Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 89
1.
Front Pharmacol ; 15: 1415392, 2024.
Article En | MEDLINE | ID: mdl-38841364

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects the body. Periploca forrestii was a miao ethnic drug in China that was used to treat arthritis for hundreds of years. But, the therapeutic mechanism is so far unknown. Therefore, the chemical component and effect of Periploca forrestii on arthritis in rats were studied using HPLC-QTOF MS, micro-CT, and other experiments in this paper. Method: Male Sprague-Dawley rats were used to assess the in vivo activity. HPLC QTOF-MS was used to analyze the chemical profile of the P. forrestii (PF). Bovine type II collagen and Complete Freund's Adjuvant were used to stimulate and construct the collagen-induced arthritis (CIA) model. Three dosages of PF (100 mg/kg, 200 mg/kg, 400 mg/kg) were used to evaluate in vivo activity. Methotrexate was used as the positive drug. H/E staining and micro-CT methods were used to monitor the pathological changes of CIA rats. ELISA method was used to assess the serum level of immune- and inflammation-related cytokines. Immunohistochemical experiments were used to test the gene expression in JAK and Nf-κB pathways. Results: 42 compounds were identified from PF. PF administration lowered the increased spleen index compared with that of control and MTX groups, and partially restored body weight, reduced paw swelling, and arthritis score compared with the model group. Macroscopic assessment indicated inflamed paw with significant swelling in the model group, while the extent of inflammation and swelling was attenuated by both MTX and PF. H/E staining experiments demonstrated that pathological changes of synovial cells and infiltration of inflammatory cells were observed in the model group. In contrast, the MTX and PF treatment partially reversed these pathological changes. Micro-CT examination showed severe injuries and scars caused by inflammation for the model group, and in the high-dosage group (400 mg/kg) the inflammation-caused injuries and scars were dramatically ameliorated. Mechanism study showed that PF restored Nf-κB phosphorylation and JAK2 expression compared with the model group. Conclusion: P. forrestii possesses a potent effect on CIA rats. Nf-κB and JAK2 pathways are involved in its protective effect on CIA.

2.
J Am Chem Soc ; 146(23): 15787-15795, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38738985

The encapsulation of different guest molecules by their different recognition domains of proteins leads to selective binding, catalysis, and transportation. Synthetic hosts capable of selectively binding different guests in their different cavities to mimic the function of proteins are highly desirable but challenging. Here, we report three ladder-shaped, triple-cavity metallacages prepared by multicomponent coordination-driven self-assembly. Interestingly, the porphyrin-based metallacage is capable of heteroleptic encapsulation of fullerenes (C60 or C70) and coronene using its different cavities, allowing distinct allosteric recognition of coronene upon the addition of C60 or C70. Owing to the different binding affinities of the cavities, the metallacage hosts one C60 molecule in the central cavity and two coronene units in the side cavities, while encapsulating two C70 molecules in the side cavities and one coronene molecule in the central cavity. The rational design of multicavity assemblies that enable heteroleptic encapsulation and allosteric recognition will guide the further design of advanced supramolecular constructs with tunable recognition properties.

3.
Heliyon ; 10(4): e25328, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38390079

Purple-fleshed sweetpotato (PFSP) (Ipomoea batatas (L.) Lam), whose flesh is purple to dark purple, is a special variety type of sweetpotato, which has the characteristics of food crop, industrial crop and medicinal crop. The storage root (SR) of PFSP is rich in anthocyanins, starch, protein, soluble sugar, mineral elements, polyphenol, dietary fiber and so on, which has balanced and comprehensive nutritional value. And in recent years, its unique nutritional elements are increasingly known for their health functions. At present, there is no article on the characteristics and quality analysis of industrial xz8 variety. To explore the influence of different environments on the processing quality of xz8, we selected nine regions (Xuzhou, Jiawang, Pizhou, Xinyi, Peixian, Sihong, Yanchen, Xiangyang and Tianshui) to measure its yield and quality changes. The data demonstrated that xz8 has a very consistent high yield performance. In Tianshui, the anthocyanins, protein and minerals contents were significantly higher and yield also above average. Moreover, the variety with the lowest starch content exhibited the best taste. On the basis of the above results, it suggested that quite practicable to promote xz8 cultivation and suitable for processing in these areas. Thus, our present findings improve our understanding of xz8 variety and provide the basis for the industrial production of PFSP with strong prospects for success.

