novel role of BK channels in regulating mitophagy in osteoblasts, which might be a potential target for diabetes-induced bone diseases.

7.
BMC Genom Data ; 25(1): 57, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858616

ABSTRACT

The Quercus L. species is widely recognized as a significant group in the broad-leaved evergreen forests of tropical and subtropical East Asia. These plants hold immense economic value for their use as firewood, furniture, and street trees. However, the identification of Quercus species is considered challenging, and the relationships between these species remain unclear. In this study, we sequenced and assembled the chloroplast (cp.) genomes of four Quercus section Cyclobalanopsis species (Quercus disciformis, Quercus dinghuensis, Quercus blackei, and Quercus hui). Additionally, we retrieved six published cp. genome sequences of Cyclobalanopsis species (Quercus fleuryi, Quercus pachyloma, Quercus ningangensis, Quercus litseoides, Quercus gilva, and Quercus myrsinifolia). Our aim was to perform comparative genomics and phylogenetic analyses of the cp. whole genome sequences of ten Quercus section Cyclobalanopsis species. The results revealed that: (1) Quercus species exhibit a typical tetrad structure, with the cp. genome lengths of the newly sequenced species (Q. disciformis, Q. dinghuensis, Q. blakei, and Q. hui) being 160,805 bp, 160,801 bp, 160,787 bp, and 160,806 bp, respectively; (2) 469 SSRs were detected, among which A/T base repeats were the most common; (3) no rearrangements or inversions were detected within the chloroplast genomes. Genes with high nucleotide polymorphism, such as rps14-psaB, ndhJ-ndhK, rbcL-accD, and rps19-rpl2_2, provided potential reference loci for molecular identification within the Cyclobalanopsis section; (4) phylogenetic analysis showed that the four sections of Cyclobalanopsis were grouped into sister taxa, with Q. hui being the first to diverge from the evolutionary branch and Q. disciformis being the most closely related to Q. blackei. The results of this study form the basis for future studies on taxonomy and phylogenetics.


Subject(s)
Genome, Chloroplast , Phylogeny , Quercus , Quercus/genetics , Genome, Chloroplast/genetics
8.
BMC Cancer ; 24(1): 729, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877481

ABSTRACT

BACKGROUND: Chondroitin sulfate proteoglycan 4 pseudogene 12 (CSPG4P12) has been implicated in the pathogenesis of various cancers. This study aimed to evaluate the association of the CSPG4P12 polymorphism with esophageal squamous cell carcinoma (ESCA) risk and to explore the biological impact of CSPG4P12 expression on ESCA cell behavior. METHODS: A case-control study was conducted involving 480 ESCA patients and 480 healthy controls to assess the association between the rs8040855 polymorphism and ESCA risk. The CSPG4P12 rs8040855 genotype was identified using the TaqMan-MGB probe method. Logistic regression model was used to evaluate the association of CSPG4P12 SNP with the risk of ESCA by calculating the odds ratios (OR) and 95% confidence intervals (95%CI ). The effects of CSPG4P12 overexpression on cell proliferation, migration, and invasion were examined in ESCA cell lines. Co-expressed genes were identified via the CBioportal database, with pathway enrichment analyzed using SangerBox. The binding score of CSPG4P12 to P53 was calculated using RNA protein interaction prediction (RPISeq). Additionally, Western Blot analysis was performed to investigate the impact of CSPG4P12 overexpression on the P53/PI3K/AKT signaling pathway. RESULTS: The presence of at least one rs8040855 G allele was associated with a reduced susceptibility to ESCA compared to the CC genotype (OR = 0.51, 95%CI = 0.28-0.93, P = 0.03). Stratification analysis revealed that the CSPG4P12 rs8040855 C allele significantly decreased the risk of ESCA among younger individuals (≤ 57 years) and non-drinkers (OR = 0.31, 95%CI = 0.12-0.77, P = 0.01; OR = 0.42, 95%CI=0.20-0.87, P = 0.02, respectively). CSPG4P12 expression was found to be downregulated in ESCA tissues compared to adjacent normal tissues. Overexpression of CSPG4P12 in ESCA cells inhibited their proliferation, migration, and invasion capabilities. Furthermore, Western Blot analysis indicated that CSPG4P12 overexpression led to a reduction in PI3K and p-AKT protein expression levels. P53 silencing rescues the inhibitory effect of CSPG4P12 on p-AKT. CONCLUSION: The CSPG4P12 rs8040855 variant is associated with reduced ESCA risk and the overexpression of CSPG4P12 inhibited the migration and invasion of ESCA cells by P53/PI3K/AKT pathway. These findings suggest that CSPG4P12 may serve as a novel biomarker for ESCA susceptibility and a potential target for therapeutic intervention.


Subject(s)
Chondroitin Sulfate Proteoglycans , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Genetic Predisposition to Disease , Membrane Proteins , Aged , Female , Humans , Male , Middle Aged , Biomarkers, Tumor/genetics , Case-Control Studies , Cell Line, Tumor , Cell Movement , Cell Proliferation , China/epidemiology , Chondroitin Sulfate Proteoglycans/genetics , East Asian People , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Genotype , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , Signal Transduction
9.
ACS Omega ; 9(23): 24406-24414, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882071

ABSTRACT

A highly enantioselective 1,3-dipolar cycloaddition of ethoxyformylmethylene oxindole with iminoesters has been achieved using the Cu(I)-(S,Sp)-Ph Phosferrox catalytic system, generating a series of chiral spiro[pyrrolidin-3,3'-oxindole] compounds with four consecutive stereocenters, including a spirocycle quaternary center (71%-99% yield, up to >20:1 dr and 95:5 er). The compounds exhibited good inhibitory activity against Valsa mali (V.m.), Fusarium oxysporium (F.o.), and Alternaria brassicae (A.b.).

10.
Plant Physiol Biochem ; 212: 108707, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763002

ABSTRACT

Apple (Malus domestica Borkh.) is a widely cultivated fruit crop worldwide but often suffers from abiotic stresses such as salt and cold. Gibberellic acid (GA) plays a pivotal in controlling plant development, environmental adaptability, and secondary metabolism. The GA2-oxidase (GA2ox) is responsible for the deactivation of bioactive GA. In this study, seventeen GA2-oxidase genes were identified in the apple genome, and these members could be clustered into four clades based on phylogenetic relationships and conserved domain structures. MdGA2ox7 exhibited robust expression across various tissues, responded to cold and salt treatments, and was triggered in apple fruit peels via light-induced anthocyanin accumulation. Subcellular localization prediction and experiments confirmed that MdGA2ox7 was located in the cytoplasm. Overexpression of MdGA2ox7 in Arabidopsis caused a lower level of active GA and led to GA-deficient phenotypes, such as dwarfism and delayed flowering. MdGA2ox7 alleviated cold and salt stress damage in both Arabidopsis and apple in concert with melatonin (MT). Additionally, MdGA2ox7 enhanced anthocyanin biosynthesis in apple calli and activated genes involved in anthocyanin synthesis. These findings provide new insights into the functions of apple GA2ox in regulating development, stress tolerance, and secondary metabolism.


Subject(s)
Anthocyanins , Gene Expression Regulation, Plant , Malus , Plant Proteins , Malus/genetics , Malus/metabolism , Anthocyanins/metabolism , Anthocyanins/biosynthesis , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Stress, Physiological , Arabidopsis/genetics , Arabidopsis/metabolism , Gibberellins/metabolism , Phylogeny , Plants, Genetically Modified , Melatonin/metabolism
11.
Molecules ; 29(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38731603

ABSTRACT

A new quinazolinone alkaloid named peniquinazolinone A (1), as well as eleven known compounds, 2-(2-hydroxy-3-phenylpropionamido)-N-methylbenzamide (2), viridicatin (3), viridicatol (4), (±)-cyclopeptin (5a/5b), dehydrocyclopeptin (6), cyclopenin (7), cyclopenol (8), methyl-indole-3-carboxylate (9), 2,5-dihydroxyphenyl acetate (10), methyl m-hydroxyphenylacetate (11), and conidiogenone B (12), were isolated from the endophytic Penicillium sp. HJT-A-6. The chemical structures of all the compounds were elucidated by comprehensive spectroscopic analysis, including 1D and 2D NMR and HRESIMS. The absolute configuration at C-13 of peniquinazolinone A (1) was established by applying the modified Mosher's method. Compounds 2, 3, and 7 exhibited an optimal promoting effect on the seed germination of Rhodiola tibetica at a concentration of 0.01 mg/mL, while the optimal concentration for compounds 4 and 9 to promote Rhodiola tibetica seed germination was 0.001 mg/mL. Compound 12 showed optimal seed-germination-promoting activity at a concentration of 0.1 mg/mL. Compared with the positive drug 6-benzyladenine (6-BA), compounds 2, 3, 4, 7, 9, and 12 could extend the seed germination period of Rhodiola tibetica up to the 11th day.


Subject(s)
Alkaloids , Penicillium , Quinazolinones , Rhodiola , Seeds , Penicillium/chemistry , Quinazolinones/chemistry , Quinazolinones/pharmacology , Rhodiola/chemistry , Rhodiola/microbiology , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Germination/drug effects , Molecular Structure , Endophytes/chemistry
12.
Front Cell Infect Microbiol ; 14: 1375312, 2024.
Article in English | MEDLINE | ID: mdl-38779562

ABSTRACT

Competence development is essential for bacterial transformation since it enables bacteria to take up free DNA from the surrounding environment. The regulation of teichoic acid biosynthesis is tightly controlled during pneumococcal competence; however, the mechanism governing this regulation and its impact on transformation remains poorly understood. We demonstrated that a defect in lipoteichoic acid ligase (TacL)-mediated lipoteichoic acids (LTAs) biosynthesis was associated with impaired pneumococcal transformation. Using a fragment of tacL regulatory probe as bait in a DNA pulldown assay, we successfully identified several regulatory proteins, including ComE. Electrophoretic mobility shift assays revealed that phosphomimetic ComE, but not wild-type ComE, exhibited specific binding to the probe. DNase I footprinting assays revealed the specific binding sequences encompassing around 30 base pairs located 31 base pairs upstream from the start codon of tacL. Expression of tacL was found to be upregulated in the ΔcomE strain, and the addition of exogenous competence-stimulating peptide repressed the tacL transcription in the wild-type strain but not the ΔcomE mutant, indicating that ComE exerted a negative regulatory effect on the transcription of tacL. Mutation in the JH2 region of tacL upstream regulatory sequence led to increased LTAs abundance and displayed higher transformation efficiency. Collectively, our work identified the regulatory mechanisms that control LTAs biosynthesis during competence and thereby unveiled a repression mechanism underlying pneumococcal transformation.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Lipopolysaccharides , Streptococcus pneumoniae , Teichoic Acids , Transformation, Bacterial , Teichoic Acids/biosynthesis , Teichoic Acids/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lipopolysaccharides/biosynthesis , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Transcription, Genetic , Promoter Regions, Genetic , DNA Transformation Competence , Mutation , Protein Binding , Ligases/genetics , Ligases/metabolism
13.
AME Case Rep ; 8: 39, 2024.
Article in English | MEDLINE | ID: mdl-38711884

ABSTRACT

Background: Phyllodes tumors (PTs) account for 0.3-1.0% of all breast tumors and often occur in women aged 35 to 55. They are similar to giant fibroadenomas. PTs are famous for local recurrence. No more than 10% of PTs grow larger than 10 cm. The National Comprehensive Cancer Network (NCCN) guidelines recommend extensive resection with a margin of ≥1 cm for PTs, which is much larger than that required for breast cancer. Positive resection margin is associated with recurrence. However, little is known about whether all subtypes really require radical tumor negative resection margins. Case Description: We report on a 49-year-old woman with a giant borderline PT in her left breast. The tumor was greater than 10.5 cm × 7.0 cm. She had a bilateral benign PT excision in January 2014 and a left benign PT excision in December 2018. A chest computerized tomography (CT) scan and abdomen ultrasound did not reveal distant metastasis. Therefore, left breast mastectomy was performed. Wound healing was satisfactory. Pathological and immunohistochemistry findings showed a borderline PT. Conclusions: As the rare tumor of the breast, PTs pose a great challenge for surgeons. The initial evaluation of PTs relies on a triple evaluation of clinical, radiological, and histological examination. Local recurrence of PTs is more common than distant metastasis. The histology of recurrent tumors is usually identical to that of the primary tumor, or has a tendency to malignancy. Although most surgeons are uncomfortable with PTs with a positive margin, it is reasonable to adopt a "watchful waiting" strategy for benign PTs. The current recommendation that PTs should be extensively resected regardless of tumor size might be revised.

14.
Chem Sci ; 15(17): 6397-6401, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38699277

ABSTRACT

A concise and collective synthetic route to hypocretenolides was developed for the first time. This route features one-pot addition-alkylation and intramolecular 1,3-dipolar cycloaddition to efficiently assemble the 5/7/6 ring system. Our syntheses enabled multigram preparation of hypocretenolide which facilitated further biological evaluation. Preliminary CCK-8 cytotoxic results of hypocretenolide indicated its IC50 values within 1 µM against 4 colon cancer cell lines. Wound healing and transwell assays suggested the promising inhibitory activities of hypocretenolide toward the migratory capabilities of colon cancer cells in vitro. The animal results confirmed that hypocretenolide can inhibit metastasis of colon cancer cells.

15.
Nat Commun ; 15(1): 4231, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762611

ABSTRACT

N-type polycrystalline SnSe is considered as a highly promising candidates for thermoelectric applications due to facile processing, machinability, and scalability. However, existing efforts do not enable a peak ZT value exceeding 2.0 in n-type polycrystalline SnSe. Here, we realized a significant ZT enhancement by leveraging the synergistic effects of divacancy defect and introducing resonance level into the conduction band. The resonance level and increased density of states resulting from tungsten boost the Seebeck coefficient. The combination of the enhanced electrical conductivity (achieved by increasing carrier concentration through WCl6 doping and Se vacancies) and large Seebeck coefficient lead to a high power factor. Microstructural analyses reveal that the co-existence of divacancy defects (Se vacancies and Sn vacancies) and endotaxial W- and Cl-rich nanoprecipitates scatter phonons effectively, resulting in ultralow lattice conductivity. Ultimately, a record-high peak ZT of 2.2 at 773 K is achieved in n-type SnSe0.92 + 0.03WCl6.

16.
J Cancer ; 15(11): 3452-3465, 2024.
Article in English | MEDLINE | ID: mdl-38817853

ABSTRACT

Background: S100A8/S100A9 belong to the S100 calcium-binding protein family and play an essential role in the progression of chronic inflammation in diseases. It also regulates various biological processes such as tumor cell survival, apoptosis, and invasive metastasis. The extracellular form of S100A8/S100A9 functions by modulating cellular oxidative metabolism and facilitating inflammation-to-cancer progression. This modulation occurs through specific binding to receptors like RAGE and TLR4 and activation of signaling pathways including STAT3 and NF-κB. In tumor cells, S100A8 and S100A9 induce phenotypic changes by influencing calcium ion concentrations and other pathways. However, the precise function of high S100A8/S100A9 expression in colorectal cancer cells remains unclear. Methods: To explore the role of S100A8/S100A9 in colorectal cancer, we used immunohistochemistry and data from GEO and TCGA databases to analyze its expression in colorectal cancer cells, normal intestinal mucosa, and adjacent tissues. Functional models of high S100A8/S100A9 expression in colorectal cancer cells were established through transfection with overexpression plasmids. Protein microarrays, enzyme-linked immunosorbent assays (ELISAs), and real-time PCR were employed to assess the expression and secretion of 40 cytokines. MTT and Transwell invasion assays were conducted to evaluate changes in cell proliferation, invasion, and chemotaxis. Finally, tail vein and subcutaneous tumorigenesis assays assessed cell proliferation and migration in vivo. Results: We observed significantly higher expression of S100A8/S100A9 in colorectal cancer epithelial cells compared to normal intestinal mucosa and adjacent tissues. Overexpression of S100A8/S100A9 in mouse colon cancer cells CT26.WT led to differential increases in the secretion levels of various cytokines (CXCL5, CXCL11, GM-CSF, G-CSF, IL1a, IL1b, sTNF RI, and CCL3). Additionally, this overexpression activated signaling pathways such as STAT3, NF-κB, and ERK-MAPK. The synthesis and secretion of inflammatory factors could be inhibited by using NF-κB and ERK-MAPK pathway inhibitors. Moreover, S100A8 promotes the proliferation and invasion of colon cancer cells. Notably, the CXCR2 inhibitor (SB265610) effectively reversed the phenotypic changes induced by the CXCL5/CXCR2 biological axis. Conclusions: Our findings indicate that increased expression of S100A8 and S100A9 in colon cancer epithelial cells enhances the secretion of inflammatory factors by activating NF-κB, ERK-MAPK, and other signaling pathways. S100A8 facilitates colon cancer cell proliferation, invasion, and metastasis through the CXCL5/CXCR2 biological axis.

17.
Braz J Med Biol Res ; 57: e13645, 2024.
Article in English | MEDLINE | ID: mdl-38808892

ABSTRACT

Colorectal cancer is one of the most common malignant cancers. Pseudogenes have been identified as oncogenes or tumor suppressor genes in the development of various cancers. However, the function of pseudogene CSPG4P12 in colorectal cancer remains unclear. Therefore, the aim of this study was to investigate the potential role of CSPG4P12 in colorectal cancer and explore the possible underlying mechanism. The difference of CSPG4P12 expression between colorectal cancer tissues and adjacent normal tissues was analyzed using the online Gene Expression Profiling Interactive Analysis 2 (GEPIA2) database. Cell viability and colony formation assays were conducted to evaluate cell viability. Transwell and wound healing assays were performed to assess cell migration and invasion capacities. Western blot was used to measure the expression levels of epithelial-mesenchymal transition-related proteins. Colorectal cancer tissues had lower CSPG4P12 expression than adjacent normal tissues. The overexpression of CSPG4P12 inhibited cell proliferation, invasion, and migration in colorectal cancer cells. Overexpressed CSPG4P12 promoted the expression of E-cadherin, whereas it inhibited the expression of vimentin, N-cadherin, and MMP9. These findings suggested that CSPG4P12 inhibits colorectal cancer development and may serve as a new potential target for colorectal cancer.


Subject(s)
Cell Movement , Cell Proliferation , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Pseudogenes , Humans , Epithelial-Mesenchymal Transition/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Pseudogenes/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , Blotting, Western , Cadherins/genetics , Cadherins/metabolism , Cell Survival/genetics , Neoplasm Invasiveness/genetics
18.
Life Sci ; 348: 122674, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38692507

ABSTRACT

AIMS: Ubiquitin specific peptidase 5 (USP5), a member of deubiquitinating enzymes, has garnered significant attention for its crucial role in cancer progression. This study aims to explore the role of USP5 and its potential molecular mechanisms in cholangiocarcinoma (CCA). MAIN METHODS: To explore the effect of USP5 on CCA, gain-of-function and loss-of-function assays were conducted in human CCA cell lines RBE and HCCC9810. The CCK8, colony-forming assay, EDU, flow cytometry, transwell assay and xenografts were used to assess cell proliferation, migration and tumorigenesis. Western blot and immunohistochemistry were performed to measure the expression of related proteins. Immunoprecipitation and immunofluorescence were applied to identify the interaction between USP5 and Y box-binding protein 1 (YBX1). Ubiquitination assays and cycloheximide chase assays were carried out to confirm the effect of USP5 on YBX1. KEY FINDINGS: We found USP5 is highly expressed in CCA tissues, and upregulated USP5 is required for the cancer progression. Knockdown of USP5 inhibited cell proliferation, migration and epithelial-mesenchymal transition (EMT) in vitro, along with suppressed xenograft tumor growth and metastasis in vivo. Mechanistically, USP5 could interact with YBX1 and stabilize YBX1 by deubiquitination in CCA cells. Additionally, silencing of USP5 hindered the phosphorylation of YBX1 at serine 102 and its subsequent translocation to the nucleus. Notably, the effect induced by USP5 overexpression in CCA cells was reversed by YBX1 silencing. SIGNIFICANCE: Our findings reveal that USP5 is required for cell proliferation, migration and EMT in CCA by stabilizing YBX1, suggesting USP5-YBX1 axis as a promising therapeutic target for CCA.


Subject(s)
Bile Duct Neoplasms , Cell Movement , Cell Proliferation , Cholangiocarcinoma , Disease Progression , Epithelial-Mesenchymal Transition , Mice, Nude , Y-Box-Binding Protein 1 , Humans , Cholangiocarcinoma/pathology , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/genetics , Animals , Mice , Cell Line, Tumor , Y-Box-Binding Protein 1/metabolism , Y-Box-Binding Protein 1/genetics , Ubiquitination , Mice, Inbred BALB C , Male , Endopeptidases/metabolism , Endopeptidases/genetics , Gene Expression Regulation, Neoplastic , Female
19.
Org Lett ; 26(20): 4240-4245, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38743563

ABSTRACT

Mechanoredox chemistry is a rapidly evolving field at the intersection of mechanical forces and chemical reactions. Herein, we have reported a vicinal dibromination of unsaturated hydrocarbons using piezoelectric material (Li2TiO3) as a redox catalyst. Furthermore, the reaction can be efficiently scaled up to 10 mmol and performed under an air atmosphere at room temperature without solvents or external reductants, and Li2TiO3 can be reused multiple times without a structural change.

20.
Angew Chem Int Ed Engl ; : e202400645, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687047

ABSTRACT

The development of green and efficient deuteration methods is of great significance for various fields such as organic synthesis, analytical chemistry, and medicinal chemistry. Herein, we have developed a dehalogenative deuteration strategy using piezoelectric materials as catalysts in a solid-phase system under ball-milling conditions. This non-spontaneous reaction is induced by mechanical force. D2O can serve as both a deuterium source and an electron donor in the transformation, eliminating the need for additional stoichiometric exogenous reductants. A series of (hetero)aryl iodides can be transformed into deuterated products with high deuterium incorporation. This method not only effectively overcomes existing synthetic challenges but can also be used for deuterium labelling of drug molecules and derivatives. Bioactivity experiments with deuterated drug molecule suggest that the D-ipriflavone enhances the inhibitory effects on osteoclast differentiation of BMDMs in vitro.

SELECTION OF CITATIONS
SEARCH DETAIL
...