Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 412
Filter
1.
ACS Omega ; 9(25): 27204-27213, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38947831

ABSTRACT

The densities of eutectic (LiF)2-BeF2 and mixtures of this salt (FLiBe) with LaF3 were measured by dilatometry and by neutron attenuation from 673 K to 1,073 K. Because LaF3 has a limited solubility in FLiBe, it was necessary to determine the amount of LaF3 in solution before the density could be determined. The FLiBe density determination was favorably benchmarked against the literature data. A simple comparison was not available for the LaF3-FLiBe mixtures, so extrapolation of published data was necessary based on analysis using the Molten Salt Thermal Properties Database-Thermochemistry, or MSTDB-TC, developed by the US Department of Energy. Solubilities for LaF3 in FLiBe ranged from 1 to 4 mol % over 673 to 1,073 K. The salt system was heated and cooled over 24 h to evaluate potential changes in composition and hysteresis during the measurement. Changes in the meniscus were observed, and these were included in the correction for density determinations. Salt surface tension may have led to supersaturation of LaF3 in the salt because the solubility curve was nonlinear with respect to the inverse temperature, as would be expected for an ideal system. Surface tension measurements are currently underway to test this hypothesis.

2.
Materials (Basel) ; 17(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998234

ABSTRACT

Three-dimensional braided composites (3D-BCs) have better specific strength and stiffness than two-dimensional planar composites (2D-PCs), so they are widely used in modern industrial fields. In this paper, two kinds of 3D four-directional braided composites (3D4d-BCs) with different braided angles (15°, denoted as H15, and 30°, denoted as H30) were subjected to hydrothermal aging treatments, low-velocity impact (LVI) tests, and compression after impact (CAI) tests under different conditions. This study systematically studied the hygroscopic behavior and the effect of hygrothermal aging on the mechanical properties of 3D4d-BC. The results show that higher temperatures and smaller weaving angles can significantly improve the moisture absorption equilibrium content. When the moisture absorption content is balanced, the energy absorption effect of 3D4d-BC is better, but the integrity and residual compression rate will be reduced. Due to the intervention of oxygen molecules, the interface properties between the matrix and the composite material will be reduced, so the compressive strength will be further reduced. In the LVI test, the peak impact load of H15 is low. In CAI tests, the failure of H15 mainly occurs on the side, and the failure form is buckling failure. The main failure direction of H30 is 45° shear failure.

3.
Sensors (Basel) ; 24(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000903

ABSTRACT

The South-to-North Water Diversion Project in China is an extensive inter-basin water transfer project, for which ensuring the safe operation and maintenance of infrastructure poses a fundamental challenge. In this context, structural health monitoring is crucial for the safe and efficient operation of hydraulic infrastructure. Currently, most health monitoring systems for hydraulic infrastructure rely on commercial software or algorithms that only run on desktop computers. This study developed for the first time a lightweight convolutional neural network (CNN) model specifically for early detection of structural damage in water supply canals and deployed it as a tiny machine learning (TinyML) application on a low-power microcontroller unit (MCU). The model uses damage images of the supply canals that we collected as input and the damage types as output. With data augmentation techniques to enhance the training dataset, the deployed model is only 7.57 KB in size and demonstrates an accuracy of 94.17 ± 1.67% and a precision of 94.47 ± 1.46%, outperforming other commonly used CNN models in terms of performance and energy efficiency. Moreover, each inference consumes only 5610.18 µJ of energy, allowing a standard 225 mAh button cell to run continuously for nearly 11 years and perform approximately 4,945,055 inferences. This research not only confirms the feasibility of deploying real-time supply canal surface condition monitoring on low-power, resource-constrained devices but also provides practical technical solutions for improving infrastructure security.

4.
Inorg Chem ; 63(28): 12764-12773, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38950312

ABSTRACT

Cobalt (Co)-based materials have been widely investigated as hopeful noble-metal-free alternatives for the oxygen evolution reaction (OER) in alkaline electrolytes, which is crucial for generating hydrogen by water electrolysis. Herein, cobalt-based telluride particles with good electronic conductivity as anodic electrocatalysts were prepared under vacuum by the solid-state strategy, which display remarkable activities toward the OER. Nickel (Ni) and iron (Fe) codoped cobalt telluride (NiFe-CoTe) exhibits an overpotential of 321 mV to achieve a current density of 10 mA cm-2 and a Tafel slope of 51.8 mV dec-1, outperforming the performances of CoTe, CoTe2, and IrO2. According to the DFT calculation, the adsorbed hydroxyl-assisted adsorbate evolution mechanism was proposed for the OER process of NiFe-CoTe, which reveals the synergetic effect toward OER induced by codoping of the Ni and Fe atoms. This work proposes a rational strategy to prepare cobalt-based tellurides as efficient OER catalysts in alkaline electrolytes, providing a new strategy to prepare and regulate metal-based tellurides for catalysis and beyond.

5.
ACS Nano ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980975

ABSTRACT

We demonstrate nearly a microsecond of spin coherence in Er3+ ions doped in cerium dioxide nanocrystal hosts, despite a large gyromagnetic ratio and nanometric proximity of the spin defect to the nanocrystal surface. The long spin coherence is enabled by reducing the dopant density below the instantaneous diffusion limit in a nuclear spin-free host material, reaching the limit of a single erbium spin defect per nanocrystal. We observe a large Orbach energy in a highly symmetric cubic site, further protecting the coherence in a qubit that would otherwise rapidly decohere. Spatially correlated electron spectroscopy measurements reveal the presence of Ce3+ at the nanocrystal surface, which likely acts as extraneous paramagnetic spin noise. Even with these factors, defect-embedded nanocrystal hosts show tremendous promise for quantum sensing and quantum communication applications, with multiple avenues, including core-shell fabrication, redox tuning of oxygen vacancies, and organic surfactant modification, available to further enhance their spin coherence and functionality in the future.

6.
Asia Pac J Clin Nutr ; 33(3): 397-404, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38965727

ABSTRACT

BACKGROUND AND OBJECTIVES: Hashimoto's thyroiditis (HT) is an autoimmune disease, characterized by abnormal elevation in thyroid peroxidase antibody and/or thyroglobulin antibody. In recent decades, HT disease has become more and more widespread. Patients always report multiple symptoms, even though their thyroid hormone levels are kept in normal ranges. However, no treatment exists to effectively reduce the levels of thyroid antibodies. Our study aims to determine whether calorie-restricted diet is helpful in improving health of HT patients. METHODS AND STUDY DESIGN: This is a 3-month randomized controlled trial. HT patients will be randomized into a calorie-restricted (CR) group or a calorie-unrestricted control group. All the participants will be instructed to consume a diet that includes a combination of 45-55% calories from carbohydrates, 20-30% from fats, and 15-25% from proteins, according to current Chinese Dietary Guidelines. Participants in CR group need to limit their calories intake equal to their basal energy expenditure, which means that their daily caloric intake will be limited by about 20-30%. RESULTS: The study population is planned to be 66 HT patients aged 18 to 65 years. The primary outcome is change of thyroid antibody levels from baseline. Secondary outcomes include the changes of non-hypothyroid symptoms scores, thyroid function indexes, morphology of thyroid, T lymphocyte subpopulations, inflammatory biomarkers and lipids from baseline to 12 weeks. CONCLUSIONS: This trial will have implications for nutrition treatment policy in regard to thyroid antibodies control, immune dysfunction and related non-hypothyroid symptoms improvement among HT patients.


Subject(s)
Caloric Restriction , Gastrointestinal Microbiome , Hashimoto Disease , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Caloric Restriction/methods , Gastrointestinal Microbiome/physiology , Hashimoto Disease/diet therapy , Hashimoto Disease/immunology , Health Status , Randomized Controlled Trials as Topic
7.
Nano Lett ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968148

ABSTRACT

Repolarizing tumor-associated macrophages (TAMs) into tumor-inhibiting M1 macrophages has been considered a promising strategy for enhanced cancer immunotherapy. However, several immunosuppressive ligands (e.g., LSECtin) can still be highly expressed on M1 macrophages, inducing unsatisfactory therapeutic outcomes. We herein developed an antibody-decorated nanoplatform composed of PEGylated iron oxide nanoparticles (IONPs) and LSECtin antibody conjugated onto the surface of IONPs via the hydrazone bond for enhanced cancer immunotherapy. After intravenous administration, the tumor microenvironment (TME) pH could trigger the hydrazone bond breakage and induce the disassociation of the nanoplatform into free LSECtin antibodies and IONPs. Consequently, the IONPs could repolarize TAMs into M1 macrophages to remodel immunosuppressive TME and provide an additional anticancer effect via secreting tumoricidal factors (e.g., interlukin-12). Meanwhile, the LSECtin antibody could further block the activity of LSECtin expressed on M1 macrophages and relieve its immunosuppressive effect on CD8+ T cells, ultimately leading to significant inhibition of tumor growth.

8.
J Hazard Mater ; 476: 134858, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38905983

ABSTRACT

Endemic fluorosis has gained increasing attention as a public health concern, and the escalating risk of colitis resulting from excessive fluoride intake calls for effective mitigation strategies. This study aimed to investigate the potential mechanisms underlying the alleviation of fluoride-induced colitis by Tea polysaccharides (TPS). Under conditions of excessive fluoride intake, significant changes were observed in the gut microbiota of rats, leading to aggravated colitis. However, the intervention of TPS exerted a notable alleviating effect on colitis symptoms. Antibiotic intervention and fecal microbiota transplantation (FMT) experiments provided evidence that TPS-mediated relief of fluoride-induced colitis is mediated through its effects on the gut microbiota. Furthermore, TPS supplementation was found to modulate the structure of gut microbiota, enhance the relative abundance of Limosilactobacillus vaginalis in the gut microbiota, and promote the expression of short-chain fatty acid (SCFAs) receptors in colonic tissue. Notably, L. vaginalis played a significant role in alleviating fluoride-induced colitis and facilitating the absorption of butyric acid in the rat colon. Subsequent butyric acid intervention experiments confirmed its remarkable alleviating effect on fluoride-induced colitis. Overall, these findings provide a potential preventive strategy for fluoride-induced colitis by TPS intervention, which is mediated by L. vaginalis and butyric acid.

9.
Sensors (Basel) ; 24(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38894217

ABSTRACT

The increase in Cervical Spondylosis cases and the expansion of the affected demographic to younger patients have escalated the demand for X-ray screening. Challenges include variability in imaging technology, differences in equipment specifications, and the diverse experience levels of clinicians, which collectively hinder diagnostic accuracy. In response, a deep learning approach utilizing a ResNet-34 convolutional neural network has been developed. This model, trained on a comprehensive dataset of 1235 cervical spine X-ray images representing a wide range of projection angles, aims to mitigate these issues by providing a robust tool for diagnosis. Validation of the model was performed on an independent set of 136 X-ray images, also varied in projection angles, to ensure its efficacy across diverse clinical scenarios. The model achieved a classification accuracy of 89.7%, significantly outperforming the traditional manual diagnostic approach, which has an accuracy of 68.3%. This advancement demonstrates the viability of deep learning models to not only complement but enhance the diagnostic capabilities of clinicians in identifying Cervical Spondylosis, offering a promising avenue for improving diagnostic accuracy and efficiency in clinical settings.


Subject(s)
Deep Learning , Neural Networks, Computer , Spondylosis , Spondylosis/diagnostic imaging , Humans , Cervical Vertebrae/diagnostic imaging , X-Rays , Image Processing, Computer-Assisted/methods
10.
Polymers (Basel) ; 16(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891424

ABSTRACT

Resin matrix composites (RCs) have better thermal and chemical stability, so they are widely used in engineering fields. In this study, the aging process and mechanism of two different types of resin-based three-dimensional four-way braided composites (H15 and S15) under different hygrothermal aging conditions were studied. The effect of aging behavior on the mechanical properties of RCs was also studied. Three different aging conditions were studied: Case I, 40 °C Soak; Case II, 70 °C Soak; and Case III, 70 °C-85% relative humidity (RH). It was found that the hygroscopic behavior of RCs in the process of moisture-heat aging conforms to Fick's second law. Higher temperatures and humidity lead to higher water absorption. The equilibrium hygroscopic content of H15 was 1.46% (Case II), and that of S15 was 2.51% (Case II). FT-IR revealed the different hygroscopic mechanisms of H15 and S15 in terms of aging behavior. On the whole, the infiltration behavior of water molecules is mainly exhibited in the process of wet and thermal aging. At the same time, the effect of the aging process on resin matrices was observed using SEM. It was found that the aging process led to the formation of microchannels on the substrate surface of S15, and the formation of these channels was the main reason for the better moisture absorption and lower mechanical strength of S15. At the same time, this study further found that temperature and oxygen content are the core influences on post-aging strength. The LVI experiment also showed that the structural changes and deterioration effects occurring after aging reduced the strength of the studied material.

11.
ACS Nano ; 18(26): 17293-17303, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38885180

ABSTRACT

Two-dimensional (2D) tellurium (Te) is emerging as a promising p-type candidate for constructing complementary metal-oxide-semiconductor (CMOS) architectures. However, its small bandgap leads to a high leakage current and a low on/off current ratio. Although alloying Te with selenium (Se) can tune its bandgap, thermally evaporated SexTe1-x thin films often suffer from grain boundaries and high-density defects. Herein, we introduce a precursor-confined chemical vapor deposition (CVD) method for synthesizing single-crystalline SexTe1-x alloy nanosheets. These nanosheets, with tunable compositions, are ideal for high-performance field-effect transistors (FETs) and 2D inverters. The preformation of Se-Te frameworks in our developed CVD method plays a critical role in the growth of SexTe1-x nanosheets with high crystallinity. Optimizing the Se composition resulted in a Se0.30Te0.70 nanosheet-based p-type FET with a large on/off current ratio of 4 × 105 and a room-temperature hole mobility of 120 cm2·V-1·s-1, being eight times higher than thermally evaporated SexTe1-x with similar composition and thickness. Moreover, we successfully fabricated an inverter based on p-type Se0.30Te0.70 and n-type MoS2 nanosheets, demonstrating a typical voltage transfer curve with a gain of 30 at an operation voltage of Vdd = 3 V.

12.
Small ; : e2400668, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881363

ABSTRACT

Alkali-metal doped perovskite oxides have emerged as promising materials due to their unique properties and broad applications in various fields, including photovoltaics and catalysis. Understanding the complex interplay between alkali metal doping, structural modifications, and their impact on performance remains a crucial challenge. In this study, this challenge is addressed by investigating the synthesis and properties of Rb-doped perovskite oxides. These results reveal that the doping of Rb into perovskite oxides function as a structural modifier in the as-synthesized samples and during the oxygen evolution reaction (OER) as well. Electron microscopy and first-principles calculations confirm the enrichment of Rb on the surface of the as-synthesized sample. Further investigations into the electrocatalytic reaction revealed that the Rb-doped perovskite underwent drastic restructuring with Rb leaching and formation of strontium oxide.

13.
Mikrochim Acta ; 191(7): 389, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871997

ABSTRACT

A novel photoelectrochemical sensor, employing an S-scheme heterojunction of phthalocyanine and TiO2 nanoparticles, has been developed to enable highly sensitive determination of glutathione. By integrating the favorable stability, environmental benignity, and electronic properties of the TiO2 matrix with the unique photoactivity of phthalocyanine species, the designed sensor presents a substantial linear dynamic range and a low detection limit for the quantification of glutathione. The sensitivity is attributed to efficient charge transfer and separation across the staggered heterojunction energy levels, which generates measurable photocurrent signals. Systematic variation of phthalocyanine content reveals an optimal composition that balances light harvesting capacity and electron-hole recombination rates. The incorporation of phosphotungstic acid (PTA) in sample preparation effectively minimizes interference from compounds like L-cysteine and others. Consequently, this leads to an improvement in accuracy through the reduction of impurity levels. Appreciable photocurrent enhancements are observed upon introduction of both oxidized and reduced glutathione at the optimized composite photoanode. Coupled with advantageous features of photoelectrochemical transduction such as simplicity, cost-effectiveness, and resistance to fouling, this sensor holds great promise for practical applications in complex biological media.


Subject(s)
Electrochemical Techniques , Glutathione , Indoles , Isoindoles , Titanium , Titanium/chemistry , Glutathione/chemistry , Glutathione/analysis , Indoles/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Limit of Detection , Photochemical Processes , Electrodes
14.
Inorg Chem ; 63(27): 12426-12432, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38905706

ABSTRACT

This report describes the synthesis and characterization of two heterobimetallic Li-Zn coordination isomers [Li2Zn2(tbaoac)6] (tbaoac = tert-butyl acetoacetato) that have been isolated separately by the same stoichiometric reaction run in different organic solvents. The 6-coordinated zinc isomer (6-Zn) was synthesized in acetone with high yield, while the 5-coordinated one (5-Zn) was readily obtained from ethanol. The 5-Zn isomer has a low solubility in organic solvents such as alkanes and haloalkanes, while its 6-Zn counterpart exhibits a good solubility in almost all common solvents. Two isomeric molecules feature similar centrosymmetric tetranuclear cyclic assemblies, which are different in their arrangement of tbaoac ligands. While all ligands act as µ2-type in the structure of 5-Zn, the two tbaoac groups chelating Li appear as µ3-type in 6-Zn, thus providing an additional coordination for Zn ions. However, the real structural transformation between these isomers was shown to be more complex than simply making or breaking a couple of Zn-O bonds. X-ray single-crystal structure analysis, powder X-ray diffraction, multinuclear NMR, DART mass spectrometry, ICP-OES analysis, and TGA have been employed for the characterization of the isomers. The combination of powder X-ray diffraction and 1H NMR investigation revealed that 6-Zn isomer can be quantitatively transformed to 5-Zn in ethanol, while the reverse conversion instantly takes place in acetone.

15.
Ecotoxicol Environ Saf ; 281: 116584, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896904

ABSTRACT

Carbaryl is a widely used carbamate pesticide that has been detected in the marine environment, but its effects on marine fish are still unknown. This study was aimed to investigate the effects of long-term exposure of carbaryl on male marine medaka. For this purpose, we set up five exposure concentration groups of 0, 0.1, 1, 10, and 100 µg/L for 180 days. On the one hand, we observed increased aggression and decreased ability to avoid predators in males after exposure, which was affected by the levels of HPA-axis hormones, especially decreased cortisol level. On the other hand, after exposure, HPG axis hormone levels and gene transcription levels were disturbed. Males exhibited a decreased gonadosomatic index and a notable reduction in mature sperm proportion and the F1 generation displayed a significant increase in malformation rate. Additionally, the number of apoptotic cells and the transcription level of apoptosis-related genes in the brains of male marine medaka substantially increased after exposure. Apoptosis of brain cells may be responsible for the disturbance of HPA and HPG axes, consequently leading to behavioral and reproductive abnormalities. These findings provide novel insights into evaluating the toxic effects of carbaryl on male marine medaka and emphasizing the criticality of exploring the potential environmental risks posed by carbaryl in the marine environment, thus providing toxicity value basis for further strengthening marine environmental monitoring and the protection of biological resources.


Subject(s)
Apoptosis , Behavior, Animal , Carbaryl , Hypothalamo-Hypophyseal System , Oryzias , Reproduction , Water Pollutants, Chemical , Animals , Male , Oryzias/physiology , Carbaryl/toxicity , Apoptosis/drug effects , Water Pollutants, Chemical/toxicity , Hypothalamo-Hypophyseal System/drug effects , Reproduction/drug effects , Behavior, Animal/drug effects , Hydrocortisone , Pituitary-Adrenal System/drug effects , Insecticides/toxicity
16.
Exp Ther Med ; 28(2): 314, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38911046

ABSTRACT

[This retracts the article DOI: 10.3892/etm.2021.10857.].

17.
Behav Sci (Basel) ; 14(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38920773

ABSTRACT

Research has shown that face-to-face victimization is a risk factor for the online victimization of adolescents, but no prior study has examined and compared four forms of face-to-face victimization (physical victimization, verbal victimization, social manipulation, and attacks on property) as significant correlates of general online victimization and sexual online victimization among adolescents. This original study involved 794 adolescents (483 males and 311 females), aged 12 to 18 years (M = 14.49, SD = 1.90) from four middle schools in Hong Kong. The participants completed a self-report questionnaire consisting of three parts: the Multidimensional Peer Victimization Scale, the Online Victimization Scale, and demographic items. Verbal victimization and social manipulation were found to be significant correlates of general online victimization; in contrast, physical victimization and attacks on property were significant correlates of sexual online victimization. These findings may help professionals and educators to develop effective prevention and intervention strategies for preventing the cycle of victimization between physical and online platforms as well as reducing the suicide risk and crises among at-risk victimized adolescents.

18.
Article in English | MEDLINE | ID: mdl-38923474

ABSTRACT

OBJECTIVE: In recent years, the early diagnosis and treatment of coronary microvascular dysfunction (CMD) have become crucial for preventing coronary heart disease. This paper aims to develop a computer-assisted autonomous diagnosis method for CMD by using ECG features and expert features. APPROACH: Clinical electrocardiogram (ECG), myocardial contrast echocardiography (MCE), and coronary angiography (CAG) are used in our method. Firstly, morphological features, temporal features, and T-wave features of ECG are extracted by multi-channel residual network with BiLSTM (MCResnet-BiLSTM) model and the multi-source T-wave features (MTF) extraction model, respectively. And these features are fused to form ECG features. In addition, the CFR[Formula: see text] is calculated based on the parameters related to the MCE at rest and stress state, and the Angio-IMR is calculated based on CAG. The combination of CFR[Formula: see text] and Angio-IMR is termed as expert features. Furthermore, the hybrid features, fused from the ECG features and the expert features, are input into the multilayer perceptron to implement the identification of CMD. And the weighted sum of the soft maximum loss and center loss is used as the total loss function for training the classification model, which optimizes the classification ability of the model. RESULT: The proposed method achieved 93.36% accuracy, 94.46% specificity, 92.10% sensitivity, 95.89% precision, and 93.95% F1 score on the clinical dataset of the Second Affiliated Hospital of Zhejiang University. CONCLUSION: The proposed method accurately extracts global ECG features, combines them with expert features to obtain hybrid features, and uses weighted loss to significantly improve diagnostic accuracy. It provides a novel and practical method for the clinical diagnosis of CMD.

19.
Small ; : e2402217, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924273

ABSTRACT

As demand for higher integration density and smaller devices grows, silicon-based complementary metal-oxide-semiconductor (CMOS) devices will soon reach their ultimate limits. 2D transition metal dichalcogenides (TMDs) semiconductors, known for excellent electrical performance and stable atomic structure, are seen as promising materials for future integrated circuits. However, controlled and reliable doping of 2D TMDs, a key step for creating homogeneous CMOS logic components, remains a challenge. In this study, a continuous electrical polarity modulation of monolayer WS2 from intrinsic n-type to ambipolar, then to p-type, and ultimately to a quasi-metallic state is achieved simply by introducing controllable amounts of vanadium (V) atoms into the WS2 lattice as p-type dopants during chemical vapor deposition (CVD). The achievement of purely p-type field-effect transistors (FETs) is particularly noteworthy based on the 4.7 at% V-doped monolayer WS2, demonstrating a remarkable on/off current ratio of 105. Expanding on this triumph, the first initial prototype of ultrathin homogeneous CMOS inverters based on monolayer WS2 is being constructed. These outcomes validate the feasibility of constructing homogeneous CMOS devices through the atomic doping process of 2D materials, marking a significant milestone for the future development of integrated circuits.

20.
Plant Cell Environ ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924477

ABSTRACT

Predicting soil water status remotely is appealing due to its low cost and large-scale application. During drought, plants can disconnect from the soil, causing disequilibrium between soil and plant water potentials at pre-dawn. The impact of this disequilibrium on plant drought response and recovery is not well understood, potentially complicating soil water status predictions from plant spectral reflectance. This study aimed to quantify drought-induced disequilibrium, evaluate plant responses and recovery, and determine the potential for predicting soil water status from plant spectral reflectance. Two species were tested: sweet corn (Zea mays), which disconnected from the soil during intense drought, and peanut (Arachis hypogaea), which did not. Sweet corn's hydraulic disconnection led to an extended 'hydrated' phase, but its recovery was slower than peanut's, which remained connected to the soil even at lower water potentials (-5 MPa). Leaf hyperspectral reflectance successfully predicted the soil water status of peanut consistently, but only until disequilibrium occurred in sweet corn. Our results reveal different hydraulic strategies for plants coping with extreme drought and provide the first example of using spectral reflectance to quantify rhizosphere water status, emphasizing the need for species-specific considerations in soil water status predictions from canopy reflectance.

SELECTION OF CITATIONS
SEARCH DETAIL
...