Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 13.536
1.
Opt Lett ; 49(11): 2950-2953, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824300

Phase unwrapping (PU) algorithms play a crucial role in various phase measurement techniques. Traditional algorithms cannot work well in strong noise environments, which makes it very difficult to obtain the accurate absolute phase from the noisy wrapped phase. In this Letter, we introduce a novel, to the best of our knowledge, phase unwrapping algorithm named PD-VHS. This algorithm innovatively employs point spread function (PSF) filtering to eliminate noise from the wrapped phase. Furthermore, it combines a phase diversity (PD) wavefront reconstruction technology with a virtual Hartmann-Shack (VHS) technology for phase reconstruction and phase unwrapping of the filtered PSFs. In simulations, hundreds of random noise wrapped phases, containing the first 45 Zernike polynomials (excluding piston and the two tilt terms) and the wavefront RMS = 0.5λ and 1λ, are used to compare the classical quality-map guided algorithm, the VHS algorithm with decent noise immunity, with our PD-VHS algorithm. When signal-to-noise ratio (SNR) drops to just 2 dB, the mean root mean square errors (RMSEs) of the residual wavefront between the unwrapped result and the absolute phase of the quality-map guided algorithm and the VHS algorithm are up to 3.99λ, 0.44λ, 4.29λ, and 0.85λ, respectively; however, our algorithm RMSEs are low: 0.11λ and 0.17λ. Simulation results demonstrated that the PD-VHS algorithm significantly outperforms the quality-map guided algorithm and the VHS algorithm under large-scale noise conditions.

2.
Open Med (Wars) ; 19(1): 20240969, 2024.
Article En | MEDLINE | ID: mdl-38799250

Intercellular adhesion molecule-1 (ICAM-1) is related to the occurrence and development of a variety of tumors. However, the role of ICAM-1 in the regulation of growth, metastasis, and clinical prognosis of the specific molecular subtypes of breast cancer, triple-negative breast cancer (TNBC), remains to be elucidated. This study explored the role of ICAM-1 in breast cancer and its triple-negative subtypes by systematic bioinformatics methods. The results showed that the expression of ICAM-1 in breast cancer tissues was significantly higher than that in normal tissues, especially in TNBC subtypes. In breast cancer, ICAM-1 mainly activates pathways related to apoptosis and epithelial-mesenchymal transition, while its overexpression in TNBC is associated with inflammatory response, apoptosis, and other processes. TNBC patients displaying higher ICAM-1 expression demonstrate enhanced responses to immunotherapy. High ICAM-1 expression is sensitive to drugs targeting tumor cell proliferation, apoptosis, and angiogenesis. In conclusion, breast cancer is characterized by significantly high expression of ICAM-1, with TNBC subtypes expressing ICAM-1 at much higher levels than other subtypes. The diagnosis, prognosis, development, distant metastases, and immunotherapy of TNBC are correlated with high expression of ICAM-1. This research provides available data for the further study of the diagnosis and treatment of TNBC.

3.
Open Med (Wars) ; 19(1): 20240968, 2024.
Article En | MEDLINE | ID: mdl-38799254

Autophagy, a process that isolates intracellular components and fuses them with lysosomes for degradation, plays an important cytoprotective role by eliminating harmful intracellular substances and maintaining cellular homeostasis. Mesenchymal stem cells (MSCs) are multipotent progenitor cells with the capacity for self-renewal that can give rise to a subset of tissues and therefore have potential in regenerative medicine. However, a variety of variables influence the biological activity of MSCs following their proliferation and transplantation in vitro. The regulation of autophagy in MSCs represents a possible mechanism that influences MSC differentiation properties under the right microenvironment, affecting their regenerative and therapeutic potential. However, a deeper understanding of exactly how autophagy is mobilized to function as well as clarifying the mechanisms by which autophagy promotes MSCs differentiation is still needed. Here, we review the current literature on the complex link between MSCs differentiation and autophagy induced by various extracellular or intracellular stimuli and the molecular targets that influence MSCs lineage determination, which may highlight the potential regulation of autophagy on MSCs' therapeutic capacity, and provide a broader perspective on the clinical application of MSCs in the treatment of a wide range of diseases.

4.
Genetics ; 2024 May 29.
Article En | MEDLINE | ID: mdl-38809057

In F1 hybrids, phenotypic values are expected to be near the parental means under additive effects or close to one parent under dominance. However, F1 traits can fall outside the parental range, and outbreeding depression occurs when inferior fitness is observed in hybrids. Another possible outcome is heterosis, a phenomenon that interspecific hybrids or intraspecific crossbred F1s exhibit improved fitness compared to both parental species or strains. As an application of heterosis, hybrids between channel catfish females and blue catfish males are superior in feed conversion efficiency, carcass yield, and harvestability. Over twenty years of hybrid catfish production in experimental settings and farming practices generated abundant phenotypic data, making it an ideal system to investigate heterosis. In this study, we characterized fitness in terms of growth and survival longitudinally, revealing environment-dependent heterosis. In ponds, hybrids outgrow both parents due to an extra rapid growth phase of 2∼4 months in year 2. This bimodal growth pattern is unique to F1 hybrids in pond culture environments only. In sharp contrast, the same genetic types cultured in tanks display outbreeding depression, where hybrids perform poorly, while channel catfish demonstrate superiority in growth throughout development. Our findings represent the first example, known to the authors, of opposite fitness shifts in response to environmental changes in interspecific vertebrate hybrids, suggesting a broader fitness landscape for F1 hybrids. Future genomic studies based on this experiment will help understand genome-environment interaction in shaping the F1 progeny fitness in the scenario of environment-dependent heterosis and outbreeding depression.

5.
Sci Rep ; 14(1): 12109, 2024 05 27.
Article En | MEDLINE | ID: mdl-38802411

Chronic Heart Failure (CHF) is a significant global public health issue, with high mortality and morbidity rates and associated costs. Disease modules, which are collections of disease-related genes, offer an effective approach to understanding diseases from a biological network perspective. We employed the multi-Steiner tree algorithm within the NeDRex platform to extract CHF disease modules, and subsequently utilized the Trustrank algorithm to rank potential drugs for repurposing. The constructed disease module was then used to investigate the mechanism by which Panax ginseng ameliorates CHF. The active constituents of Panax ginseng were identified through a comprehensive review of the TCMSP database and relevant literature. The Swiss target prediction database was utilized to determine the action targets of these components. These targets were then cross-referenced with the CHF disease module in the STRING database to establish protein-protein interaction (PPI) relationships. Potential action pathways were uncovered through Gene Ontology (GO) and KEGG pathway enrichment analyses on the DAVID platform. Molecular docking, the determination of the interaction of biological macromolecules with their ligands, and visualization were conducted using Autodock Vina, PLIP, and PyMOL, respectively. The findings suggest that drugs such as dasatinib and mitoxantrone, which have low docking scores with key disease proteins and are reported in the literature as effective against CHF, could be promising. Key components of Panax ginseng, including ginsenoside rh4 and ginsenoside rg5, may exert their effects by targeting key proteins such as AKT1, TNF, NFKB1, among others, thereby influencing the PI3K-Akt and calcium signaling pathways. In conclusion, drugs like dasatinib and midostaurin may be suitable for CHF treatment, and Panax ginseng could potentially mitigate the progression of CHF through a multi-component-multi-target-multi-pathway approach. Disease module analysis emerges as an effective strategy for exploring drug repurposing and the mechanisms of traditional Chinese medicine in disease treatment.


Drug Repositioning , Heart Failure , Molecular Docking Simulation , Panax , Panax/chemistry , Panax/metabolism , Heart Failure/drug therapy , Heart Failure/metabolism , Humans , Drug Repositioning/methods , Protein Interaction Maps/drug effects , Signal Transduction/drug effects , Chronic Disease/drug therapy , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry
6.
Front Aging Neurosci ; 16: 1357070, 2024.
Article En | MEDLINE | ID: mdl-38817347

Background: Obstructive sleep apnea (OSA) had a high prevalence in the population. Whether OSA increases the risk of amyotrophic lateral sclerosis (ALS) is unknown. Our aim was to clarify this issue using two-sample Mendelian randomization (MR) analysis in a large cohort. Methods: Two-sample MR was used to evaluate the potential causality between OSA and ALS by selecting single-nucleotide polymorphisms (SNPs) as instrumental variables (IVs) from genome-wide association studies (GWAS). The inverse-variance weighted (IVW) method was chosen as the primary method to estimate causal association. Weighted median, weighted mode and simple mode methods were used as sensitivity analyses to ensure the robustness of the results. Results: In MR analysis, IVW mode showed genetic liability to OSA was found to be significantly associated with a higher ALS risk (OR, 1.220; 95% confidence interval, 1.031-1.443; p = 0.021). No evidence of heterogeneity and horizontal pleiotropy were suggested. Conclusion: We found potential evidence for a causal effect of OSA on an increased risk of ALS.

7.
Mol Pharm ; 2024 May 31.
Article En | MEDLINE | ID: mdl-38819959

Inflammation induced by activated macrophages within vulnerable atherosclerotic plaques (VAPs) constitutes a significant risk factor for plaque rupture. Translocator protein (TSPO) is highly expressed in activated macrophages. This study investigated the effectiveness of TSPO radiotracers, 18F-FDPA, in detecting VAPs and quantifying plaque inflammation in rabbits. 18 New Zealand rabbits were divided into 3 groups: sham group A, VAP model group B, and evolocumab treatment group C. 18F-FDPA PET/CTA imaging was performed at 12, 16, and 24 weeks in all groups. Optical coherence tomography (OCT) was performed on the abdominal aorta at 24 weeks. The VAP was defined through OCT images, and ex vivo aorta PET imaging was also performed at 24 weeks. The SUVmax and SUVmean of 18F-FDPA were measured on the target organ, and the target-to-background ratio (TBRmax) was calculated as SUVmax/SUVblood pool. The arterial sections of the isolated abdominal aorta were analyzed by HE staining, CD68 and TSPO immunofluorescence staining, and TSPO Western blot. The results showed that at 24 weeks, the plaque TBRmax of 18F-FDPA in group B was significantly higher than in groups A and C. Immunofluorescence staining of CD68 and TSPO, as well as Western blot, confirmed the increased expression of macrophages and TSPO in the corresponding regions of group B. HE staining revealed an increased presence of the lipid core, multiple foam cells, and inflammatory cell infiltration in the area with high 18F-FDPA uptake. This indicates a correlation between 18F-FDPA uptake, inflammation severity, and VAPs. The TSPO-targeted tracer 18F-FDPA shows specific uptake in macrophage-rich regions of atherosclerotic plaques, making it a valuable tool for assessing inflammation in VAPs.

8.
Sci Total Environ ; : 173643, 2024 May 29.
Article En | MEDLINE | ID: mdl-38821282

Mariculture effluent polishing with microalgal biofilm could realize effective nutrients removal and resolve the microalgae-water separation issue via biofilm scraping or in-situ aquatic animal grazing. Ubiquitous existence of antibiotics in mariculture effluents may affect the remediation performances and arouse ecological risks. The influence of combined antibiotics exposure at environment-relevant concentrations towards attached microalgae suitable for mariculture effluent polishing is currently lack of research. Results from suspended cultures could offer limited guidance since biofilms are richer in extracellular polymeric substances that may protect the cells from antibiotics and alter their transformation pathways. This study, therefore, explored the effects of combined antibiotics exposure at environmental concentrations towards seawater Chlorella sp. biofilm in terms of microalgal growth characteristics, nutrients removal, anti-oxidative responses, and antibiotics removal and transformations. Sulfamethoxazole (SMX), tetracycline (TL), and clarithromycin (CLA) in single, binary, and triple combinations were investigated. SMX + TL displayed toxicity synergism while TL + CLA revealed toxicity antagonism. Phosphorus removal was comparable under all conditions, while nitrogen removal was significantly higher under SMX and TL + CLA exposure. Anti-oxidative responses suggested microalgal acclimation towards SMX, while toxicity antagonism between TL and CLA generated least cellular oxidative damage. Parent antibiotics removal was in the order of TL (74.5-85.2 %) > CLA (60.8-69.5 %) > SMX (13.5-44.1 %), with higher removal efficiencies observed under combined than single antibiotic exposure. Considering the impact of residual parent antibiotics, CLA involved cultures were identified of high ecological risks, while medium risks were indicated in other cultures. Transformation products (TPs) of SMX and CLA displayed negligible aquatic toxicity, the parent antibiotics themselves deserve advanced removal. Four out of eight TPs of TL could generate chronic toxicity, and the elimination of these TPs should be prioritized for TL involved cultures. This study expands the knowledge of combined antibiotics exposure upon microalgal biofilm based mariculture effluent polishing.

9.
BMJ Open ; 14(5): e082709, 2024 May 31.
Article En | MEDLINE | ID: mdl-38821569

INTRODUCTION: Prostate cancer is the most common malignant disease within the male genitourinary system. Advances in cancer screening and treatment have significantly ameliorated the survival rates of patients with prostate cancer. Nonetheless, prostate cancer survivors report various degrees of cancer-related symptoms. These symptoms cause physiological and psychological suffering, leading to a deterioration of quality of life. Web-based interventions may facilitate the management of symptoms due to their flexibility, accessibility and convenience. However, the efficacy of web-based interventions in reducing symptom burden remains to be confirmed. Consequently, this systematic review and meta-analysis aims to comprehensively synthesise existing evidence, evaluate the effectiveness of web-based interventions in reducing symptom burden among patients and furnish a reference for clinical practice. METHODS AND ANALYSIS: This protocol strictly adheres to the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocol guidelines. We will comprehensively search six databases (PubMed, Web of Science, Cochrane, Embase, CINAHL and PsycINFO) from their inception to March 2024 in order to identify clinical trials on the efficacy of web-based interventions for prostate cancer survivors. Two reviewers will independently conduct study selection, data extraction and quality assessment. The risk bias of included studies will be assessed using the Cochrane Risk of Bias Tool for randomised trials 2.0, and the strength of evidence will be assessed using Grading of Recommendations Assessment, Development and Evaluation (GRADE) guideline. Meta-analysis will be performed using STATA V.16.0, and the effect size will be calculated using the standardised mean difference and its 95% CI. Heterogeneity will be assessed using Cochran's Q statics and inconsistency will be measured using the I2 statistics. Potential sources of bias will be evaluated. ETHICS AND DISSEMINATION: Ethics approval is not required for this review as no human participants will be involved. The results will be disseminated via a peer-reviewed journal or an academic conference. PROSPERO REGISTRATION NUMBER: CRD42023457718.


Cancer Survivors , Internet-Based Intervention , Meta-Analysis as Topic , Prostatic Neoplasms , Self Efficacy , Self-Management , Systematic Reviews as Topic , Humans , Male , Prostatic Neoplasms/therapy , Cancer Survivors/psychology , Self-Management/methods , Research Design , Quality of Life , Symptom Burden
10.
Int Immunopharmacol ; 135: 112244, 2024 May 20.
Article En | MEDLINE | ID: mdl-38776847

Psoriasis is a common and prevalent chronic papulosquamous cutaneous disorder characterized by sustained inflammation, uncontrolled keratinocyte proliferation, dysfunctional differentiation, and angiogenesis. Autophagy, an intracellular catabolic process, can be induced in response to nutrient stress. It entails the degradation of cellular constituents through the lysosomal machinery, and its association with psoriasis has been well-documented. Nevertheless, there remains a notable dearth of research concerning the involvement of autophagy in the pathogenesis of psoriasis within human skin. This review provides a comprehensive overview of autophagy in psoriasis pathogenesis, focusing on its involvement in two key pathological manifestations: sustained inflammation and uncontrolled keratinocyte proliferation and differentiation. Additionally, it discusses potential avenues for disease management.

12.
Microbiol Spectr ; : e0039024, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727239

Alternaria alternata is a ubiquitous soil-borne fungus capable of causing diseases in a variety of plants and occasionally in humans. While populations of A. alternata from infected plants have received significant attention, relatively little is known about its soil populations, including its population genetic structure and antifungal susceptibilities. In addition, over the last two decades, greenhouses have become increasingly important for food and ornamental plant production throughout the world, but how greenhouses might impact microbial pathogens such as A. alternata populations remains largely unknown. Different from open crop fields, greenhouses are often more intensively cultivated, with each greenhouse being a relatively small and isolated space where temperature and humidity are higher than surrounding environments. Previous studies have shown that greenhouse populations of two common molds, Aspergillus fumigatus and A. alternata, within a small community in southwestern China were variably differentiated. However, the relative contribution of physical separation among local greenhouses to the large-scale population structure remains unknown. Here, we isolated strains of A. alternata from seven greenhouses in Shijiazhuang, northeast China. Their genetic diversity and triazole susceptibilities were analyzed and compared with each other and with 242 isolates from nine greenhouses in Kunming, southwest China. Results showed that the isolation of greenhouses located <1 km from each other locally contributed similarly to the overall genetic variation as that between the two distant geographic regions. In addition, our results indicate that greenhouses could be significant sources of triazole resistance, with greenhouses often differing in their frequencies of resistant strains to different triazoles. IMPORTANCE: Greenhouses have become increasingly important for food production and food security. However, our understanding of how greenhouses may contribute to genetic variations in soil microbial populations is very limited. In this study, we obtained and analyzed soil populations of the cosmopolitan fungal pathogen Alternaria alternata in seven greenhouses in Shijiazhuang, northeast China. Our analyses revealed high proportions of isolates being resistant to agricultural triazole fungicides and medical triazole drugs, including cross-resistance to both groups of triazoles. In addition, we found that greenhouse populations of A. alternata located within a few kilometers showed similar levels of genetic differentiation as those separated by over 2,000 km between northeast and southwest China. Our study suggests that greenhouse populations of this and potentially other fungal pathogens represent an important ecological niche and an emerging threat to food security and human health.

13.
Heliyon ; 10(9): e30227, 2024 May 15.
Article En | MEDLINE | ID: mdl-38707320

Tourism promotes the economic development of agro-cultural heritage sites while causing the problem of spatial alienation, so exploring the spatial alienation problems based on the integration of culture and tourism is of great significance for achieving the sustainable development of tourism in agro-cultural heritage sites. This study took the Yuanyang Hani Terrace agro-cultural heritage site as the research area, constructed the model of the spatial system of the agro-cultural heritage site based on the classical grounded theory, and analyzed the spatial characteristics of the agro-cultural heritage site. The results show that the spatial disorder of the agro-cultural heritage site is caused by the interaction of the imbalance of physical space, the fragmentation of cultural space and the complications of social space. Next, this study constructed the model for the spatial restructuring of the agro-cultural heritage site in the context of culture and tourism integration, with the integration of management systems as a guiding force, the integration of talent systems as a crucial force, the integration of agricultural, cultural and tourism resources as a core force, the integration of the cultural and tourism industries as a driving force, the integration of ecology and culture as a basic force, and the integration of digital scenes as an innovative force. This study expands and deepens the spatial theory of tourist destinations and the knowledge system of cultural heritage tourism, and provides a systematic implementation framework and management tools for the integration of culture and tourism and the high-quality development of agro-cultural heritage sites.

14.
Heliyon ; 10(10): e30829, 2024 May 30.
Article En | MEDLINE | ID: mdl-38770281

Klebsiella pneumoniae is an opportunistic pathogen causing severe infections. The circadian rhythm is the internal rhythm mechanism of an organism and plays an important role in coping with changes in the 24-h circadian rhythm. Disruption of the circadian rhythm can lead to immune, behavioral, mental, and other related disorders. Whether K. pneumoniae can disrupt the circadian rhythm after infection remains unclear. Here, we examined the effects of K. pneumoniae NTUH-K2044 infection on biological rhythm and inflammation in zebrafish using behavioral assays, quantitative real-time reverse transcription PCR, neutrophil and macrophage transgenic fish, and drug treatment. The results showed that K. pneumoniae infection decreased the motor activity of zebrafish and reduced the circadian rhythm amplitude, phase, and period. The expression of core circadian rhythm-associated genes increased under light-dark conditions, whereas they were downregulated under continuous darkness. Analysis of Klebsiella pneumoniae-mediated inflammation using Tg(mpx:EGFP) and Tg(mpeg:EGFP) transgenic zebrafish, expressing fluorescent neutrophils and macrophages, respectively, showed increased induction of inflammatory cells, upregulated expression of inflammatory factor genes, and stronger inflammatory responses under light-dark conditions. These effects were reversed by the anti-inflammatory drug G6PDi-1, and the expression of clock genes following K. pneumoniae treatment was disrupted. We determined the relationship among K. pneumoniae, inflammation, and the circadian rhythm, providing a theoretical reference for studying circadian rhythm disorders caused by inflammation.

15.
Natl Sci Rev ; 11(6): nwae135, 2024 Jun.
Article En | MEDLINE | ID: mdl-38770531

Lipid nanoparticles (LNPs) have gained clinical approval as carriers for both siRNA and mRNA. Among the crucial components of LNPs, ionizable lipids play a pivotal role in determining the efficiency of RNA delivery. In this study, we synthesized a series of ionizable lipids, denoted as HTO, with a higher count of hydroxyl groups compared to SM-102. Remarkably, LNPs based on HTO12 lipid demonstrated comparable mRNA delivery efficiency and biosafety to those based on SM-102. However, the former reduced the ratio of ionizable lipid/total lipids to mRNA in LNPs by 2.5 times compared to SM-102. The HTO12 LNP efficiently encapsulated adenine base editor mRNA and sgRNA targeting Pcsk9, leading to substantial gene editing within the liver of mice and effective reduction of the target protein. Our study underscores that ionizable lipids with multiple hydroxyl groups may facilitate an improved lipid-to-mRNA ratio to minimize the dosage of ionizable lipids for in vivo delivery.

16.
J Hazard Mater ; 473: 134572, 2024 May 11.
Article En | MEDLINE | ID: mdl-38772106

The outbreak of the COVID-19 pandemic led to a sharp increase in disposable surgical mask usage. Discarded masks can release microplastic and cause environmental pollution. Since masks have become a daily necessity for protection against virus infections, it is necessary to review the usage and disposal of masks during the pandemic for future management. In this study, we constructed a dynamic model by introducing related parameters to estimate daily mask usage in 214 countries from January 22, 2020 to July 31, 2022. And we validated the accuracy of our model by establishing a dataset based on published survey data. Our results show that the cumulative mask usage has reached 800 billion worldwide, and the microplastics released from discarded masks due to mismanagement account for 3.27% of global marine microplastic emissions in this period. Furthermore, we illustrated the response relationship between mask usage and the infection rates. We found a marginally significant negative correlation existing between the mean daily per capita mask usage and the rate of cumulative confirmed cases within the range of 25% to 50%. This indicates that if the rate reaches the specified threshold, the preventive effect of masks may become evident.

17.
Br J Radiol ; 2024 May 22.
Article En | MEDLINE | ID: mdl-38775639

OBJECTIVES: This study aimed to explore the differences between tall-cell subtype of papillary thyroid carcinoma (TCPTC) and classical papillary thyroid carcinoma (cPTC) using multimodal ultrasound, and identify independent risk factors for TCPTC to compensate the deficiency of preoperative cytological and molecular diagnosis on PTC subtypes. METHODS: 46 TCPTC patients and 92 cPTC patients were included. Each patient received grey-scale ultrasound, color Dopplor flow imaging (CDFI) and shear-wave elastography (SWE) preoperatively. Clinicopathologic information, grey-scale ultrasound features, CDFI features and SWE features of 98 lesion were compared using univariate analysis to find out predictors of TCPTC, based on which, a predictive model was built to differentiate TCPTC from cPTC and validated with 40 patients. RESULTS: Univariate and multivariate analysis identified that extrathyroidal extension (OR, 15.12; 95% CI, 2.26-115.44), aspect ratio (≥0.91) (OR, 29.34; 95% CI, 1.29-26.23), and maximum diameter ≥ 14.6 mm (OR, 20.79; 95% CI, 3.87-111.47) were the independent risk factors for TCPTC. Logistic regression equation: p = 1/1+ExpΣ[-5.099 + 3.004 × (if size ≥14.6 mm)+2.957 × (if aspect ratio≥0.91)+2.819 × (if extra-thyroidal extension)]. The prediction model had a good discrimination performance for TCPTC: the AUC, sensitivity and specificity were 0.928, 0.848 and 0.954 in cohort 1, and the corresponding values in cohort 2 were 0.943, 0.923 and 0.926. CONCLUSION: Ultrasound has potential for differential diagnosis of TCPTC from cPTC. A prediction model based on ultrasound characteristics (extrathyroidal extension, aspect ratio ≥0.91, and maximum diameter ≥14.6 mm) was useful to predict TCPTC. ADVANCES IN KNOWLEDGE: Multimodal ultrasound prediction of TCPTC were supplements to preoperative cytological diagnosis and molecular diagnosis on PTC subtypes.

18.
Foods ; 13(9)2024 May 05.
Article En | MEDLINE | ID: mdl-38731788

Cardiovascular disease (CVD) represents a substantial global health challenge, with its impact on mortality and morbidity rates surpassing that of cancer. The present study was designed to explore the cardioprotective properties of anthocyanin (ACN), a compound derived from black barley, against oxidative stress-induced damage in myocardial cells and to uncover the molecular mechanisms at play. Utilizing both in vitro and in vivo experimental models, our findings indicate that ACN notably reduced cell damage caused by oxidative stress and effectively prevented apoptosis. High-throughput RNA sequencing analysis has shed light on the mechanism by which ACN achieves its antioxidative stress effects, implicating the PTEN-Akt signaling pathway. ACN was found to modulate PTEN expression levels, which in turn influences the Akt pathway, leading to a reduction in apoptotic processes. This novel insight lays the groundwork for the potential clinical utilization of ACN in the management of CVD. While this study has shed light on some of the functions of ACN, it is important to recognize that natural compounds often interact with multiple molecular targets and engage in intricate signaling cascades. Future research endeavors will concentrate on further elucidating the regulatory mechanisms by which ACN influences PTEN expression, with the goal of enhancing our comprehension and expanding the therapeutic potential of ACN in the treatment of cardiovascular conditions.

19.
Polymers (Basel) ; 16(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38732686

Polyvinylpyrrolidone (PVP) is a synthetic polymer that holds significance in various fields such as biomedical, medical, and electronics, due to its biocompatibility and exceptional dielectric properties. Electrospinning is the most commonly used tool to fabricate fibers because of its convenience and the wide choice of parameter optimization. Various parameters, including solution molarity, flow rate, voltage, needle gauge, and needle-to-collector distance, can be optimized to obtain the desired morphology of the fibers. Although PVP is commercially available in various molecular weights, PVP with a molecular weight of 130,000 g/mol is generally considered to be the easiest PVP to fabricate fibers with minimal challenges. However, the fiber diameter in this case is usually in the micron regime, which limits the utilization of PVP fibers in fields that require fiber diameters in the nano regime. Generally, PVP with a lower molecular weight, such as 10,000 g/mol and 55,000 g/mol, is known to present challenges in fiber preparation. In the current study, parameter optimization for PVP possessing molecular weights of 10,000 g/mol and 55,000 g/mol was carried out to obtain nanofibers. The electrospinning technique was utilized for fiber fabrication by optimizing the above-mentioned parameters. SEM analysis was performed to analyze the fiber morphology, and quantitative analysis was performed to correlate the effect of parameters on the fiber morphology. This research study will lead to various applications, such as drug encapsulation for sustained drug release and nanoparticles/nanotubes encapsulation for microwave absorption applications.

20.
China CDC Wkly ; 6(15): 318-323, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38736995

What is already known about this topic?: The significant disparities in global coronavirus disease 2019 (COVID-19) vaccine coverage hamper the pace of epidemic control. There is a need to better understand the factors contributing to disparities in COVID-19 vaccination rates across countries. What is added by this report?: This report revealed significant associations between vaccination coverage and various country-level indicators. Better pandemic preparedness, higher levels of trust, and a lower proportion of young population aged 0-14 were strongly correlated with higher COVID-19 vaccination coverage. What are the implications for public health practices?: Our findings emphasize the need for enhanced pandemic preparedness and governance, coupled with building trust in government and healthcare systems. It also needs to address the hesitancy of vaccinating children and adolescents aged 0-14 as the vaccination campaign progresses.

...