Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 269(Pt 2): 131800, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679262

ABSTRACT

Biomaterials can affect the osteogenic process by regulating the function of macrophages and transforming the bone immune microenvironment. Mineralised collagen (MC) is an artificial bone that is highly consistent to the microstructure of the native osseous matrix. The studies have confirmed that MC can achieve effective regeneration of bone defects, but the potential mechanism of MC regulating osteogenesis is still unclear. This study confirmed that MC regulate the high expression of adrenomedullin (ADM) in macrophages and promote the osteogenic differentiation, proliferation and migration of BMSCs. Moreover, ADM activated the PI3K/Akt pathway, while the inhibition of PI3K/Akt hindered the proliferation, migration and osteogenic differentiation of BMSCs promoted by ADM. Additionally, the rat mandibular defect model confirmed that ADM promote the repair of mandibular defects, and the inhibition of PI3K/Akt pathway hinders the osteogenic effect of ADM. Our study suggests that MC regulates ADM secretion by macrophages, creates an ideal bone immune microenvironment, activates the PI3K/AKT signalling pathway, and promotes osteogenesis.


Subject(s)
Adrenomedullin , Cell Differentiation , Collagen , Macrophages , Signal Transduction , Animals , Male , Mice , Rats , Adrenomedullin/metabolism , Bone Regeneration , Cell Movement/drug effects , Cell Proliferation , Collagen/metabolism , Macrophages/metabolism , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , RAW 264.7 Cells
2.
Regen Biomater ; 11: rbae018, 2024.
Article in English | MEDLINE | ID: mdl-38487712

ABSTRACT

In the bone immune microenvironment, immune cells can regulate osteoblasts through a complex communication network. Macrophages play a central role in mediating immune osteogenesis, exosomes derived from them have osteogenic regulation and can be used as carriers in bone tissue engineering. However, there are problems with exosomal therapy alone, such as poor targeting, and the content of loaded molecules cannot reach the therapeutic concentration. In this study, macrophage-derived exosomes modified with miR-365-2-5p were developed to accelerate bone healing. MC3T3-E1 cells were incubated with the culture supernatants of M0, M1 and M2 macrophages, and it was found that the culture medium of M2 macrophages had the most significant effects in contributing to osteogenesis. High-throughput sequencing identified that miR-365-2-5p was significantly expressed in exosomes derived from M2 macrophages. We incubated MC3T3-E1 with exosomes overexpressing or knocking down miR-365-2-5p to examine the biological function of exosome miR-365-2-5p on MC3T3-E1 differentiation. These findings suggested that miR-365-2-5p secreted by exosomes increased the osteogenesis of MC3T3-E1. Moreover, miR-365-2-5p had a direct influence over osteogenesis for MC3T3-E1. Sequencing analysis combined with dual luciferase detection indicated that miR-365-2-5p binded to the 3'-UTR of OLFML1. In summary, exosomes secreted by M2 macrophages targeted OLFML1 through miR-365-2-5p to facilitate osteogenesis.

3.
Regen Biomater ; 10: rbad075, 2023.
Article in English | MEDLINE | ID: mdl-37719929

ABSTRACT

Bone immune responses based on macrophages are critical in the osteogenesis of bone abnormalities. In general, M2 macrophage facilitate the promotion of osteogenesis, as well, M1 macrophage play an important role in early bone healing, as confirmed by previous studies. However, it is not clear how M1 macrophage are involved in the bone immune response. MiR-21a-5p is a highly expressed microRNA in M1 macrophage in contrast to M2. Therefore, the current work sought to ascertain the influence of M1 macrophage on bone healing via exosomal miR-21a-5p and the probable mechanism. We discovered that injecting M1 macrophage exosomes overexpressing miR-21a-5p into bone defect locations enhanced bone regeneration in vivo. Furthermore, by directly targeting GATA2, miR-21a-5p accelerated MC3T3-E1 osteogenic differentiation. Our findings showed that exosomal miR-21a-5p from M1 macrophage may be transported to osteoblasts and target GATA2 to enhance bone defect healing.

4.
Regen Biomater ; 10: rbad051, 2023.
Article in English | MEDLINE | ID: mdl-37324238

ABSTRACT

Immune response is an important factor in determining the fate of bone replacement materials, in which macrophages play an important role. It is a new idea to design biomaterials with immunomodulatory function to reduce inflammation and promote bone integration by regulating macrophages polarization. In this work, the immunomodulatory properties of CaP Zn-Mn-Li alloys and the specific mechanism of action were investigated. We found that the CaP Zn0.8Mn0.1Li alloy promoted the polarization of macrophages toward M2 and reduced inflammation, which could effectively upregulate osteogenesis-related factors and promote new bone formation, indicating the important role of macrophages polarization in biomaterial induction of osteogenesis. In vivo studies further demonstrated that CaP Zn0.8Mn0.1Li alloy could stimulate osteogenesis better than other Zn-Mn-Li alloys implantations by regulating macrophages polarization and reducing inflammation. In addition, transcriptome results showed that CaP Zn0.8Mn0.1Li played an important regulatory role in the life process of macrophages, activating Toll-like receptor signaling pathway, which participated in the activation and attenuation of inflammation, and accelerated bone integration. Thus, by preparing CaP coatings on the surface of Zn-Mn-Li alloys and combining the bioactive ingredient with controlled release, the biomaterial will be imbibed with beneficial immunomodulatory properties that promote bone integration.

5.
Chemosphere ; 334: 138971, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37207903

ABSTRACT

In order to fill the blank of domestic research on anthelmintics in dust and soil, 159 paired dust (including indoor and outdoor dust) and soil samples were collected nationwide. All 19 kinds of the anthelmintics were detected in the samples. The total concentration of the target substances in the outdoor dust, indoor dust and soil samples ranged from 1.83 to 1.30 × 103 ng/g, from 2.99 to 6.00 × 103 ng/g and from 0.23 to 8.03 × 102 ng/g, respectively. The total concentration of the 19 anthelmintics in northern China were significantly higher than those in southern China in the outdoor dust and soil samples. No significant correlation was found in the total concentration of anthelmintics between the indoor and outdoor dust because of strong human activities interference, however, a significant correlation existed between the outdoor dust and soil samples and between the indoor dust and soil samples. High ecological risk was found at 35% and 28% of all the sampling sites to non-target organisms in the soil respectively for IVE and ABA, and merits further study. The daily anthelmintics intakes were evaluated via ingestion and dermal contact of soil and dust samples for both children and adults. Ingestion was the predominant way for anthelmintics exposure, and the anthelmintics in soil and dust did not pose a health threat to human health at present.


Subject(s)
Air Pollution, Indoor , Anthelmintics , Child , Adult , Humans , Dust/analysis , Environmental Exposure/analysis , Soil , Air Pollution, Indoor/analysis , China , Risk Assessment
6.
Polymers (Basel) ; 14(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36236011

ABSTRACT

The design of a novel interpenetrating network hydrogel inspired by the microscopic architecture of natural cartilage based on a supramolecular sodium alginate (SA) nanofibril network is reported in this paper. The mechanical strength and toughness of the poly(vinyl alcohol) (PVA) hydrogel were significantly improved after being incorporated with the alginate nanofibril network. The multiple hydrogen bonds between PVA chains and alginate fibers provided an efficient energy dissipation, thus leading to a significant increase in the mechanical strength of the PVA/SA/NaCl hydrogel. The PVA/SA/NaCl hydrogel demonstrated superior water-lubrication and load-bearing performance due to noncovalent interactions compared with pure PVA hydrogels. Moreover, the bioactivity of the PVA/SA/NaCl hydrogel was proved by the MC3T3 cell proliferation and viability assays over 7 days. Therefore, alginate fiber-enhanced hydrogels with high strength and low friction properties are expected to be used as novel biomimetic lubrication materials.

7.
Front Bioeng Biotechnol ; 10: 1013097, 2022.
Article in English | MEDLINE | ID: mdl-36185442

ABSTRACT

Zn-based alloys are considered as new kind of potential biodegradable implanted biomaterials recently. The difficulty of metal implanted biomaterials and bone tissue integration seriously affects the applications of metal implanted scaffolds in bone tissue-related fields. Herein, we self-designed Zn0.8Mn and Zn0.8Mn0.1Li alloys and CaP coated Zn0.8Mn and Zn0.8Mn0.1Li alloys, then evaluated the degradation property and cytocompatibility. The results demonstrated that the Zn0.8Mn0.1Li alloys had profoundly modified the degradation property and cytocompatibility, but Zn0.8Mn0.1Li alloys had particularly adverse effects on the surface morphology of osteoblasts. The results furtherly showed that the CaP-coated Zn0.8Mn and Zn0.8Mn0.1Li alloys scaffold had better biocompatibility, which would further guarantee the biosafety of this new kind of biodegradable Zn-based alloys implants for future clinical applications.

8.
Front Bioeng Biotechnol ; 10: 917655, 2022.
Article in English | MEDLINE | ID: mdl-36105601

ABSTRACT

It is a new hot pot in tissue engineering and regenerative medicine to study the effects of physicochemical properties of implanted biomaterials on regulating macrophage polarization to promote bone regeneration. In this study, we designed and fabricated mineralized collagen (MC) with different microporous structures via in vitro biomimetic mineralization method. The microporous structures, mechanical properties, shore hardness and water contact angle measurements were tested. Live/dead cell staining, CCK-8 assay, phalloidine staining, staining of focal adhesions were used to detect cell behavior. ELISA, qRT-PCR, ALP, and alizarin red staining (ARS) were performed to appraise osteogenic differentiation and investigated macrophage response and their subsequent effects on the osteogenic differentiation. The results showed that RAW264.7 and MC3T3-E1 cells were able to survive on the MC. MC with the microporous structure of approximately 84 µm and 70%-80% porosity could promote M2 macrophage polarization and increase the expression level of TGF-ß and VEGF. Moreover, the gene expression of the osteogenic markers ALP, COL-1, and OCN increased. Therefore, MC with different microporous structures mediated osteoimmunomodulation in bone regeneration. These data will provide a new idea of biomaterials inducing bone repair and direct the optimal design of novel immune biomaterials, development, and rational usage.

9.
Surg Endosc ; 36(9): 6439-6445, 2022 09.
Article in English | MEDLINE | ID: mdl-35102432

ABSTRACT

BACKGROUND: Postoperative fistula is a life-threatening complication that lacks a standard treatment strategy after laparoscopic sleeve gastrectomy (LSG). This observational study is the first to report the efficacy and safety of endoscopic full-thickness resection (EFTR) combined with purse-string sutures in treating this complication. PATIENTS AND METHODS: The old fistula was resected by EFTR, cut radially, and then sutured with a purse-string. The primary endpoint was complete fistula closure within two months. Endoscopic procedure-related complications were also recorded. RESULTS: Eight of 788 LSG patients developed fistulas with an incidence of 1.01%, primarily under the gastroesophageal junction, and the average distance from the center of the fistula to the cardia was 30 ± 6.3 mm. Two patients were cured by conservative treatment, and six received endoscopic sutures. The time from LSG to fistula diagnosis was 12.3 ± 14.4 days. The time from fistula diagnosis to endoscopic repair was 43.8 ± 55.8 days and 21.4 ± 10.0 days after eliminating the data of first case. The average fistula size was 12 ± 10 mm, the average endoscopic procedure duration was 40 ± 16 min, and the average number of endoscopic procedures required was 1.6 ± 0.8. Five patients achieved the primary endpoint, and one patient refused a third endoscopic suture after two sutures. The endoscopy success rate was 83.3%. No endoscopic procedure-related complications occurred. CONCLUSIONS: EFTR combined with purse-string sutures is an innovative, safe, and effective endoscopic strategy for postoperative fistula after LSG, avoiding reoperation and allowing early oral feeding.


Subject(s)
Gastric Fistula , Laparoscopy , Obesity, Morbid , Endoscopy, Gastrointestinal/adverse effects , Gastrectomy/adverse effects , Gastric Fistula/etiology , Gastric Fistula/surgery , Humans , Laparoscopy/adverse effects , Obesity, Morbid/surgery , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Postoperative Complications/surgery , Retrospective Studies , Treatment Outcome
10.
ACS Biomater Sci Eng ; 8(3): 1166-1180, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35195404

ABSTRACT

Ti6Al4V artificial implants are increasingly demanded for addressing human dysfunction caused by an aging population and major diseases. However, they are restricted due to the release of vanadium and aluminum ions in the process of corrosion and wear. This work is aimed to provide a protective film for Ti6Al4V artificial implants, and then, a Si-incorporated diamond-like carbon (Si-DLC) film and Si- and N-incorporated DLC (SiN-DLC) film were deposited on the surface of Ti6Al4V by plasma-enhanced chemical vapor deposition. Results suggest that the thickness of the as-deposited DLC film is approximately 2 µm, and the SiN-DLC film shows the lowest surface roughness (53.0 ± 3.6 nm) compared with the Ti6Al4V and DLC films. The above DLC film possesses high mechanical properties compared with Ti6Al4V, and the SiN-DLC film shows the best resistance to plastic deformation. In addition, the DLC film exhibits high adhesive strength (>13 N) with Ti6Al4V, which is a prerequisite for service in liquid environments. Whether in SBF solution or SBF + BSA solution, the friction coefficient and wear rate of the above DLC film are much lower than those of Ti6Al4V, and the SiN-DLC film displays the optimal tribological properties (0.072 and 1.82 × 10-7 mm3·N-1·m-1, respectively). Moreover, Si-DLC and SiN-DLC films possess similar corrosion resistance but are far better than Ti6Al4V. Cytotoxicity test results show that the SiN-DLC film can significantly improve cell viability and promote cell proliferation to a certain extent. Consequently, the SiN-DLC film is a protective film with more potential for artificial implants.


Subject(s)
Carbon , Prostheses and Implants , Aged , Alloys , Carbon/chemistry , Corrosion , Humans , Materials Testing , Surface Properties , Titanium
11.
Cell Biosci ; 11(1): 148, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34321090

ABSTRACT

BACKGROUND: Alcohol-related liver disease (ALD) is a major cause of chronic liver diseases. Inflammatory response is a basic pathological feature of ALD. Mucosal-associated invariant T(MAIT) cells are a novel population of innate immune cells, which may be depleted in various inflammatory diseases. However, the changes of MAIT cell in ALD remains unclear. RESULTS: In this study, the levels of MAIT cell were significantly decreased in patients with alcoholic fatty liver disease, alcoholic cirrhosis, and mixed cirrhosis (alcoholic + viral). Furthermore, the reduction of circulating MAIT cells was correlated with liver function in patients with cirrhosis. Functional changes among circulating MAIT cells in patients with alcoholic cirrhosis, including increased production of IL-17A and perforin, and reduced production of TNF-α. Plasma cytokine and chemokine levels were quantified using multiple immunoassays and ELISA. Serum levels of chemokine IL-8 were correlated with MAIT cell frequency in patients with alcoholic cirrhosis. Moreover, no differences were observed in the expression of CCR6, CXCR6, and PD-1 in circulating MAIT cells of patients with alcoholic cirrhosis. The MAIT cells in patients with alcoholic cirrhosis were prone to apoptosis, which was promoted by IL-12, IL-18, and IL-8. CONCLUSIONS: Our findings indicate persistent MAIT cell loss during alcohol-related liver disease and suggest that MAIT cells can be promising indicator and therapeutic targets in ALD.

12.
Regen Biomater ; 8(1): rbaa054, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33732499

ABSTRACT

[This corrects the article DOI: 10.1093/rb/rbaa022.].

13.
Open Biol ; 11(2): 200306, 2021 02.
Article in English | MEDLINE | ID: mdl-33529552

ABSTRACT

Autism spectrum disorder (ASD) is a group of developmental disabilities, the aetiology of which remains elusive. The endocannabinoid (eCB) system modulates neurotransmission and neuronal plasticity. Evidence points to the involvement of this neuromodulatory system in the pathophysiology of ASD. We investigated whether there is a disruption to the eCB system in ASD and whether pharmacological modulation of the eCB system might offer therapeutic potential. We examined three major components of the eCB system-endogenous cannabinoids, their receptors and associated enzymes-in ASD children as well as in the valproic acid (VPA) induced animal model in autism. Furthermore, we specifically increased 2-arachidonoylglycerol (2-AG) levels by administering JZL184, a selective inhibitor of monoacylglycerol lipase which is the hydrolytic enzyme for 2-AG, to examine ASD-like behaviours in VPA-induced rats. Results showed that autistic children and VPA-induced rats exhibited reduced eCB content, increased degradation of enzymes and upregulation of CBRs. We found that repetitive and stereotypical behaviours, hyperactivity, sociability, social preference and cognitive functioning improved after acute and chronic JZL184 treatment. The major efficacy of JZL184 was observed after administration of a dosage regimen of 3 mg kg-1, which affected both the eCB system and ASD-like behaviours. In conclusion, a reduced eCB signalling was observed in autistic children and in the ASD animal model, and boosting 2-AG could ameliorate ASD-like phenotypes in animals. Collectively, the results suggested a novel approach to ASD treatment.


Subject(s)
Anti-Anxiety Agents/therapeutic use , Autism Spectrum Disorder/metabolism , Benzodioxoles/therapeutic use , Endocannabinoids/metabolism , Enzyme Inhibitors/therapeutic use , Piperidines/therapeutic use , Animals , Anti-Anxiety Agents/administration & dosage , Autism Spectrum Disorder/drug therapy , Benzodioxoles/administration & dosage , Child , Child, Preschool , Enzyme Inhibitors/administration & dosage , Female , Humans , Male , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism , Piperidines/administration & dosage , Rats , Rats, Wistar , Receptors, Cannabinoid/genetics , Receptors, Cannabinoid/metabolism , Up-Regulation
14.
Front Bioeng Biotechnol ; 9: 801432, 2021.
Article in English | MEDLINE | ID: mdl-35071209

ABSTRACT

The effective healing of a bone defect is dependent on the careful coordination of inflammatory and bone-forming cells. In the current work, pro-inflammatory M1 and anti-inflammatory M2 macrophages were co-cultured with primary murine bone mesenchymal stem cells (BMSCs), in vitro, to establish the cross-talk among polarized macrophages and BMSCs, and as well as their effects on osteogenesis. Meanwhile, macrophages influence the osteogenesis of BMSCs through paracrine forms such as exosomes. We focused on whether exosomes of macrophages promote osteogenic differentiation. The results indicated that M1 and M2 polarized macrophage exosomes all can promote osteogenesis of BMSCs. Especially, M1 macrophage-derived exosomes promote osteogenesis of BMSCs through microRNA-21a-5p at the early stage of inflammation. This research helps to develop an understanding of the intricate interactions among BMSCs and macrophages, which can help to improve the process of bone healing as well as additional regenerative processes by local sustained release of exosomes.

15.
J Biomed Mater Res A ; 109(8): 1328-1336, 2021 08.
Article in English | MEDLINE | ID: mdl-33089616

ABSTRACT

Mineralized collagen (MC) is a biomaterial that is commonly used in the treatment of bone defects. However, the inflammatory response after biomaterial implantation is a recurrent problem that requires urgent attention. Our previous studies on MC-macrophage interactions were descriptive but we did not perform an in-depth analysis on a genetic level to investigate the underlying mechanisms. In this study, we cultured RAW264.7 cells on MC or collagen and examined the proliferation of the macrophages by Cell Counting Kit-8 assay. We sequenced the RNA of the cultured cells to discover differential gene expression patterns and found that a total of 1183 genes were differentially expressed between the MC- and collagen-cultured groups, of which 396 genes were upregulated and 787 were downregulated. Gene ontology analysis revealed that biological processes in MC-cultured cells, such as inflammation and innate immunity, were downregulated; whereas nucleosome assembly, megakaryocyte differentiation, and chromatin assembly were upregulated. We identified several pathways associated with immunity that were significantly enriched using the Kyoto Encyclopedia of Genes and Genomes. Furthermore, we validated the differentially expressed genes from RNA sequencing by quantitative real-time polymerase chain reaction. This study provides insight into the macrophage phenotype based on the microenvironment, which is the foundation for the clinical application of MC-based interventions.


Subject(s)
Biocompatible Materials/chemistry , Collagen/chemistry , Inflammation/genetics , Macrophages/metabolism , Transcriptome , Animals , Cell Proliferation , Gene Expression Profiling , Immunity , Inflammation/immunology , Macrophages/cytology , Mice , RAW 264.7 Cells
16.
Regen Biomater ; 7(6): 627-638, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33365148

ABSTRACT

Insufficient donor dermis and the shortage of three-dimensional vascular networks are the main limitations in the tissue-engineered dermis (TED). To solve these problems, we initially constructed pre-vascularized bone marrow mesenchymal stem cell sheet (PBMCS) and pre-vascularized fibroblasts cell sheet (PFCS) by cell sheet technology, and then superimposed or folded them together to construct a pre-vascularized TED (PTED), aiming to mimic the real dermis structure. The constructed PTED was implanted in nude mice dorsal dermis-defect wound and the wound-healing effect was quantified at Days 1, 7 and 14 via the methods of histochemistry and immunohistochemistry. The results showed that PTED could rapidly promote the wound closure, especially at Day 14, and the wound-healing rate of three-layer PTED could reach 97.2% (P < 0.01), which was faster than the blank control group (89.1%), PBMCS (92.4%), PFCS (93.8%) and six-layer PTED (92.3%). In addition, the vessel density in the PTED group was higher than the other groups on the 14th day. Taken together, it is proved that the PTED, especially three-layer PTED, is more conducive to the full-thickness dermis-defect repair and the construction of the three-dimensional vascular networks, indicating its potential application in dermis-defect repair.

17.
Regen Biomater ; 7(4): 435-440, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32793388

ABSTRACT

Repairing damage in the craniofacial skeleton is challenging. Craniofacial bones require intramembranous ossification to generate tissue-engineered bone grafts via angiogenesis and osteogenesis. Here, we designed a mineralized collagen delivery system for BMP-2 and vascular endothelial growth factor (VEGF) for implantation into animal models of mandibular defects. BMP-2/VEGF were mixed with mineralized collagen which was implanted into the rabbit mandibular. Animals were divided into (i) controls with no growth factors; (ii) BMP-2 alone; or (iii) BMP-2 and VEGF combined. CT and hisomputed tomography and histological staining were performed to assess bone repair. New bone formation was higher in BMP-2 and BMP-2-VEGF groups in which angiogenesis and osteogenesis were enhanced. This highlights the use of mineralized collagen with BMP-2/VEGF as an effective alternative for bone regeneration.

18.
Regen Biomater ; 7(2): 203-211, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32296539

ABSTRACT

Biomaterials regulate macrophages and promote regeneration function, which is a new hot pot in tissue engineering and regenerative medicine. The research based on macrophage materials biology has appeared happy future, but related research on regulating macrophages and promoting tissue regeneration is still in its infancy. The surface roughness of biomaterials is one of the important factors affecting macrophage behavior. Previous study also found that the surface roughness of many biomaterials regulating macrophage polarization, but not including mineralized collagen (MC). In this study, we designed and fabricated MC with different roughness and investigated the influence of MC with different roughness on macrophages. In the study, we found that on the rough surface of MC, macrophages exhibited M1 phenotype-amoeboid morphology and high-level secretory of inflammatory factor (tumor necrosis factor-α and interleukin-6), while smoother surface exhibited M2 phenotype. These data will be beneficial to understand the mechanism deeply and enrich biomaterials tissue regeneration theory, provide a new train of thought biomaterials inducing tissue regeneration and repair and guide the optimum design of new biomaterials, development and reasonable applications.

19.
Int J Biol Sci ; 16(3): 460-470, 2020.
Article in English | MEDLINE | ID: mdl-32015682

ABSTRACT

Mucosal-associated invariant T cells (MAIT cells) are a new population of innate immune cells, which are abundant in the liver and play complex roles in various liver diseases. In this review, we summarize MAIT cells in the liver diseases in recent studies, figure out the role of MAIT cells in various liver disease, including Alcoholic liver disease, Non-alcoholic liver disease, Autoimmune liver diseases, Viral hepatitis and Liver Cancer. Briefly, MAIT cells are involved in anti-bacteria responses in the alcoholic liver diseases. Besides, the activated MAIT cells promote the liver inflammation by secreting inflammatory cytokines and produce regulatory cytokines, which induces anti-inflammatory macrophage polarization. MAIT cells participate in the liver fibrosis via enhancing hepatic stellate cell activation. In viral hepatitis, MAIT cells exhibit a flawed and exhausted phenotype, which results in little effect on controlling the virus and bacteria. In liver cancer, MAIT cells indicate the disease progression and the outcome of therapy. In summary, MAIT cells are attractive biomarkers and therapeutic targets for liver disease.


Subject(s)
Autoimmune Diseases/immunology , Liver Diseases, Alcoholic/immunology , Liver Diseases/immunology , Liver Neoplasms/immunology , Mucosal-Associated Invariant T Cells/metabolism , Animals , Humans
20.
Br J Pharmacol ; 177(5): 1041-1060, 2020 03.
Article in English | MEDLINE | ID: mdl-31658492

ABSTRACT

BACKGROUND AND PURPOSE: Intrahepatic cholestasis is mainly caused by dysfunction of bile secretion and has limited effective treatment. Rosiglitazone is a synthetic agonist of PPARγ, whose endogenous agonist is 15-deoxy-Δ12,14 -PGJ2 (15d-PGJ2 ). Reticulon 4B (Nogo-B) is the detectable Nogo protein family member in the liver and secreted into circulation. Here, we determined if rosiglitazone can alleviate intrahepatic cholestasis in mice. EXPERIMENTAL APPROACH: Wild-type, hepatocyte-specific PPARγ or Nogo-B knockout mice received intragastric administration of α-naphthylisothiocyanate (ANIT) and/or rosiglitazone, followed by determination of intrahepatic cholestasis and the involved mechanisms. Serum samples from primary biliary cholangitis (PBC) patients and non-PBC controls were analysed for cholestasis-related parameters. KEY RESULTS: Rosiglitazone prevented wild type, but not hepatocyte-specific PPARγ deficient mice from developing ANIT-induced intrahepatic cholestasis by increasing expression of bile homeostatic proteins, reducing hepatic necrosis, and correcting abnormal serum parameters and enterohepatic circulation of bile. Nogo-B knockout provided protection similar to that of rosiglitazone treatment. ANIT-induced intrahepatic cholestasis decreased 15d-PGJ2 but increased Nogo-B in serum, and both were corrected by rosiglitazone. Nogo-B deficiency in the liver increased 15d-PGJ2 production, thereby activating expression of PPARγ and bile homeostatic proteins. Rosiglitazone and Nogo-B deficiency also alleviated cholestasis-associated dyslipidemia. In addition, rosiglitazone reduced symptoms of established intrahepatic cholestasis in mice. In serum from PBC patients, the decreased 15d-PGJ2 and increased Nogo-B levels were significantly correlated with classical cholestatic markers. CONCLUSIONS AND IMPLICATIONS: Levels of 15d-PGJ2 and Nogo are important biomarkers for intrahepatic cholestasis. Synthetic agonists of PPARγ could be used for treatment of intrahepatic cholestasis and cholestasis-associated dyslipidemia.


Subject(s)
1-Naphthylisothiocyanate , Cholestasis, Intrahepatic , 1-Naphthylisothiocyanate/toxicity , Animals , Cholestasis, Intrahepatic/chemically induced , Cholestasis, Intrahepatic/drug therapy , Humans , Mice , PPAR gamma , Prostaglandin D2 , Rosiglitazone
SELECTION OF CITATIONS
SEARCH DETAIL
...