Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(11): e31861, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947487

ABSTRACT

Exserolides are isocoumarin derivatives containing lactone moiety. Recently, some isocoumarins have been demonstrated to ameliorate hyperlipidemia, a major factor for inducing cardiovascular diseases. However, the effects and mechanisms of action of exserolides on hyperlipidemia are not known. The aim of this study is to investigate whether the marine fungus Setosphaeria sp.-derived exserolides (compounds I, J, E, and F) exert lipid-lowering effects via improving reverse cholesterol transport (RCT) in vitro. RAW264.7 macrophages and HepG2 cells were used to establish lipid-laden models, and the levels of intracellular lipids and RCT-related proteins were determined by assay kits and Western blotting, respectively. We observed that exserolides (at a 5 µM concentration) significantly decreased intracellular cholesterol and triglyceride levels in oxidized low-density lipoprotein-laden RAW264.7 cells and markedly improved [3H]-cholesterol efflux. Among the four tested compounds, exserolide J increased the protein levels of ATP-binding cassette transporter A1, peroxisome proliferator-activated receptor α (PPARα), and liver X receptor α (LXRα). Furthermore, treatment with exserolides significantly decreased oleic acid-laden lipid accumulation in HepG2 hepatocytes. Mechanistically, exserolides enhance PPARα protein levels; furthermore, compound J increases cholesterol 7 alpha-hydroxylase A1 and LXRα protein levels. Molecular docking revealed that exserolides, particularly compound J, can interact with PPARα and LXRα proteins. These data suggest that the terminal carboxyl group of compound J plays a key role in lowering lipid levels by stimulating LXRα and PPARα proteins. In conclusion, compound J exhibits powerful lipid-lowering effects in vitro. However, its hypolipidemic effects in vivo should be investigated in the future.

2.
J Pharm Biomed Anal ; 246: 116164, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38776585

ABSTRACT

Evaluating the quality of herbal medicine based on the content and activity of its main components is highly beneficial. Developing an eco-friendly determination method has significant application potential. In this study, we propose a new method to simultaneously predict the total flavonoid content (TFC), xanthine oxidase inhibitory (XO) activity, and antioxidant activity (AA) of Prunus mume using near-infrared spectroscopy (NIR). Using the sodium nitrite-aluminum nitrate-sodium hydroxide colorimetric method, uric acid colorimetric method, and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) free radical scavenging activity as reference methods, we analyzed TFC, XO, and AA in 90 P. mume samples collected from different locations in China. The solid samples were subjected to NIR. By employing spectral preprocessing and optimizing spectral bands, we established a rapid prediction model for TFC, XO, and AA using partial least squares regression (PLS). To improve the model's performance and eliminate irrelevant variables, competitive adaptive reweighted sampling (CARS) was used to calculate the pretreated full spectrum. Evaluation model indicators included the root mean square error of cross-validation (RMSECV) and determination coefficient (R2) values. The TFC, XO, and AA model, combining optimal spectral preprocessing and spectral bands, had RMSECV values of 0.139, 0.117, and 0.121, with RCV2 values exceeding 0.92. The root mean square error of prediction (RMSEP) for the TFC, XO, and AA model on the prediction set was 0.301, 0.213, and 0.149, with determination coefficient (RP2) values of 0.915, 0.933, and 0.926. The results showed a strong correlation between NIR with TFC, XO, and AA in P. mume. Therefore, the established model was effective, suitable for the rapid quantification of TFC, XO, and AA. The prediction method is simple and rapid, and can be extended to the study of medicinal plant content and activity.


Subject(s)
Antioxidants , Flavonoids , Prunus , Spectroscopy, Near-Infrared , Xanthine Oxidase , Spectroscopy, Near-Infrared/methods , Flavonoids/analysis , Prunus/chemistry , Xanthine Oxidase/antagonists & inhibitors , Antioxidants/analysis , Least-Squares Analysis , Enzyme Inhibitors/analysis , Enzyme Inhibitors/pharmacology , China
3.
Acta Pharmacol Sin ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719954

ABSTRACT

Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.

4.
Nat Commun ; 15(1): 3455, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658548

ABSTRACT

Understanding how distinct functional circuits are coordinated to fine-tune mood and behavior is of fundamental importance. Here, we observe that within the dense projections from basolateral amygdala (BLA) to bed nucleus of stria terminalis (BNST), there are two functionally opposing pathways orchestrated to enable contextually appropriate expression of anxiety-like behaviors in male mice. Specifically, the anterior BLA neurons predominantly innervate the anterodorsal BNST (adBNST), while their posterior counterparts send massive fibers to oval BNST (ovBNST) with moderate to adBNST. Optogenetic activation of the anterior and posterior BLA inputs oppositely regulated the activity of adBNST neurons and anxiety-like behaviors, via disengaging and engaging the inhibitory ovBNST-to-adBNST microcircuit, respectively. Importantly, the two pathways exhibited synchronized but opposite responses to both anxiolytic and anxiogenic stimuli, partially due to their mutual inhibition within BLA and the different inputs they receive. These findings reveal synergistic interactions between two BLA-to-BNST pathways for appropriate anxiety expression with ongoing environmental demands.


Subject(s)
Anxiety , Basolateral Nuclear Complex , Optogenetics , Septal Nuclei , Animals , Male , Septal Nuclei/physiology , Septal Nuclei/metabolism , Basolateral Nuclear Complex/metabolism , Basolateral Nuclear Complex/physiology , Mice , Behavior, Animal/physiology , Neurons/metabolism , Neurons/physiology , Mice, Inbred C57BL , Neural Pathways/physiology
5.
J Am Chem Soc ; 146(12): 8206-8215, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38412246

ABSTRACT

Spin-crossover (SCO) materials exhibit remarkable potential as bistable switches in molecular devices. However, the spin transition temperatures (Tc) of known compounds are unable to cover the entire ambient temperature spectrum, largely limiting their practical utility. This study reports an exemplary two-dimensional SCO solid solution system, [FeIII(H0.5LCl)2-2x(H0.5LF)2x]·H2O (H0.5LX = 5-X-2-hydroxybenzylidene-hydrazinecarbothioamide, X = F or Cl, x = 0 to 1), in which the adjacent layers are adhered via hydrogen bonding. Notably, the Tc of this system can be fine-tuned across 90 K (227-316 K) in a linear manner by modulating the fraction x of the LF ligand. Elevating x results in strengthened hydrogen bonding between adjacent layers, which leads to enhanced intermolecular interactions between adjacent SCO molecules. Single-crystal diffraction analysis and periodic density functional theory calculations revealed that such a special kind of alteration in interlayer interactions strengthens the FeIIIN2O2S2 ligand field and corresponding SCO energy barrier, consequently resulting in increased Tc. This work provides a new pathway for tuning the Tc of SCO materials through delicate manipulation of molecular interactions, which could expand the application of bistable molecular solids to a much wider temperature regime.

6.
Br J Pharmacol ; 181(5): 640-658, 2024 03.
Article in English | MEDLINE | ID: mdl-37702564

ABSTRACT

BACKGROUND AND PURPOSE: Atherosclerosis induced by cyclosporine A (CsA), an inhibitor of the calcineurin/nuclear factor of activated T cells (NFAT) pathway, is a major concern after organ transplantation. However, the atherosclerotic mechanisms of CsA remain obscure. We previously demonstrated that calcineurin/NFAT signalling inhibition contributes to atherogenesis via suppressing microRNA-204 (miR-204) transcription. We therefore hypothesised that miR-204 is involved in the development of CsA-induced atherosclerosis. EXPERIMENTAL APPROACH: ApoE-/- mice with macrophage-miR-204 overexpression were generated to determine the effects of miR-204 on CsA-induced atherosclerosis. Luciferase reporter assays and chromatin immunoprecipitation sequencing were performed to explore the targets mediating miR-204 effects. KEY RESULTS: CsA alone did not significantly affect atherosclerotic lesions or serum lipid levels. However, it exacerbated high-fat diet-induced atherosclerosis and hyperlipidemia in C57BL/6J and ApoE-/- mice, respectively. miR-204 levels decreased in circulating monocytes and plaque lesions during CsA-induced atherosclerosis. The upregulation of miR-204 in macrophages inhibited CsA-induced atherosclerotic plaque formation but did not affect serum lipid levels. miR-204 limited the CsA-induced foam cell formation by reducing the expression of the scavenger receptors SR-BII and CD36. SR-BII was post-transcriptionally regulated by mature miR-204-5p via 3'-UTR targeting. Additionally, nuclear-localised miR-204-3p prevented the CsA-induced binding of Ago2 to the CD36 promoter, suppressing CD36 transcription. SR-BII or CD36 expression restoration dampened the beneficial effects of miR-204 on CsA-induced atherosclerosis. CONCLUSION AND IMPLICATIONS: Macrophage miR-204 ameliorates CsA-induced atherosclerosis, suggesting that miR-204 may be a potential target for the prevention and treatment of CsA-related atherosclerotic side effects.


Subject(s)
Atherosclerosis , MicroRNAs , Plaque, Atherosclerotic , Animals , Mice , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/chemically induced , Atherosclerosis/genetics , Calcineurin/metabolism , CD36 Antigens/metabolism , Cyclosporine/adverse effects , Cyclosporine/metabolism , Lipids , Macrophages , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Plaque, Atherosclerotic/chemically induced , Plaque, Atherosclerotic/metabolism
7.
Neurobiol Dis ; 188: 106346, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37931884

ABSTRACT

Sprouting of mossy fibers, one of the most consistent findings in tissue from patients with mesial temporal lobe epilepsy, exhibits several uncommon axonal growth features and has been considered a paradigmatic example of circuit plasticity that occurs in the adult brain. Clarifying the mechanisms responsible may provide new insight into epileptogenesis as well as axon misguidance in the central nervous system. Methyl-CpG-binding protein 2 (MeCP2) binds to methylated genomic DNA to regulate a range of physiological functions implicated in neuronal development and adult synaptic plasticity. However, exploring the potential role of MeCP2 in the documented misguidance of axons in the dentate gyrus has not yet been attempted. In this study, a status epilepticus-induced decrease of neuronal MeCP2 was observed in the dentate gyrus (DG). An essential regulatory role of MeCP2 in the development of functional mossy fiber sprouting (MFS) was confirmed through stereotaxic injection of a recombinant adeno-associated virus (AAV) to up- or down-regulate MeCP2 in the dentate neurons. Chromatin immunoprecipitation sequencing (ChIP-seq) was performed to identify the binding profile of native MeCP2 using micro-dissected dentate tissues. In both dentate tissues and HT22 cell lines, we demonstrated that MeCP2 could act as a transcription repressor on miR-682 with the involvement of the DNA methylation mechanism. Further, we found that miR-682 could bind to mRNA of phosphatase and tensin homolog (PTEN) in a sequence specific manner, thus leading to the suppression of PTEN and excessive activation of mTOR. This study therefore presents a novel epigenetic mechanism by identifying MeCP2/miR-682/PTEN/mTOR as an essential signal pathway in regulating the formation of MFS in the temporal lobe epileptic (TLE) mice. SIGNIFICANCE STATEMENT: Understanding the mechanisms that regulate axon guidance is important for a better comprehension of neural disorders. Sprouting of mossy fibers, one of the most consistent findings in patients with mesial temporal lobe epilepsy, has been considered a paradigmatic example of circuit plasticity in the adult brain. Although abnormal regulation of DNA methylation has been observed in both experimental rodents and humans with epilepsy, the potential role of DNA methylation in this well-documented example of sprouting of dentate axon remains elusive. This study demonstrates an essential role of methyl-CpG-binding protein 2 in the formation of mossy fiber sprouting. The underlying signal pathway has been also identified. The data hence provide new insight into epileptogenesis as well as axon misguidance in the central nervous system.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , MicroRNAs , Animals , Humans , Mice , Dentate Gyrus/metabolism , Epilepsy, Temporal Lobe/metabolism , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , MicroRNAs/metabolism , Mossy Fibers, Hippocampal , TOR Serine-Threonine Kinases/metabolism
8.
J Agric Food Chem ; 71(25): 9847-9855, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37326390

ABSTRACT

Odd chain fatty acids (OCFAs) are high-value-added compounds with great application in the field of food and medicine. As an oleaginous microorganism, Schizochytrium sp. has the potential to produce OCFAs efficiently. Propionyl-CoA is used as a precursor to synthesize OCFAs through the fatty acid synthetase (FAS) pathway, so its flow direction determines the yield of OCFAs. Here, different substrates were assessed to promote propionyl-CoA supply for OCFA accumulation. Moreover, the methylmalonyl-CoA mutase (MCM) was identified as the key gene responsible for propionyl-CoA consumption, which promotes the propionyl-CoA to enter into the tricarboxylic acid cycle rather than the FAS pathway. As one of the classic B12-dependent enzymes, the activity of MCM can be inhibited in the absence of B12. As expected, the OCFA accumulation was greatly increased. However, the removal of B12 caused growth limitation. Furthermore, the MCM was knocked out to block the consumption of propionyl-CoA and to maintain cell growth; results showed that the engineered strain achieved the OCFAs titer of 2.82 g/L, which is 5.76-fold that of wild type. Last, a fed-batch co-feeding strategy was developed, resulting in the highest reported OCFAs titer of 6.82 g/L. This study provides guidance for the microbial production of OCFAs.


Subject(s)
Acyl Coenzyme A , Fatty Acids , Fatty Acids/metabolism , Acyl Coenzyme A/metabolism , Citric Acid Cycle
9.
Biotechnol J ; 18(8): e2300052, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37128672

ABSTRACT

In order to find a more effective way to obtain docosahexaenoic acid (DHA) rich lipid from Schizochytrium sp., a widespread propionate wastewater (PW) is used. PW is a common industrial and domestic wastewater, and transforming it into valuable products is a potential treatment method. Schizochytrium sp. is a rapidly growing oleaginous organism, which has been used commercially for DHA production. Herein, PW is completely used for DHA production by Schizochytrium sp. by genetic engineering and fermentation optimization, which can alleviate the increasingly tense demand for water resources and environmental pollution caused by industrial wastewater. Firstly, the methylmalonyl-CoA mutase (MCM) was overexpressed in Schizochytrium sp. to enhance the metabolism of propionate, then the engineered strain of overexpressed MCM (OMCM) can effectively use propionate. Then, the effects of PW with different concentration of propionate were investigated, and results showed that OMCM can completely replace clean water with PW containing 5 g L-1 propionate. Furthermore, in the fed-batch fermentation, the OMCM obtained the highest biomass of 113.4 g L-1 and lipid yield of 64.4 g L-1 in PW condition, which is 26.8% and 51.7% higher than that of wild type (WT) in PW condition. Moreover, to verify why overexpression of MCM can promote DHA and lipid accumulation, the comparative metabolomics, ATP production level, the antioxidant system, and the transcription of key genes were investigated. Results showed that ATP induced by PW condition could drive the synthesis of DHA, and remarkably improve the antioxidant capacity of cells by enhancing the carotenoids production. Therefore, PW can be used as an effective and economical substrate and water source for Schizochytrium sp. to accumulate biomass and DHA.


Subject(s)
Industrial Microbiology , Propionates , Stramenopiles , Wastewater , Stramenopiles/genetics , Stramenopiles/metabolism , Genetic Engineering , Docosahexaenoic Acids/genetics , Docosahexaenoic Acids/metabolism , Wastewater/chemistry , Wastewater/microbiology , Propionates/metabolism , Transcriptome , Genes, Bacterial/genetics
10.
Int J Biol Macromol ; 239: 124293, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37011745

ABSTRACT

Accumulating evidence has demonstrated that polysaccharides derived from edible fungi have lipid-lowering effects in mice. However, the lipid metabolism mechanisms in mice and humans are different. We have previously elucidated the structural characteristics of the alkali-extracted polysaccharide CM3-SII obtained from Cordyceps militaris. This study aimed to investigate whether CM3-SII could ameliorate hyperlipidemia in a heterozygous low-density lipoprotein receptor (LDLR)-deficient hamster model of hyperlipidemia. Our data demonstrated that CM3-SII significantly decreased total plasma cholesterol, non-high-density lipoprotein cholesterol, and triglyceride levels in heterozygous LDLR-deficient hamsters. Unlike ezetimibe, CM3-SII could enhance the concentration of plasma apolipoprotein A1 and the expression of liver X receptor α/ATP-binding cassette transporter G8 mRNA pathway and suppress the expression of Niemann-Pick C1-like 1, which help to reduce cholesterol levels further. Moreover, the results of molecular docking analysis demonstrated that CM3-SII could directly bind to Niemann-Pick C1-like 1 with high affinity. The triglyceride-lowering mechanisms of CM3-SII were related to its downregulation of sterol regulatory element-binding protein 1c and upregulation of peroxisome proliferator-activated receptor α. Importantly, CM3-SII increased the abundance of Actinobacteria and Faecalibaculum and the ratio of Bacteroidetes/Firmicutes. Thus, CM3-SII attenuated hyperlipidemia by modulating the expression of multiple molecules involved in lipid metabolism and the gut microbiota.


Subject(s)
Cordyceps , Gastrointestinal Microbiome , Hyperlipidemias , Humans , Cricetinae , Mice , Animals , Hyperlipidemias/metabolism , PPAR alpha/metabolism , Cordyceps/metabolism , Molecular Docking Simulation , Cholesterol/metabolism , Triglycerides/metabolism , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/metabolism , Liver/metabolism , Membrane Transport Proteins/metabolism
11.
J Geriatr Cardiol ; 20(1): 68-82, 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36875162

ABSTRACT

BACKGROUND: Saffron (Crocus sativus L.) has been traditionally used as food, spice, and medicine. Crocetin (CRT), as main bioactive component of saffron, has accumulated pieces of beneficial evidence on myocardial ischemia/reperfusion (I/R) injury. However, the mechanisms are poorly explored. This study aims to investigate the effects of CRT on H9c2 cells under hypoxia/reoxygenation (H/R) and elucidated the possible underlying mechanism. METHODS: H/R attack was performed on H9c2 cells. Cell counting kit-8 was used to detect the cell viability. Cell samples and culture supernatants were evaluated via commercial kits to measure the superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and cellular adenosine triphosphate (ATP) content. Various fluorescent probes were used to detect cell apoptosis, intracellular and mitochondrial reactive oxygen species (ROS) content, mitochondrial morphology, mitochondrial membrane potential (MMP), and mitochondrial permeability transition pore (mPTP) opening. Proteins were evaluated via Western Blot. RESULTS: H/R exposure severely reduced cell viability and increased LDH leakage. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) suppression and dynamin-related protein 1 (Drp1) activation were coincided with excessive mitochondrial fission, mitochondrial permeability transition pore (mPTP) opening and mitochondrial membrane potential (MMP) collapse in H9c2 cells treated with H/R. Mitochondria fragmentation under H/R injury induced ROS over-production, oxidative stress, and cell apoptosis. Notably, CRT treatment significantly prevented mitochondrial fission, mPTP opening, MMP loss, and cell apoptosis. Moreover, CRT sufficiently activated PGC-1α and inactivated Drp1. Interestingly, mitochondrial fission inhibition with mdivi-1 similarly suppressed mitochondrial dysfunction, oxidative stress and cell apoptosis. However, silencing PGC-1α with small interfering RNA (siRNA) abolished the beneficial effects of CRT on H9c2 cells under H/R injury, accompanied with increased Drp1 and p-Drp1ser616 levels. Furthermore, over-expression of PGC-1α with adenovirus transfection replicated the beneficial effects of CRT on H9c2 cells. CONCLUSIONS: Our study identified PGC-1α as a master regulator in H/R-injured H9c2 cells via Drp1-mediated mitochondrial fission. We also presented the evidence that PGC-1α might be a novel target against cardiomyocyte H/R injury. Our data revealed the role of CRT in regulating PGC-1α/Drp1/mitochondrial fission process in H9c2 cells under the burden of H/R attack, and we suggested that modulation of PGC-1α level may provide a therapeutic target for treating cardiac I/R injury.

12.
Ying Yong Sheng Tai Xue Bao ; 34(1): 277-288, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36799404

ABSTRACT

Cyanotoxins produced by the toxic cyanobacteria is a great threat to global freshwater ecosystems, with hepatotoxic microcystins (MCs) as the most widely distributed and harmful ones. MCs have negative impacts on the structure, function and stability of aquatic ecosystems, posing threats to human health. In this study, we reviewed the distribution of MCs in waterbody, sediments, and different groups of aquatic animals. The toxicity mechanisms of MCs were also reviewed. The ecotoxicological effects of MCs on aquatic animals, aquatic and terrestrial plants, human health risk were summarized. Several biological methods about the prevention and control of MCs were mentioned. Many aspects about MCs that need to be further studied were proposed, aiming to provide a scientific basis for risk assessment and management of MCs.


Subject(s)
Cyanobacteria , Microcystins , Animals , Humans , Microcystins/toxicity , Ecosystem , Cyanobacteria Toxins , Fresh Water
13.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(1): 25-30, 2023 Jan 15.
Article in Chinese | MEDLINE | ID: mdl-36655660

ABSTRACT

OBJECTIVES: To investigate the levels of physical growth and neurodevelopment in preterm infants at the corrected age of 18-24 months. METHODS: The physical growth data and neurodevelopment data of 484 preterm infants at corrected age of 18-24 months were prospectively collected by a post-discharge follow-up system for preterm infants. The infants were regularly followed up in Shenzhen Bao'an Maternal and Child Health Hospital Affiliated to Jinan University from April 2018 to December 2021. The neurodevelopment was evaluated by the Children Neuropsychological and Behavioral Scale-Revision 2016. A total of 219 full-term infants served as controls. The infants were divided into groups (extremely preterm, very preterm, moderate late preterm, and full-term) based on gestational age, and the groups were compared in the levels of physical growth and neurodevelopment. RESULTS: Except that the moderate preterm group had a higher length-for-age Z-score than the full-term group (P=0.038), there was no significant difference in physical growth indicators between the preterm groups and the full-term group (P>0.05). Each preterm group had a significantly lower total developmental quotient (DQ) than the full-term group (P<0.05). Except for the social behavior domain, the DQ of other domains in the extremely preterm and very preterm groups was significantly lower than that in the full-term group (P<0.05). The <32 weeks preterm group had a significantly higher incidence rate of global developmental delay than the full-term group (16.7% vs 6.4%, P=0.012), and the incidence rate of global developmental delay tended to increase with the reduction in gestational age (P=0.026). CONCLUSIONS: Preterm infants can catch up with full-term infants in terms of physical growth at the corrected age of 18-24 months, but with a lower neurodevelopmental level than full-term infants. