Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.395
1.
Curr Pharm Des ; 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38835124

BACKGROUND: Psoriasis is a common chronic inflammatory skin disorder. Qingxiong ointment (QX) is a natural medicinal combination frequently employed in clinical treatment of psoriasis. However, the active ingredients of QX and its precise mechanisms of improving psoriasis remain unclear. This study elucidated the effects of QX on an Imiquimod (IMQ)-induced mouse model of psoriasis while also exploring the regulation of the active ingredient of QX, shikonin, on the HIF-1 signaling pathway in HaCaT cells. METHODS: A mouse model of psoriasis was established through topical application of IMQ, and the local therapeutic effect of QX was evaluated using dorsal skin tissue with mouse psoriatic lesion and Psoriasis Area Severity Index (PASI) scores, hematoxylin-eosin (HE) staining, and immunohistochemical staining. Elisa and qPCR were employed to identify changes in the expression of inflammation-related factors in the mouse dorsal skin. Immunofluorescence was used to assess changes in the expression of T cell subsets before and after treatment with various doses of QX. HPLC was used to analyze the content of shikonin, and network pharmacology was employed to analyze the main targets of shikonin. Immunofluorescence was used to identify the effects of shikonin on the HIF-1 signaling pathway in IL6-induced psoriasis HaCaT cells. Finally, qPCR was used to identify the differential expression of the HIF-1 signaling pathway in skin tissues. RESULTS: QX significantly reduces PASI scores on the backs of IMQ-induced psoriasis mice. HE staining reveals alleviated epidermal thickness in the QX group. Immunohistochemical analysis shows a significant reduction in ICAM, KI67, and IL17 expression levels in the QX group. Immunofluorescence results indicate that QX can notably decrease the proportions of CD4+ T cells, γδ T cells, and CD8+ T cells while increasing the proportion of Treg cells. Network pharmacology analysis demonstrates that the main targets of shikonin are concentrated in the HIF-1 signaling pathway. Molecular docking results show favorable binding affinity between shikonin and key genes of the HIF-1 signaling pathway. Immunofluorescence results reveal that shikonin significantly reduces p-STAT3, SLC2A1, HIF1α, and NOS2 expression levels. qPCR results show significant downregulation of the HIF-1 signaling pathway at cellular and tissue levels. CONCLUSION: Our study revealed that QX can significantly reduce the dorsal inflammatory response in the IMQ-induced psoriasis mouse model. Furthermore, we discovered that its main component, shikonin, exerts its therapeutic effect by diminishing the HIF-1 signaling pathway in HaCaT cells.

2.
J Agric Food Chem ; 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38841893

Alzheimer's disease (AD), one of the neurodegenerative disorders, is highly correlated with the abnormal hyperphosphorylation of Tau and aggregation of ß-amyloid (Aß). Oxidative stress, neuroinflammation, and abnormal autophagy are key drivers of AD and how they contribute to neuropathology remains largely unknown. The flavonoid compound pongamol is reported to possess a variety of pharmacological activities, such as antioxidant, antibacterial, and anti-inflammatory. This study investigated the neuroprotective effect and its mechanisms of pongamol in lipopolysaccharide (LPS)-induced BV2 cells, d-galactose/sodium nitrite/aluminum chloride (d-gal/NaNO2/AlCl3)-induced AD mice, and Caenorhabditis elegans models. Our research revealed that pongamol reduced the release of inflammatory factors IL-1ß, TNF-α, COX-2, and iNOS in LPS-induced BV2 cells. Pongamol also protected neurons and significantly restored memory function, inhibited Tau phosphorylation, downregulated Aß aggregation, and increased oxidoreductase activity in the hippocampus of AD mice. In addition, pongamol reversed the nuclear transfer of NF-κB and increased the levels of Beclin 1 and LC3 II/LC3 I. Most importantly, the anti-inflammatory and promoter autophagy effects of pongamol may be related to the regulation of the Akt/mTOR signaling pathway. In summary, these results showed that pongamol has a potential neuroprotective effect, which greatly enriched the research on the pharmacological activity of pongamol for improving AD.