5.
Adv Mater ; 36(16): e2311764, 2024 Apr.
Article En | MEDLINE | ID: mdl-38181062

Semiconductor quantum wells (QWs) exhibit high charge-utilization efficiency for light-emitting applications due to their strong charge confinement effect. Inspired by this effect, herein, this work proposes a new idea to significantly improve the photo-generated charge separation for attaining a highly-efficient solar-to-fuels conversion process through "semi-reversing" the conventional QWs to confine only the photo-generated electrons. This electron confinement-improved charge separation is implemented in the well-designed model of the CdS/TiO2/CdS semi-reversed QW (SRQW) structure. The latter is fabricated by selectively assembling CdS quantum dots (QDs) onto the {101} facets (ultra-thin edge regions) of the TiO2 nanosheets (NSs). Upon light excitation, the photo-generated electrons of SRQW can be confined on the TiO2-{101} facets in the vicinity of the CdS/TiO2 hetero-interface. Thereby, the continuous multi-electron injection to the adsorbed reactants on the interfacial active-sites is significantly accelerated. Thus, the CdS/TiO2/CdS SRQW exhibits ≈35.7 and ≈56.0-fold enhancements on the photocatalytic activities for water and CO2 reduction, respectively, compared to those of pure TiO2. Correspondingly, its CH4-product selectivity is increased by ≈180%. This work provides a novel charge separation mechanism, which is of great importance for the design of the next-generation quantum-sized photocatalysts for solar-to-fuels conversion.

6.
Chem Sci ; 14(45): 13219-13227, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-38023520

As a planar subunit of C60-fullerene, truxene (C27H18) represents a highly symmetrical rigid hydrocarbon with strong blue emission. Herein, we used truxene as a model to investigate the chemical reactivity of a fullerene fragment with alkali metals. Monoanion, dianion, and trianion products with different alkali metal counterions were crystallized and fully characterized, revealing the core curvature dependence on charge and alkali metal coordination. Moreover, a 1proton nuclear magnetic resonance study coupled with computational analysis demonstrated that deprotonation of the aliphatic CH2 segments introduces aromaticity in the five-membered rings. Importantly, the UV-vis absorption and photoluminescence of truxenyl anions with different charges reveal intriguing charge-dependent optical properties, implying variation of the electronic structure based on the deprotonation process. An increase in aromaticity and π-conjugation yielded a red shift in the absorption and photoluminescent spectra; in particular, large Stokes shifts were observed in the truxenyl monoanion and dianion with high emission quantum yield and time of decay. Overall, stepwise deprotonation of truxene provides the first crystallographically characterized examples of truxenyl anions with three different charges and charge-dependent optical properties, pointing to their potential applications in carbon-based functional materials.

