Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 4368, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34272383

ABSTRACT

Bioproduction of renewable chemicals is considered as an urgent solution for fossil energy crisis. However, despite tremendous efforts, it is still challenging to generate microbial strains that can produce target biochemical to high levels. Here, we report an example of biosynthesis of high-value and easy-recoverable derivatives built upon natural microbial pathways, leading to improvement in bioproduction efficiency. By leveraging pathways in solventogenic clostridia for co-producing acyl-CoAs, acids and alcohols as precursors, through rational screening for host strains and enzymes, systematic metabolic engineering-including elimination of putative prophages, we develop strains that can produce 20.3 g/L butyl acetate and 1.6 g/L butyl butyrate. Techno-economic analysis results suggest the economic competitiveness of our developed bioprocess. Our principles of selecting the most appropriate host for specific bioproduction and engineering microbial chassis to produce high-value and easy-separable end products may be applicable to other bioprocesses.


Subject(s)
Acetates/metabolism , Butyrates/chemistry , Clostridium/metabolism , Fatty Acids/metabolism , Fermentation/genetics , Metabolic Engineering/methods , Acetyl Coenzyme A/metabolism , Biofuels/microbiology , Biomass , Clostridium/enzymology , Clostridium/genetics , Esters/metabolism , Metabolic Networks and Pathways/genetics , NAD/metabolism , Proteins/genetics , Proteins/metabolism , Recombinant Proteins
2.
Biotechnol Biofuels ; 13: 84, 2020.
Article in English | MEDLINE | ID: mdl-32411297

ABSTRACT

BACKGROUND: Clostridium saccharoperbutylacetonicum N1-4 (HMT) is a strictly anaerobic, spore-forming Gram-positive bacterium capable of hyper-butanol production through the well-known acetone-butanol-ethanol fermentation process. Recently, five putative RRNPP-type QSSs (here designated as QSS1 to QSS5) were predicted in this bacterial strain, each of which comprises a putative RRNPP-type regulator (QssR1 to QssR5) and a cognate signaling peptide precursor (QssP1 to QssP5). In addition, both proteins are encoded by the same operon. The functions of these multiple RRNPP-type QSSs are unknown. RESULTS: To elucidate the function of multiple RRNPP-type QSSs as related to cell metabolism and solvent production in N1-4 (HMT), we constructed qssR-deficient mutants ΔR1, ΔR2, ΔR3 and ΔR5 through gene deletion using CRISPR-Cas9 and N1-4-dcas9-R4 (with the QssR4 expression suppressed using CRISPR-dCas9). We also constructed complementation strains by overexpressing the corresponding regulator gene. Based on systematic characterization, results indicate that QSS1, QSS2, QSS3, and QSS5 positively regulate the sol operon expression and thus solvent production, but they likely negatively regulate cell motility. Consequently, QSS4 might not directly regulate solvent production, but positively affect cell migration. In addition, QSS3 and QSS5 appear to positively regulate sporulation efficiency. CONCLUSIONS: Our study provides the first insights into the roles of multiple RRNPP-type QSSs of C. saccharoperbutylacetonicum for the regulation of solvent production, cell motility, and sporulation. Results of this study expand our knowledge of how multiple paralogous QSSs are involved in the regulation of essential bacterial metabolism pathways.

3.
Methods Mol Biol ; 1772: 297-325, 2018.
Article in English | MEDLINE | ID: mdl-29754236

ABSTRACT

CRISPR-Cas9 has been explored as a transformative genome engineering tool for many eukaryotic organisms. However, its utilization in bacteria remains limited and ineffective. This chapter, taking Clostridium beijerinckii as an example, describes the use of Streptococcus pyogenes CRISPR-Cas9 system guided by the single chimeric guide RNA (gRNA) for diverse genome-editing purposes, including chromosomal gene deletion, integration, single nucleotide modification, as well as "clean" mutant selection. The general principle is to use CRISPR-Cas9 as an efficient selection tool for the edited mutant (whose CRISPR-Cas9 target site has been disrupted through a homologous recombination event and thus can survive selection) against? the wild type background cells. This protocol is broadly applicable to other microorganisms for genome-editing purposes.


Subject(s)
CRISPR-Cas Systems/genetics , Clostridium beijerinckii/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome, Bacterial/genetics , Chromosome Deletion , Homologous Recombination/genetics , RNA, Guide, Kinetoplastida/genetics , Streptococcus pyogenes/genetics
4.
Metab Eng ; 47: 49-59, 2018 05.
Article in English | MEDLINE | ID: mdl-29530750

ABSTRACT

Although CRISPR-Cas9/Cpf1 have been employed as powerful genome engineering tools, heterologous CRISPR-Cas9/Cpf1 are often difficult to introduce into bacteria and archaea due to their severe toxicity. Since most prokaryotes harbor native CRISPR-Cas systems, genome engineering can be achieved by harnessing these endogenous immune systems. Here, we report the exploitation of Type I-B CRISPR-Cas of Clostridium tyrobutyricum for genome engineering. In silico CRISPR array analysis and plasmid interference assay revealed that TCA or TCG at the 5'-end of the protospacer was the functional protospacer adjacent motif (PAM) for CRISPR targeting. With a lactose inducible promoter for CRISPR array expression, we significantly decreased the toxicity of CRISPR-Cas and enhanced the transformation efficiency, and successfully deleted spo0A with an editing efficiency of 100%. We further evaluated effects of the spacer length on genome editing efficiency. Interestingly, spacers ≤ 20 nt led to unsuccessful transformation consistently, likely due to severe off-target effects; while a spacer of 30-38 nt is most appropriate to ensure successful transformation and high genome editing efficiency. Moreover, multiplex genome editing for the deletion of spo0A and pyrF was achieved in a single transformation, with an editing efficiency of up to 100%. Finally, with the integration of the alcohol dehydrogenase gene (adhE1 or adhE2) to replace cat1 (the key gene responsible for butyrate production and previously could not be deleted), two mutants were created for n-butanol production, with the butanol titer reached historically record high of 26.2 g/L in a batch fermentation. Altogether, our results demonstrated the easy programmability and high efficiency of endogenous CRISPR-Cas. The developed protocol herein has a broader applicability to other prokaryotes containing endogenous CRISPR-Cas systems. C. tyrobutyricum could be employed as an excellent platform to be engineered for biofuel and biochemical production using the CRISPR-Cas based genome engineering toolkit.


Subject(s)
1-Butanol/metabolism , CRISPR-Cas Systems , Clostridium tyrobutyricum , Gene Editing/methods , Metabolic Engineering/methods , Clostridium tyrobutyricum/genetics , Clostridium tyrobutyricum/metabolism
5.
Biotechnol Bioeng ; 114(7): 1428-1437, 2017 07.
Article in English | MEDLINE | ID: mdl-28295202

ABSTRACT

Butyl butyrate (BB) is a valuable chemical that can be used as flavor, fragrance, extractant, and so on in various industries. Meanwhile, BB can also be used as a fuel source with excellent compatibility as gasoline, aviation kerosene, and diesel components. The conventional industrial production of BB is highly energy-consuming and generates various environmental pollutants. Recently, there have been tremendous interests in producing BB from renewable resources through biological routes. In this study, based on the fermentation using the hyper-butyrate producing strain Clostridium tyrobutyricum ATCC 25755, efficient BB production through in situ esterification was achieved by supplementation of lipase and butanol into the fermentation. Three commercially available lipases were assessed and the one from Candida sp. (recombinant, expressed in Aspergillus niger) was identified with highest catalytic activity for BB production. Various conditions that might affect BB production in the fermentation have been further evaluated, including the extractant type, enzyme loading, agitation, pH, and butanol supplementation strategy. Under the optimized conditions (5.0 g L-1 of enzyme loading, pH at 5.5, butanol kept at 10.0 g L-1 ), 34.7 g L-1 BB was obtained with complete consumption of 50 g L-1 glucose as the starting substrate. To our best knowledge, the BB production achieved in this study is the highest among the ever reported from the batch fermentation process. Our results demonstrated an excellent biological platform for renewable BB production from low-value carbon sources. Biotechnol. Bioeng. 2017;114: 1428-1437. © 2017 Wiley Periodicals, Inc.


Subject(s)
Bioreactors/microbiology , Butanols/metabolism , Butyrates/isolation & purification , Butyrates/metabolism , Clostridium tyrobutyricum/physiology , Lipase/metabolism , Batch Cell Culture Techniques/methods , Butyrates/chemistry , Conservation of Natural Resources/methods , Esterification/physiology , Fermentation , Liquid-Liquid Extraction/methods
6.
Biotechnol Bioeng ; 113(12): 2739-2743, 2016 12.
Article in English | MEDLINE | ID: mdl-27240718

ABSTRACT

CRISPR-Cas9 has been explored as a powerful tool for genome engineering for many organisms. Meanwhile, dCas9 which lacks endonuclease activity but can still bind to target loci has been engineered for efficient gene transcription repression. Clostridium beijerinckii, an industrially significant species capable of biosolvent production, is generally difficult to metabolically engineer. Recently, we reported our work in developing customized CRISPR-Cas9 system for genome engineering in C. beijerinckii. However, in many cases, gene expression repression (rather than actual DNA mutation) is more desirable for various biotechnological applications. Here, we further demonstrated gene transcription repression in C. beijerinckii using CRISPR-dCas9. A small RNA promoter was employed to drive the expression of the single chimeric guide RNA targeting on the promoter region of amylase gene, while a constitutive thiolase promoter was used to drive Streptococcus pyogenes dCas9 expression. The growth assay on starch agar plates showed qualitatively significant repression of amylase activity in C. beijerinckii transformant with CRISPR-dCas9 compared to the control strain. Further amylase activity quantification demonstrated consistent repression (65-97% through the fermentation process) on the activity in the transformant with CRISPR-dCas9 versus in the control. Our results provided essential references for engineering CRISPR-dCas9 as an effective tool for tunable gene transcription repression in diverse microorganisms. Biotechnol. Bioeng. 2016;113: 2739-2743. © 2016 Wiley Periodicals, Inc.


Subject(s)
Amylases/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Epigenetic Repression/genetics , Transcription, Genetic/genetics , Transcriptional Activation/genetics , Amylases/biosynthesis , CRISPR-Associated Proteins/genetics , Clostridium beijerinckii/genetics , Down-Regulation/genetics , Gene Expression Regulation, Bacterial/genetics
7.
ACS Synth Biol ; 5(7): 721-32, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27115041

ABSTRACT

CRISPR-Cas9 has been demonstrated as a transformative genome engineering tool for many eukaryotic organisms; however, its utilization in bacteria remains limited and ineffective. Here we explored Streptococcus pyogenes CRISPR-Cas9 for genome editing in Clostridium beijerinckii (industrially significant but notorious for being difficult to metabolically engineer) as a representative attempt to explore CRISPR-Cas9 for genome editing in microorganisms that previously lacked sufficient genetic tools. By combining inducible expression of Cas9 and plasmid-borne editing templates, we successfully achieved gene deletion and integration with high efficiency in single steps. We further achieved single nucleotide modification by applying innovative two-step approaches, which do not rely on availability of Protospacer Adjacent Motif sequences. Severe vector integration events were observed during the genome engineering process, which is likely difficult to avoid but has never been reported by other researchers for the bacterial genome engineering based on homologous recombination with plasmid-borne editing templates. We then further successfully employed CRISPR-Cas9 as an efficient tool for selecting desirable "clean" mutants in this study. The approaches we developed are broadly applicable and will open the way for precise genome editing in diverse microorganisms.


Subject(s)
CRISPR-Cas Systems , Clostridium beijerinckii/genetics , Genetic Engineering/methods , DNA Breaks, Double-Stranded , Gene Deletion , Gene Editing , Genetic Vectors , Genome, Bacterial , Homologous Recombination , Nucleotides/genetics , Plasmids , Promoter Regions, Genetic , RNA, Guide, Kinetoplastida
8.
J Biotechnol ; 200: 1-5, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25680931

ABSTRACT

The anaerobic spore-forming, gram-positive, solventogenic clostridia are notorious for being difficult to genetically engineer. Based on CRISPR/Cas9 assisted homologous recombination, we demonstrated that clean markerless gene deletion from the chromosome can be easily achieved with a high efficiency through a single-step transformation in Clostridium beijerinckii NCIMB 8052, one of the most prominent strains for acetone, butanol and ethanol (ABE) production. This highly efficient genome engineering system can be further explored for multiplex genome engineering purposes. The protocols and principles developed in this study provided valuable references for genome engineering in other microorganisms lacking developed genetic engineering tools.


Subject(s)
Clostridium beijerinckii/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Deletion , Chromosomes, Bacterial , Genes, Bacterial , Genetic Engineering , Genome, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL