Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
J Appl Oral Sci ; 31: e20220404, 2023.
Article in English | MEDLINE | ID: mdl-36753088

ABSTRACT

OBJECTIVE: Abnormal complement activation is associated with periodontitis. W54011 is a novel non-peptide C5aR antagonist (C5aRA) that exhibits favorable anti-inflammatory effects in various inflammatory models. However, whether W54011 inhibits periodontitis has not yet been fully elucidated. To address this, we have investigated the probable anti-inflammatory mechanism of W54011 in LPS-treated inflammation in human gingival fibroblasts (HGFs). METHODOLOGY: HGFs were isolated from healthy gingival tissue samples using the tissue block method and were identified with immunofluorescence staining. The CCK8 assay and reverse transcription-PCR (RT-PCR) were used to select the optimal induction conditions for Lipopolysaccharide (LPS) and C5aRA (according to supplementary data S1, S2 and S3). The levels of inflammatory cytokines, C5aR, and the activation of NF-κB/MAPK signaling pathways were determined by RT-quantitative PCR (RT-qPCR) and Western blotting. RESULTS: Immunofluorescence results showed that vimentin and FSP-1 were positive in HGFs and Keratin was negative in HGFs. Immunofluorescence staining demonstrated that C5aRA inhibited LPS-stimulated nuclear translocation of p-p65. RT-qPCR and Western blotting showed that C5aRA reduced the expression of IL-1ß, IL-6, TNF-α, C5aR, p-p65, p-IκBα, p-JNK, p-c-JUN, and TLR4 in LPS-induced HGFs. CONCLUSION: These findings suggested that C5aRA attenuated the release of inflammatory cytokines in LPS-induced HGFs by blocking the activation of the NF-κB and MAPK signaling pathways.


Subject(s)
NF-kappa B , Periodontitis , Humans , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Signal Transduction , Inflammation , Cytokines/metabolism , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Periodontitis/drug therapy , Periodontitis/metabolism , Fibroblasts
2.
Sci. agric ; 80: e20220223, 2023. tab, graf, ilus
Article in English | VETINDEX | ID: biblio-1450489

ABSTRACT

Due to its high nutritional value, broccoli (Brassica oleracea var. italica Plenck) is one of the most popular vegetables worldwide. This study assessed 36 phenotypic characteristics of 111 broccoli varieties to understand the phenotypic diversity of new broccoli varieties and improve their breeding speed with advantages and characteristics in China, including 108 new varieties and three varieties of common knowledge. The genetic diversity, the principal component, and the cluster of phenotypic characteristics of broccoli varieties were further investigated. The results showed that the coefficients of variation of 36 characteristics ranged between 11.18 % and 94.99 %, with their diversity index between 0.26 and 1.82. The 111 broccoli varieties were further classified into eight groups, primarily attributed to the differences in phenotypic characteristics, including curd weight, main stem thickness, plant development degree, plant height, and anthocyanin coloration. The cumulative contribution rate of the first five principal components reached 81.186 %, corresponding to 12 representative phenotypic traits. The analysis indicated that the phenotypic characteristics of broccoli were rich in diversity, especially for several characteristics appreciated by the market, such as weight, curd firmness, and anthocyanin coloration. This study revealed the basic information on the genetic diversity of new broccoli varieties in China from 2017 to 2019 and provided potential breeding strategies for broccoli to meet diverse market demands.


Subject(s)
Genetic Variation , Brassica/genetics , Plant Breeding , Biological Variation, Population , China
3.
J. appl. oral sci ; J. appl. oral sci;31: e20220404, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1421902

ABSTRACT

Abstract Objective Abnormal complement activation is associated with periodontitis. W54011 is a novel non-peptide C5aR antagonist (C5aRA) that exhibits favorable anti-inflammatory effects in various inflammatory models. However, whether W54011 inhibits periodontitis has not yet been fully elucidated. To address this, we have investigated the probable anti-inflammatory mechanism of W54011 in LPS-treated inflammation in human gingival fibroblasts (HGFs). Methodology HGFs were isolated from healthy gingival tissue samples using the tissue block method and were identified with immunofluorescence staining. The CCK8 assay and reverse transcription-PCR (RT-PCR) were used to select the optimal induction conditions for Lipopolysaccharide (LPS) and C5aRA (according to supplementary data S1, S2 and S3). The levels of inflammatory cytokines, C5aR, and the activation of NF-κB/MAPK signaling pathways were determined by RT-quantitative PCR (RT-qPCR) and Western blotting. Results Immunofluorescence results showed that vimentin and FSP-1 were positive in HGFs and Keratin was negative in HGFs. Immunofluorescence staining demonstrated that C5aRA inhibited LPS-stimulated nuclear translocation of p-p65. RT-qPCR and Western blotting showed that C5aRA reduced the expression of IL-1β, IL-6, TNF-α, C5aR, p-p65, p-IκBα, p-JNK, p-c-JUN, and TLR4 in LPS-induced HGFs. Conclusion These findings suggested that C5aRA attenuated the release of inflammatory cytokines in LPS-induced HGFs by blocking the activation of the NF-κB and MAPK signaling pathways.

SELECTION OF CITATIONS
SEARCH DETAIL