7.
J Am Chem Soc ; 145(47): 25673-25685, 2023 Nov 29.
Article En | MEDLINE | ID: mdl-37889075

This work represents an important step in the quest for creating atomically precise binary semiconductor nanoclusters (BS-NCs). Compared with coinage metal NCs, the preparation of BS-NCs requires strict control of the reaction kinetics to guarantee the formation of an atomically precise single phase under mild conditions, which otherwise could lead to the generation of multiple phases. Herein, we developed an acid-assisted thiolate dissociation approach that employs suitable acid to induce cleavage of the S-C bonds in the Cu-S-R (R = alkyl) precursor, spontaneously fostering the formation of the [Cu-S-Cu] skeleton upon the addition of extra Cu sources. Through this method, a high-nuclearity copper sulfide nanocluster, Cu50S12(SC(CH3)3)20(CF3COO)12 (abbreviated as [S-Cu50] hereafter), has been successfully prepared in high yield, and its atomic structure was accurately modeled through single-crystal X-ray diffraction. It was revealed that [S-Cu50] exhibits a unique double-shell structural configuration of [Cu14S12]@[Cu36S20], and the innermost [Cu14] moiety displays a rhombic dodecahedron geometry, which has never been observed in previously synthesized Cu metal, hydride, or chalcogenide NCs. Importantly, [S-Cu50] represents the first example incorporating mixed Cu(II)/Cu(I) valences in reported atomically precise copper sulfide NCs, which was unambiguously confirmed by XPS, EPR, and XANES. In addition, the electronic structure of [S-Cu50] was established by a variety of optical investigations, including absorption, photoluminescence, and ultrafast transient absorption spectroscopies, as well as theoretical calculations. Moreover, [S-Cu50] is air-stable and demonstrates electrocatalytic activity in ORR with a four-electron pathway.

8.
Front Endocrinol (Lausanne) ; 14: 1228300, 2023.
Article En | MEDLINE | ID: mdl-37711898

Background: Metabolic syndrome (Mets) is considered a global epidemic of the 21st century, predisposing to cardiometabolic diseases. This study aims to describe and compare the body composition profiles between metabolic healthy (MH) and metabolic unhealthy (MU) phenotype in normal and obesity population in China, and to explore the predictive ability of body composition indices to distinguish MU by generating machine learning algorithms. Methods: A cross-sectional study was conducted and the subjects who came to the hospital to receive a health examination were enrolled. Body composition was assessed using bioelectrical impedance analyser. A model generator with a gradient-boosting tree algorithm (LightGBM) combined with the SHapley Additive exPlanations method was adapted to train and interpret the model. Receiver-operating characteristic curves were used to analyze the predictive value. Results: We found the significant difference in body composition parameters between the metabolic healthy normal weight (MHNW), metabolic healthy obesity (MHO), metabolic unhealthy normal weight (MUNW) and metabolic unhealthy obesity (MUO) individuals, especially among the MHNW, MUNW and MUO phenotype. MHNW phenotype had significantly lower whole fat mass (FM), trunk FM and trunk free fat mass (FFM), and had significantly lower visceral fat areas compared to MUNW and MUO phenotype, respectively. The bioimpedance phase angle, waist-hip ratio (WHR) and free fat mass index (FFMI) were found to be remarkably lower in MHNW than in MUNW and MUO groups, and lower in MHO than in MUO group. For predictive analysis, the LightGBM-based model identified 32 status-predicting features for MUNW with MHNW group as the reference, MUO with MHO as the reference and MUO with MHNW as the reference, achieved high discriminative power, with area under the curve (AUC) values of 0.842 [0.658, 1.000] for MUNW vs. MHNW, 0.746 [0.599, 0.893] for MUO vs. MHO and 0.968 [0.968, 1.000] for MUO and MHNW, respectively. A 2-variable model was developed for more practical clinical applications. WHR > 0.92 and FFMI > 18.5 kg/m2 predict the increased risk of MU. Conclusion: Body composition measurement and validation of this model could be a valuable approach for the early management and prevention of MU, whether in obese or normal population.


Body Composition , East Asian People , Machine Learning , Metabolic Syndrome , Humans , Cross-Sectional Studies , Obesity/epidemiology , Metabolic Syndrome/epidemiology
9.
Org Lett ; 25(28): 5273-5278, 2023 Jul 21.
Article En | MEDLINE | ID: mdl-37418631

Two novel multiple B ← N Lewis pair functionalized perylenes are reported. While OBN-Pery shows a centrosymmetric and planar architecture, PBN-Pery displays an axisymmetric and twist structure. B ← N functionalization in both of them results in a large decrease in the HOMO-LUMO energy gap. PBN-Pery in particular has a low LUMO energy level (-3.00 eV) and red emission at the NIR I region with high fluorescence quantum yield.