3.
Nat Commun ; 15(1): 4880, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849347

Assembling graphene sheets into macroscopic fibers with graphitic layers uniaxially aligned along the fiber axis is of both fundamental and technological importance. However, the optimal performance of graphene-based fibers has been far lower than what is expected based on the properties of individual graphene. Here we show that both mechanical properties and electrical conductivity of graphene-based fibers can be significantly improved if bridges are created between graphene edges through covalent conjugating aromatic amide bonds. The improved electrical conductivity is likely due to extended electron conjugation over the aromatic amide bridged graphene sheets. The larger sheets also result in improved π-π stacking, which, along with the robust aromatic amide linkage, provides high mechanical strength. In our experiments, graphene edges were bridged using the established wet-spinning technique in the presence of an aromatic amine linker, which selectively reacts to carboxyl groups at the graphene edge sites. This technique is already industrial and can be easily upscaled. Our methodology thus paves the way to the fabrication of high-performance macroscopic graphene fibers under optimal techno-economic and ecological conditions.

4.
J Endocrinol ; 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38842921

Characteristic symptoms of hyperthyroidism include weight loss, heart palpitation and sweating. Thyroid hormones (TH) can stimulate thermogenesis through central and peripheral mechanisms. Previous studies have shown an association between dysfunction of Cardiotrophin-like cytokine factor 1 (CLCF1) and cold-induced sweating syndrome (CISS), with recent research also indicating a link between CLCF1 and brown adipose tissue (BAT) thermogenesis. However, it remains unclear whether CLCF1 and TH have synergistic or antagonistic effects on thermogenesis. This study aims to investigate the influence of thyroid hormone on circulating CLCF1 levels in humans and explore the potential role of thyroid hormone in regulating energy metabolism by modulating CLCF1 in mice. By recruiting hyperthyroid patients and healthy subjects, we observed significantly lower serum CLCF1 levels in hyperthyroid patients compared to healthy subjects, with serum CLCF1 levels independently associated with hyperthyroidism after adjusting for potential confounders. Tissue analysis from mice treated with T3 revealed a decrease in Clcf1 expression in BAT and iWAT of C57BL/6 mice. These findings suggest that TH may play a role in regulating Clcf1 expression in thermogenic adipose tissue and impacting thermogenesis.

5.
Environ Res ; 256: 119252, 2024 May 28.
Article En | MEDLINE | ID: mdl-38815716

Bio-ingestion of microplastics poses a global threat to ecosystems, yet studies within nature reserves, crucial habitats for birds, remain scarce despite the well-documented ingestion of microplastics by avian species. Located in Jiangsu Province, China, the Yancheng Wetland Rare Birds Nature Reserve is home to diverse bird species, including many rare ones. This study aimed to assess the abundance and characteristics of microplastics in common bird species within the reserve, investigate microplastic enrichment across different species, and establish links between birds' habitat types and microplastic ingestion. Microplastics were extracted from the feces of 110 birds, with 84 particles identified from 37.27% of samples. Among 8 species studied, the average microplastic abundance ranged from 0.97 ± 0.47 to 43.43 ± 61.98 items per gram of feces, or 1.5 ± 0.87 to 3.4 ± 1.50 items per individual. The Swan goose (Anser cygnoides) exhibited the highest microplastic abundance per gram of feces, while the black-billed gull (Larus saundersi) had the highest abundance per individual. The predominant form of ingested microplastics among birds in the reserve was fibers, with polyethylene being the most common polymer type. Significant variations in plastic exposure were observed among species and between aquatic and terrestrial birds. This study represents the first quantitative assessment of microplastic concentrations in birds within the reserve, filling a crucial gap in research and providing insights for assessing microplastic pollution and guiding bird conservation efforts in aquatic and terrestrial environments.

6.
Nat Sci Sleep ; 16: 431-443, 2024.
Article En | MEDLINE | ID: mdl-38706925

Background: Restless legs syndrome (RLS) is a prevalent sensorimotor nervous system disorder in patients accompanied with insomnia, blood pressure fluctuation, and sympathetic dysfunction. These symptoms may disrupt cerebral hemodynamics. Dynamic cerebral autoregulation (dCA) describes the temporary response of cerebrovascular system to abrupt fluctuations in blood pressure, which keep cerebral blood flow stable and serve as a marker of cerebrovascular system ability. Objective: This research aimed to assess dCA in RLS patients. Methods: In this study, RLS patients were recruited and subsequently classified into four groups (mild, moderate, severe, and very severe) based on the International RLS Rating Scale (IRLS). Healthy controls matched for age and sex were enrolled. All participants were evaluated dCA by assessing phase difference (PD). A portion of patients with RLS was reassessed for dCA after one month of medication therapy (pramipexole [0.125 mg/day] and gabapentin [300 mg/day]). Results: There were altogether 120 patients with RLS and 30 controls completed the polysomnography and dCA assessment. PD was lower in the moderate, severe, and very severe RLS groups than that in the controls and mild RLS groups. Periodic limb movement index (PLMI), arousal index, and IRLS all showed a linear correlation with PD in RLS patients. Additionally, PD increased in RLS patients after therapy. Conclusion: The dCA was compromised in moderate, severe, and very severe RLS patients and was negatively correlated with the IRLS, arousal index, and PLMI. After 1 month of therapy, dCA improved in RLS patients.

7.
Transl Behav Med ; 2024 May 22.
Article En | MEDLINE | ID: mdl-38776869

Hypertensive patients often do not make the most favorable choices and behaviors for managing disease. Behavioral economics strategies offer new ideas for guiding patients toward health behavior. The scoping review aimed to summarize behavioral economics strategies designed to improve hypertension self-management behaviors. A literature search was conducted in September 2022 using the following electronic databases: Embase, Medline, CINAHL, PsycINFO, Web of Science, Cochrane Library, CNKI, Wan Fang Database for Chinese Periodicals, and CBM-SinoMed. We screened the literature for experimental studies written in Chinese or English reporting on BE strategies designed to improve self-management behavior in hypertension. We searched 17 820 records and included 18 articles in the final scoping review. We performed qualitative synthesis by the categories of choice architecture. The most common BE strategies were those targeting decision information and decision assistance, such as changing the presentation of information, making information visible, and providing reminders for actions. Most strategies targeted BP, diet, medication adherence, and physical activity behavior. Ten out of 18 studies reported statistically significant improvement in self-management behavior. Further research on BE strategies should focus on addressing the challenges, including changing the decision structure, encompassing a more comprehensive range of target behaviors, and examining the long-term effects of BE strategies.


Self-management of hypertension is a long-term effort, but people often make bounded rational decisions and act in ways that deviate from health goals. Behavioral Economics (BE) strategies make small changes in the decision-making environment to alter choices, steering individuals' behavior consistent with their goals or preferences. We summarized the BE strategies to improve self-management behavior in hypertension and described the study results using the categories of choice architecture. We found that the most widely used BE strategy is changing the presentation of information in the decision-making environment. Most BE strategies positively affect the target behaviors, which have the potential of BE strategies to enhance self-management behavior for hypertension. Further research is needed to identify the origins of these strategies, modify decision-making structures, and incorporate a broader range of health behaviors to showcase the practicality and sustainability of implementing BE strategies.

8.
Article En | MEDLINE | ID: mdl-38758624

Accurate molecular representation plays a crucial role in expediting the process of drug discovery. Graph neural networks (GNNs) have demonstrated robust capabilities in molecular representation learning, adept at capturing structural and spatial information in molecular graphs. For molecular representation learning, most previous GNN methods are specialized in dealing with 2D or 3D molecular data formats. By further fusing the geometric attributes and structural features of molecules, we can elevate the performance of molecular representation. To realize this, we present a novel geometryaugmented molecular representation learning model, designed to effectively encode both the 2D structural and 3D spatial information inherent in molecular graphs. By incorporating structural and spatial information as attention biases in the graph Transformer framework, our model offers a comprehensive architecture that introduces molecular structural details at both atom and bond levels. We further propose a geometry information fusion module to encode the geometry information within 3D molecular graphs. The experimental results show the efficacy of our model, demonstrating its ability to achieve competitive performance when compared to state-ofthe-art (SOTA) models in various property prediction tasks.

9.
ACS Appl Mater Interfaces ; 16(21): 27439-27449, 2024 May 29.
Article En | MEDLINE | ID: mdl-38764253

The charge transfer efficiency of the solid electrolyte depends on the number of lithium ions that can be effectively transported and participate in the electrode reaction. However, limited by the strong coupling relationship between Li+ and Lewis basic sites on the polymer chain, the Li+ transference number (tLi+) of the solid polymer electrolyte (SPE) based dual-ion conductor is typically low, resulting in excessive anion aggregation at the electrode side and inducing concentration polarization. In this study, we present a functionalized modified polymer electrolyte (FMPE) with selective cation transport, which was synthesized by embedding 4-(trifluoromethyl)styrene (TFS) functionalized groups onto the poly(diethylene glycol diacrylate) polymer chain. The TFS group formed noncovalent couplings with TFSI- anions through hydrogen bondings and dipole-dipole interactions, which effectively limited the migration of the anions and contributed to the elevated tLi+ of the FMPEs to 0.595 and 0.699 at 25 and 60 °C, respectively. Density functional theory (DFT) calculations were performed to verify the increased anion migration barriers for different noncovalent interactions and revealed that the conjugated system formed by the delocalized π electrons of the benzene ring and the C═O groups helped to disperse the electron distribution of the polymer chains. Consequently, the decrease in the degree of Li+ immobilization promotes the decoupling and migration of Li+ between the polymer chains. Benefiting from optimized Li+ transport behavior, the lithium metal batteries (LMBs) assembled by FMPEs and LiFePO4 exhibit excellent rate performance (discharge specific capacity of 88.8 mAh g-1 at 5 C) and stable long-term cycle performance (capacity decay rate of only 0.064% per cycle for 500 cycles at 25 °C and 0.5 C).

10.
Anal Chim Acta ; 1309: 342665, 2024 Jun 22.
Article En | MEDLINE | ID: mdl-38772653

BACKGROUND: The concentration of cytochrome C is demonstrated to be an effective indicator of the microbial corrosion strength of metals. Traditional cytochrome C sensor can detect cytochrome C with a low detection limit, but their use is limited by their high cost, cumbersome operation, and susceptibility to malignant environments. In addition, studies on the monitoring of cytochrome C in the field of microbial corrosion has still not been carried out. Therefore, there is a need for a highly sensitive, selective, low-cost, anti-interference, and stable cytochrome C sensor with online monitoring and remote sensing capabilities for in-situ measurement of microbial corrosion strength. RESULTS: This paper proposed a highly sensitive label-free fiber-optic sensor based on Mach-Zehnder interferometer (MZI) for in-situ measurement of the microbial corrosion marker cytochrome C. Two-dimensional Ti2C-MXene material is uniformly immobilized onto the surface of the sensing area to improve the sensitivity, hydrophilicity, and specific surface area of the sensing area, as well as to facilitate the immobilization of specific sensitive materials. The cytochrome C antibody is modified on the surface of Ti2C-MXene to specifically recognize cytochrome C, whose concentration variation can be measured by monitoring the spectral shift of MZI sensor. Results demonstrate a measurement sensitivity of 1.428 nm/µM for cytochrome C concentrations ranging from 0 to 7.04 µM. The detection limit of the sensor is calculated to be 0.392 µM with remarkable performance, including selectivity, stability, and reliability. Besides, the measurement result of the proposed sensor in real microbial corrosive environment is consistent with that of the ideal environment. SIGNIFICANCE AND NOVELTY: This is the first instance of achieving in-situ and label-free measurement of cytochrome C by using a fiber-optic MZI sensor, which undoubtedly provides a feasible solution for the effective monitoring of microbial metal corrosion in the environment.


Cytochromes c , Fiber Optic Technology , Interferometry , Titanium , Cytochromes c/analysis , Cytochromes c/metabolism , Titanium/chemistry , Biosensing Techniques/methods , Limit of Detection , Optical Fibers , Corrosion
11.
Oncol Lett ; 28(1): 310, 2024 Jul.
Article En | MEDLINE | ID: mdl-38784602