10.
Nature ; 616(7957): 482-487, 2023 04.
Article En | MEDLINE | ID: mdl-37076728

Partitioning of americium from lanthanides (Ln) present in used nuclear fuel plays a key role in the sustainable development of nuclear energy1-3. This task is extremely challenging because thermodynamically stable Am(III) and Ln(III) ions have nearly identical ionic radii and coordination chemistry. Oxidization of Am(III) to Am(VI) produces AmO22+ ions distinct with Ln(III) ions, which has the potential to facilitate separations in principle. However, the rapid reduction of Am(VI) back to Am(III) by radiolysis products and organic reagents required for the traditional separation protocols including solvent and solid extractions hampers practical redox-based separations. Herein, we report a nanoscale polyoxometalate (POM) cluster with a vacancy site compatible with the selective coordination of hexavalent actinides (238U, 237Np, 242Pu and 243Am) over trivalent lanthanides in nitric acid media. To our knowledge, this cluster is the most stable Am(VI) species in aqueous media observed so far. Ultrafiltration-based separation of nanoscale Am(VI)-POM clusters from hydrated lanthanide ions by commercially available, fine-pored membranes enables the development of a once-through americium/lanthanide separation strategy that is highly efficient and rapid, does not involve any organic components and requires minimal energy input.

11.
Sensors (Basel) ; 23(4)2023 Feb 05.
Article En | MEDLINE | ID: mdl-36850389

With the global spread of the novel coronavirus, avoiding human-to-human contact has become an effective way to cut off the spread of the virus. Therefore, contactless gesture recognition becomes an effective means to reduce the risk of contact infection in outbreak prevention and control. However, the recognition of everyday behavioral sign language of a certain population of deaf people presents a challenge to sensing technology. Ubiquitous acoustics offer new ideas on how to perceive everyday behavior. The advantages of a low sampling rate, slow propagation speed, and easy access to the equipment have led to the widespread use of acoustic signal-based gesture recognition sensing technology. Therefore, this paper proposed a contactless gesture and sign language behavior sensing method based on ultrasonic signals-UltrasonicGS. The method used Generative Adversarial Network (GAN)-based data augmentation techniques to expand the dataset without human intervention and improve the performance of the behavior recognition model. In addition, to solve the problem of inconsistent length and difficult alignment of input and output sequences of continuous gestures and sign language gestures, we added the Connectionist Temporal Classification (CTC) algorithm after the CRNN network. Additionally, the architecture can achieve better recognition of sign language behaviors of certain people, filling the gap of acoustic-based perception of Chinese sign language. We have conducted extensive experiments and evaluations of UltrasonicGS in a variety of real scenarios. The experimental results showed that UltrasonicGS achieved a combined recognition rate of 98.8% for 15 single gestures and an average correct recognition rate of 92.4% and 86.3% for six sets of continuous gestures and sign language gestures, respectively. As a result, our proposed method provided a low-cost and highly robust solution for avoiding human-to-human contact.


COVID-19 , Ultrasonics , Humans , Gestures , Sign Language , Acoustics
12.
Comb Chem High Throughput Screen ; 26(6): 1224-1232, 2023.
Article En | MEDLINE | ID: mdl-36017844

BACKGROUND: Radix Paeoniae Alba is a traditional Chinese herbal medicine. It can accelerate salivary secretion and alleviate the dry mouth of patients with Sjogren's syndrome (SS). Although it is widely used in clinical treatment, its target and mechanism remain unclear. OBJECTIVE: This study aims to analyze the main components of Radix Paeoniae Alba, explore the target genes, and propose the possible mechanism for Radix Paeoniae Alba's acceleration of salivary secretion. METHODS: The main active components and potential targets of Radix Paeoniae Alba were searched through the TCMSP database. Efforts were made to search for the related genes of Sjogren's syndrome in OMIM and GeneCards databases. Cytoscape v3.8.0 software was used to link target genes of active components and key genes of the disease. The software Autodock vina1.1.2. was adopted to simulate the interaction between active components and target genes. Human submandibular gland (HSG) cells were used in vitro experiments to verify the results of our analysis. RESULTS: ß-Sitosterol, the main component of Radix Paeoniae Alba, may intervene in the disease through CHRM3. Molecular docking shows ß-Sitosterol has a high affinity with CHRM3, and the interaction between CHRM3 and ß-Sitosterol is the basis of biological activity. The in vitro experiments showed that ß-Sitosterol could significantly up-regulate the mRNA and protein expression levels of both CHRM3 and secretion-related genes in HSG cells. CONCLUSION: Our study shows that the chemical components of Radix Paeoniae Alba have a positive effect on the related mechanism of salivary secretion. We found that ß-Sitosterol can promote the expression of CHRM3, stimulate salivary secretion, treat Sjogren's syndrome and potentially improve its prognosis.


Drugs, Chinese Herbal , Paeonia , Sjogren's Syndrome , Humans , Drugs, Chinese Herbal/chemistry , Sjogren's Syndrome/drug therapy , Molecular Docking Simulation , Medicine, Chinese Traditional , Receptor, Muscarinic M3
13.
BMC Med Imaging ; 22(1): 197, 2022 11 17.
Article En | MEDLINE | ID: mdl-36397011

OBJECTIVE: To analyze the computed tomography (CT) and magnetic resonance imaging (MRI) features of patients with intra-parenchymal and intra-ventricular schwannoma. METHODS: The CT and MRI features of seven cases with intra-parenchymal and intra-ventricular schwannoma were analyzed retrospectively. RESULTS: There were four men and three women (median age, 25 years; range, 12-42 years) in this study. The median tumor size was 4.4 cm (range, 3.1-6.5 cm). The mass was, respectively, round in four cases (57.1%), lobulated in two cases (28.6%) and oval in one case (14.3%). All tumors were well-circumscribed. Septa in the mass could be observed in three cases (42.9%), and nodular calcification was observed in two cases (28.6%), which peritumoral edema (n = 3, 42.9%) and hydrocephalus (n = 3, 42.9%) could be observed. Most of these lesions (n = 6) presented iso-hypointensity on T1-weighted images and iso-hyperintensity on T2-weighted images, except one lesion showing low intensity on T2WI. In addition, a fluid-fluid level was observed in one case. After contrast agents' injection, all masses illustrated heterogeneously moderate to marked enhancement. CONCLUSIONS: A well-defined solid and cystic mass with calcification and moderate to marked delayed enhancement may be an objective account of intra-parenchymal or intra-ventricular schwannoma.


Calcinosis , Neurilemmoma , Male , Humans , Female , Adult , Retrospective Studies , Tomography, X-Ray Computed/methods , Magnetic Resonance Imaging/methods , Neurilemmoma/diagnostic imaging , Neurilemmoma/pathology , Contrast Media
14.
J Gastric Cancer ; 22(4): 408-417, 2022 Oct.
Article En | MEDLINE | ID: mdl-36316114

PURPOSE: Treatment options are limited after the failure of first-and second-line treatments in patients with HER2+ metastatic gastric cancer (mGC). The present study aimed to explore the efficacy, safety, and prognostic factors of apatinib efficacy as a third-line therapy for patients with human epithelial growth factor receptor 2-positive (HER2+) mGC. MATERIALS AND METHODS: A total of 59 HER2+ mGC patients who received apatinib as third-line therapy were retrospectively enrolled in this two-center, single-arm, cohort study; the clinical response, survival data, and adverse events were retrieved. RESULTS: The median progression-free survival (PFS) was 5.2 months (95% confidence interval [CI], 3.9-6.5), and the median overall survival (OS) was 8.2 months (95% CI, 6.6-9.8) Furthermore, forward stepwise multivariate Cox regression analysis showed that a higher Eastern Cooperative Oncology Group performance status score and multiple metastases were independently correlated with decreased PFS and OS (both P<0.05). The main adverse events were leukopenia (45.8%), hypertension (44.1%), thrombocytopenia (39.0%), hand-foot syndrome (37.3%), and elevated transaminase (33.9%). Grade 3 adverse events mainly included hypertension (5.1%) and neutropenia (5.1%); grade 4 adverse events did not occur. CONCLUSIONS: Apatinib is efficient and well tolerated in patients with HER2+ mGC as a third-line treatment, suggesting that it may be a candidate of choice for these patients.

15.
Inorg Chem ; 61(40): 16009-16019, 2022 Oct 10.
Article En | MEDLINE | ID: mdl-36153966

The functionalized design of metal-organic frameworks (MOFs) has been rapidly developed in the last 20 years, and its broad applicability has been demonstrated in many fields. MOFs with desired functions can be assembled using predesigned organic linkers with specific metal nodes, which possess the ordered functional sites and open structures. Although a large number of carboxylic acid junctions have been used to construct MOFs, it is still a great challenge to realize their multifunctionality. In particular, there is a relative lack of research on MOFs as direct photocatalysts, which require not only abundant active sites and open structures but also adsorption groups and effective electron-hole separation performance. To this end, MOFs constructed from the carboxylic acid ligands derived from lophine-based derivatives and copper ions were deliberately used as a photocatalyst, and then, their application in dye degradation and aromatic alcohol conversion was investigated. In addition, in combination with the abundant Lewis sites of copper ions and imidazole sites, the material shows not only the adsorption and separation of C2 series and dyes but also the application of dye degradation and conversion of aromatic alcohols under illumination conditions. The corresponding results fully illustrate that the MOF constructed by using lophine derivatives can be an effective way to prepare photocatalysts. The subsequent research ideas will focus on designing a series of MOFs constructed with multilinked moieties of lophine groups and exploring their application strategies in the field of photocatalysis.

16.
Genes (Basel) ; 13(7)2022 06 27.
Article En | MEDLINE | ID: mdl-35885939

Sweetpotato (Ipomoea batatas (L.) Lam.) is recognized as one of the most important root crops in the world by the Food and Agriculture Organization of the United Nations. The yield of sweetpotato is closely correlated with the rate of storage root (SR) formation and expansion. At present, most of the studies on sweetpotato SR expansion are focused on the physiological mechanism. To explore the SR expansion mechanism of sweetpotato, we performed transcriptome sequencing of SR harvested at 60, 90, 120, and 150 days after planting (DAP) to analyze two sweetpotato lines, Xuzishu 8 and its crossing progenies named Xu 18-192, which were selected from an F1 segregation population of Xuzishu 8 and Meiguohong, in which SR expansion was delayed significantly. A total of 57,043 genes were produced using transcriptome sequencing, of which 1312 were differentially expressed genes (DEGs) in four SR growth periods of the sweetpotato lines. The combination of the KEGG and trend analysis revealed several key candidate genes involved in SR expansion. The SBEI gene involved in starch metabolism, and transcription factors ARF6, NF-YB3 and NF-YB10 were all significantly up-regulated during SR expansion. The data from this study provide insights into the complex mechanisms of SR formation and expansion in sweetpotato and identify new candidate genes for increasing the yield of sweetpotato.


Ipomoea batatas , Gene Expression Profiling , Ipomoea batatas/genetics , Plant Roots/metabolism
17.
Angew Chem Int Ed Engl ; 61(31): e202206742, 2022 Aug 01.
Article En | MEDLINE | ID: mdl-35589617

Thiacalix[4]arenes have emerged as a family of macrocyclic ligands to protect metal nanoparticles, but it remains a great challenge to solve the mystery of their structures at the atomic level, especially for those larger than 2 nm. Here, we report the largest known mixed-valence silver nanocluster [Ag155 (CyS)40 (TC4A)5 Cl2 ] (Ag155) protected by deprotonated cyclohexanethiol (CySH) and macrocyclic ligand p-tert-butylthiacalix[4]arene (H4 TC4A). Its single-crystal structure consists of a metallic core of four concentric shells, Ag13 @Ag42 @Ag30 @Ag70 , lined with a organic skin of 40CyS- and 5TC4A4- and 2Cl- . Ag155 manifests an unusual pseudo-5-fold symmetry dictated by the intrinsic metal atom packing and the regioselective distribution of mixed protective ligands. This work not only reveals a macrocyclic ligand effect on the formation of a large silver nanocluster, but also provides a new structural archetype for comprehensively perceiving their interface and metal kernel structures.

18.
Adv Mater ; 34(14): e2109330, 2022 Apr.
Article En | MEDLINE | ID: mdl-35112406

Plasmonic nanostructures have tremendous potential to be applied in photocatalytic CO2 reduction, since their localized surface plasmon resonance can collect low-energy-photons to derive energetic "hot electrons" for reducing the CO2 activation-barrier. However, the hot electron-driven CO2 reduction is usually limited by poor efficiency and low selectivity for producing kinetically unfavorable hydrocarbons. Here, a new idea of plasmonic active "hot spot"-confined photocatalysis is proposed to overcome this drawback. W18 O49 nanowires on the outer surface of Au nanoparticles-embedded TiO2 electrospun nanofibers are assembled to obtain lots of Au/TiO2 /W18 O49 sandwich-like substructures in the formed plasmonic heterostructure. The short distance (< 10 nm) between Au and adjacent W18 O49 can induce an intense plasmon-coupling to form the active "hot spots" in the substructures. These active "hot spots" are capable of not only gathering the incident light to enhance "hot electrons" generation and migration, but also capturing protons and CO through the dual-hetero-active-sites (Au-O-Ti and W-O-Ti) at the Au/TiO2 /W18 O49 interface, as evidenced by systematic experiments and simulation analyses. Thus, during photocatalytic CO2 reduction at 43± 2 °C, these active "hot spots" enriched in the well-designed Au/TiO2 /W18 O49 plasmonic heterostructure can synergistically confine the hot-electron, proton, and CO intermediates for resulting in the CH4 and CO production-rates at ≈35.55 and ≈2.57 µmol g-1 h-1 , respectively, and the CH4 -product selectivity at ≈93.3%.

19.
Front Pharmacol ; 13: 1089231, 2022.
Article En | MEDLINE | ID: mdl-36699059

Functional dyspepsia (FD) is the most common clinical gastrointestinal disease, with complex and prolonged clinical symptoms. The prevalence of FD is increasing year by year, seriously affecting the quality of life of patients. The main causes of FD are related to abnormal gastrointestinal dynamics, increased visceral sensitivity, Helicobacter pylori (HP) infection, intestinal flora disturbance and psychological factors. A review of the relevant literature reveals that the mechanisms of traditional Chinese medicine (TCM) in the treatment of FD mainly involve the following pathways:5-HT signal pathway, AMPK signal pathway,C-kit signal pathway, CRF signal pathway, PERK signal pathway,NF-κB signal pathway. Based on a holistic concept, TCM promotes gastrointestinal motility, regulates visceral sensitivity and alleviates gastrointestinal inflammation through multiple signal pathways, reflecting the advantages of multi-level, multi-pathway and multi-targeted treatment of FD.

20.
Micromachines (Basel) ; 14(1)2022 Dec 29.
Article En | MEDLINE | ID: mdl-36677147

In this paper, a D-band direct conversion IQ receiver with on-chip multiplier chain is presented. The D-band LNA with gain-boosting and stagger-tunning technique is implemented to provide high gain and large bandwidth. X9 multiplier chain including Marchand balun and quadrature (90°) hybrid is employed to provide four path LO signal to drive IQ mixer. This receiver is implemented in a 130nm SiGe process and consumes a core area of 1.04 mm2. From the experimental results, the proposed receiver exhibits a 20 GHz bandwidth from 150 GHz to 170 GHz, with CG of 28 dB and NF of 7.3 dB at 158 GHz.

...