Microvascular invasion (MVI) in hepatocellular carcinoma (HCC) is a critical pathological factor and the degree of MVI influences treatment decisions and patient prognosis. The present study aimed to predict the MVI classification based on preoperative MRI features and clinical parameters. The present retrospective cohort study included 150 patients (training cohort, n=108; validation cohort, n=42) with pathologically confirmed HCC. Clinical and imaging characteristics data were collected from Shengli Oilfield Central Hospital (Dongying, China). Univariate and multivariate logistic regression analyses were conducted to assess the association of clinical variables and MRI parameters with MVI (grade M1 and M2) and the M2 classification. Nomograms were developed based on the predictive factors of MVI and the M2 classification. The discrimination capability, calibration and clinical usefulness of the nomograms were evaluated. Multivariate analysis revealed an association between the Lens culinaris agglutinin-reactive fraction of α-fetoprotein, protein induced by vitamin K absence-II and tumor margin and MVI-positive status, while peritumoral enhancement and tumor size were demonstrated to be marginal predictors, but were also included in the nomogram. However, among MVI-positive patients, only peritumoral hypointensity and tumor size were demonstrated to be risk factors for the M2 classification. The nomograms, incorporating these variables, exhibited a strong ability to discriminate between MVI-positive and MVI-negative patients with HCC in both the training and validation cohort [area under the curve (AUC), 0.877 and 0.914, respectively] and good performance in predicting the M2 classification in the training and validation cohorts (AUC, 0.720 and 0.782, respectively). Nomograms incorporating clinical parameters and preoperative MRI features demonstrated promising potential as straightforward and effective tools for predicting MVI and the M2 classification in patients with HCC. Such predictive tools could aid in the judicious selection of optimal clinical treatments.

12.
Article En | MEDLINE | ID: mdl-38781058

Depression is a prevalent mental disorder that affects a significant portion of the global population. Despite recent advancements in EEG-based depression recognition models rooted in machine learning and deep learning approaches, many lack comprehensive consideration of depression's pathogenesis, leading to limited neuroscientific interpretability. To address these issues, we propose a hemisphere asymmetry network (HEMAsNet) inspired by the brain for depression recognition from EEG signals. HEMAsNet employs a combination of multi-scale Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) blocks to extract temporal features from both hemispheres of the brain. Moreover, the model introduces a unique 'Callosum- like' block, inspired by the corpus callosum's pivotal role in facilitating inter-hemispheric information transfer within the brain. This block enhances information exchange between hemispheres, potentially improving depression recognition accuracy. To validate the performance of HEMAsNet, we first confirmed the asymmetric features of frontal lobe EEG in the MODMA dataset. Subsequently, our method achieved a depression recognition accuracy of 0.8067, indicating its effectiveness in increasing classification performance. Furthermore, we conducted a comprehensive investigation from spatial and frequency perspectives, demonstrating HEMAsNet's innovation in explaining model decisions. The advantages of HEMAsNet lie in its ability to achieve more accurate and interpretable recognition of depression through the simulation of physiological processes, integration of spatial information, and incorporation of the Callosum- like block.

13.
Food Chem Toxicol ; 189: 114724, 2024 May 10.
Article En | MEDLINE | ID: mdl-38734200

Notch signaling regulates cartilage formation and homeostasis. Kashin-Beck Disease (KBD), an endemic osteochondropathy, is characterized by severe cartilage degradation. The etiology of KBD is related to the exposure of HT-2 toxin, a mycotoxin and primary metabolite of T-2 toxin. This study aims to explore the role of HT-2 toxin in the Notch signaling regulation and extracellular matrix (ECM) metabolism of hiPSCs-Chondrocytes. Immunohistochemistry and qRT-PCR were employed to investigate the expression of Notch pathway molecules in KBD articular cartilage and primary chondrocytes. hiPSCs-Chondrocytes, derived from hiPSCs, were treated with 100 ng/mL HT-2 toxin and the γ-secretase inhibitor (DAPT) for 48h, respectively. The markers related to the Notch signaling pathway and ECM were assessed using qRT-PCR and Western blot. Notch pathway dysregulation was prominent in KBD cartilage. HT-2 toxin exposure caused cytotoxicity in hiPSCs-Chondrocytes, and activated Notch signaling by increasing the mRNA and protein levels of NOTCH1 and HES1. HT-2 toxin also upregulated ECM catabolic enzymes and downregulated ECM components (COL2A1 and ACAN), indicating ECM degradation. DAPT-mediated Notch signaling inhibition suppressed the mRNA and protein level of ADAMTS5 expression while enhancing ECM component expression in hiPSCs-Chondrocytes. This study suggests that HT-2 toxin may induce ECM degradation in hiPSCs-Chondrocytes through activating Notch signaling.

14.
Adv Mater ; : e2403322, 2024 May 01.
Article En | MEDLINE | ID: mdl-38690808

2D layered metallic graphite composites are promising electromagnetic wave absorption materials (EWAMs) for their combined properties of abundant interlayer free spaces, rich metallic polarized sites, and high conductivity, but the controllable synthesis remains rather challenging. Herein, a dual-step redox engineering strategy is developed by employing cobalt boron imidazolate framework (Co-BIF) to construct 2D CoNi-alloy embedded B, N-doped carbon layers (2D-CNC) as a promising EWAM. In the first step, a chemical etching oxidation process on Co-BIF is used to obtain an optimized 2D-CoNi-layered double hydroxide (2D-CoNi-LDH) intermediate and in the second, high-temperature calcination reduction is implemented to modify graphitization of the degree of the 2D-CNC. The obtained sample delivers superior reflection loss (RLmin) of -60.1 dB and wide effective absorption bandwidth (EAB) of 6.24 GHz. The synergy mechanisms of interfacial/dipole polarization and magnetic coupling are in-depth evidenced by the hologram and Lorentz electron microscopy, revealing its significant contribution on multireflection and impedance matching. Further theoretical evaluation by COMSOL simulation in different fields based on the dynamic loss process toward the test ring reveals the in situ EW attenuation process. This work presents a strategy to develop multifunctional light-weight infrared stealthy aerogel with superior pressure-resistant, anti-corrosion, and heat-insulating properties for future applications.

15.
Medicine (Baltimore) ; 103(18): e37992, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701260

BACKGROUND: Multiple takayasu arteritis (TA) is a chronic nonspecific large to medium vasculitis disease that mainly accumulates the aorta and its branches. Pulmonary vascular disease is often seen as stenosis and occlusion, and patients may show no moderate to severe pulmonary hypertension (PH). This study aims to summarize the clinical characteristics and analysis of prognostic factors in patients with PH caused by TA. METHODS: Patients diagnosed with aortitis involving the pulmonary artery by pulmonary arteriography or pulmonary artery and total aortic computed tomography arteriography (CTA). All patients underwent detailed clinical assessment, laboratory data collection, and analysis of imaging data. Patients were followed up and factors affecting the prognosis of the pulmonary arteries were analyzed. RESULTS: Most of the patients' complaints were chest tightness, shortness of breath, decreased activity tolerance, hemoptysis and chest pain. 56.90% of the patients were in at the time of admission. Echocardiographic estimation of pulmonary artery systolic pressure was 90.39 ±â€…22.87 mm Hg. In terms of laboratory tests, 39.66%% of the patients had elevated C-reactive protein and erythrocyte sedimentation rate, and amino-terminal natriuretic peptide precursor on admission. In terms of imaging, all patients had pulmonary artery involvement, which was combined with aortic involvement in 31.03%. Nuclide lung perfusion/ventilation imaging of the patients revealed multiple perfusion defects/absences in the segmental and subsegmental distribution of the lungs. Univariate Cox regression model analysis suggested that patients' WHO functional class at admission, age ≧ 51 years at the time of consultation, and amino-terminal natriuretic peptide precursor ≧ 3500 pg/mL were factors affecting the prognosis. Further multifactorial Cox regression model analysis suggested amino-terminal natriuretic peptide precursor ≧ 3500 pg/mL was an independent predictor of poor prognosis with a hazard ratio (HR) value of 5.248. CONCLUSION: Electrocardiogram and echocardiogram may suggest an increased right heart load; some patients have elevated serum inflammatory indexes. Characteristic imaging manifestations include widening of the main pulmonary artery, multiple pulmonary segmental and subsegmental stenoses.


Hypertension, Pulmonary , Pulmonary Artery , Takayasu Arteritis , Humans , Takayasu Arteritis/complications , Takayasu Arteritis/physiopathology , Female , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/physiopathology , Retrospective Studies , Adult , Male , Prognosis , Pulmonary Artery/diagnostic imaging , Pulmonary Artery/physiopathology , Middle Aged , Young Adult , Echocardiography/methods , Computed Tomography Angiography/methods
16.
Small ; : e2401103, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709231

The unsaturated amides are traditionally synthesized by acylation of carboxylic acids or hydration of nitrile compounds but are rarely investigated by hydroaminocarbonylation of alkynes using heterogeneous single-metal-site catalysts (HSMSCs). Herein, single-Pd-site catalysts supported on N-doping carbon (NC) with different nitrogen dimensions inherited from corresponding metal-organic-framework precursors are successfully synthesized. 2D NC-supported single-Pd-site (Pd1/NC-2D) exhibited the best performance with near 100% selectivity and 76% yield of acrylamide for acetylene hydroaminocarbonylation with better stability, superior to those of Pd1/NC-3D, single-metal-site/nanoparticle coexisting catalyst, and nanoparticle catalyst. The coordination environment and molecular evolution of the single-Pd-site during the process of acetylene hydroaminocarbonylation on Pd1/NC-2D are detailly illuminated by various characterizations and density functional theoretical calculations (DFT). DFT also showed the energy barrier of rate-determining step on Pd1/NC-2D is lower than that of Pd1/NC-3D. Furthermore, Pd1/NC-2D catalyst illustrated the general applicability of the hydroaminocarbonylation for various alkynes.

17.
J Med Genet ; 2024 May 30.
Article En | MEDLINE | ID: mdl-38816193

BACKGROUND AND AIMS: Variants in ZFYVE19 underlie a disorder characterised by progressive portal fibrosis, portal hypertension and eventual liver decompensation. We aim to create an animal model to elucidate the pathogenic mechanism. METHODS: Zfyve19 knockout (Zfyve19-/- ) mice were generated and exposed to different liver toxins. Their livers were characterised at the tissue, cellular and molecular levels. Findings were compared with those in wild-type mice and in ZFYVE19-deficient patients. ZFYVE19 knockout and knockdown retinal pigment epithelial-1 cells and mouse embryonic fibroblasts were generated to study cell division and cell death. RESULTS: The Zfyve19-/- mice were normal overall, particularly with respect to hepatobiliary features. However, when challenged with α-naphthyl isothiocyanate, Zfyve19-/- mice developed changes resembling those in ZFYVE19-deficient patients, including elevated serum liver injury markers, increased numbers of bile duct profiles with abnormal cholangiocyte polarity and biliary fibrosis. Failure of cell division, centriole and cilia abnormalities, and increased cell death were observed in knockdown/knockout cells. Increased cell death and altered mRNA expression of cell death-related signalling pathways was demonstrated in livers from Zfyve19-/- mice and patients. Transforming growth factor-ß (TGF-ß) and Janus kinase-Signal Transducer and Activator of Transcription 3 (JAK-STAT3) signalling pathways were upregulated in vivo, as were chemokines such as C-X-C motif ligands 1, 10 and 12. CONCLUSIONS: Our findings demonstrated that ZFYVE19 deficiency is a ciliopathy with novel histological features. Failure of cell division with ciliary abnormalities and cell death activates macrophages and may thus lead to biliary fibrosis via TGF-ß pathway in the disease.

18.
Mol Pharm ; 2024 May 30.
Article En | MEDLINE | ID: mdl-38816926

Chemo-photodynamic therapy is a treatment method that combines chemotherapy and photodynamic therapy and has demonstrated significant potential in cancer treatment. However, the development of chemo-photodynamic therapeutic agents with fewer side effects still poses a challenge. Herein, we designed and synthesized a novel series of ß-carboline/furylmalononitrile hybrids 10a-i and evaluated their chemo-photodynamic therapeutic effects. Most of the compounds were photodynamically active and exhibited cytotoxic effects in four cancer cells. In particular, 10f possessed type-I/II photodynamic characteristics, and its 1O2 quantum yield increased by 3-fold from pH 7.4 to 4.5. Most interestingly, 10f exhibited robust antiproliferative effects by tumor-selective cytotoxicities and hypoxic-overcoming phototoxicities. In addition, 10f generated intracellular ROS and induced hepatocellular apoptosis, mitochondrial damage, and autophagy. Finally, 10f demonstrated extremely low acute toxicity (LD50 = 1415 mg/kg) and a high tumor-inhibitory rate of 80.5% through chemo-photodynamic dual therapy. Our findings may provide a promising framework for the design of new photosensitizers for chemo-photodynamic therapy.

19.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2178-2187, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38812233

This paper aims to explore the effect of Xuming Decoction in the Records of Proved Prescriptions, Ancient and Modern on cerebral ischemic injury and angiogenesis in the rat model of acute cerebral infarction. SD rats were randomized into 6 groups: sham group, model group, low-, medium-, and high-dose(5.13, 10.26, and 20.52 g·kg~(-1), respectively) Xuming Decoction groups, and butylphthalide(0.06 g·kg~(-1)) group. After the successful establishment of the rat model by middle cerebral artery occlusion(MCAO), rats in the sham and model groups were administrated with distilled water and those in other groups with corresponding drugs for 7 consecutive days. After the neurological function was scored, all the rats were sacrificed, and the brain tissue samples were collected. The degree of cerebral ischemic injury was assessed by the neurological deficit score and staining with 2,3,5-triphenyltetrazolium chloride. Hematoxylin-eosin staining was performed to observe the pathological changes in the brain. Transmission electron microscopy was employed to observe the ultrastructures of neurons and microvascular endothelial cells(ECs) on the ischemic side of the brain tissue. Immunofluorescence assay was employed to detect the expression of von Willebrand factor(vWF) and hematopoietic progenitor cell antigen CD34(CD34) in the ischemic brain tissue. Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of Runt-related transcription factor 1(RUNX1), vascular endothelial growth factor(VEGF), angiopoietin-1(Ang-1), angiopoietin-2(Ang-2), and VEGF receptor 2(VEGFR2) in the ischemic brain tissue. The results showed that compared with the sham group, the model group showed increased neurological deficit score and cerebral infarction area(P<0.01), pathological changes, and damaged ultrastructure of neurons and microvascular ECs in the ischemic brain tissue. Furthermore, the modeling up-regulated the mRNA levels of RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.01) and the protein levels of vWF, CD34, RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.05 or P<0.01). Compared with the model group, high-dose Xuming Decoction and butylphthalide decreased the neurological deficit score and cerebral infarction area(P<0.01) and alleviated the pathological changes and damage of the ultrastructure of neurons and microvascular ECs in the ischemic brain tissue. Moreover, they up-regulated the mRNA levels of RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.01) and the protein levels of vWF, CD34, RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.01). The results suggest that Xuming Decoction in the Records of Proved Prescriptions, Ancient and Modern can promote the angiogenesis and collateral circulation establishment to alleviate neurological dysfunction of the ischemic brain tissue in MCAO rats by regulating the RUNX1/VEGF pathway.


Brain Ischemia , Cerebral Infarction , Disease Models, Animal , Drugs, Chinese Herbal , Rats, Sprague-Dawley , Animals , Rats , Male , Drugs, Chinese Herbal/pharmacology , Cerebral Infarction/drug therapy , Cerebral Infarction/metabolism , Cerebral Infarction/genetics , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/genetics , Humans , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Neovascularization, Physiologic/drug effects , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Angiogenesis
20.
Environ Res ; 256: 119060, 2024 May 28.
Article En | MEDLINE | ID: mdl-38751001

Black phosphorus nanosheets (BPNs)/CdS heterostructure was successfully synthesized via hydrothermal method. The experimental results indicated that BPNs modified the surface of CdS nanoparticles uniformly. Meanwhile, the BPNs/CdS heterostructure exhibited a distinguished high rate of photocatalytic activity for Tetrabromobisphenol A (TBBPA) degradation under visible light irradiation (λ > 420 nm), the kinetic constant of TBBPA degradation reached 0.0261 min-1 was approximately 5.68 and 9.67 times higher than that of CdS and P25, respectively. Moreover, superoxide radical (•O2-) is the main active component in the degradation process of TBBPA (the relative contribution is 91.57%). The photocatalytic mechanism and intermediates of the TBBPA was clarified, and a suitable model and pathway for the degradation of TBBPA were proposed. The results indicated that the toxicities of some intermediates were higher than the parent pollutant. This research provided an efficient approach by a novel photocatalyst for the removal of TBBPA from wastewater, and the appraisal methods for the latent risks from the intermediates were reported in this paper.

...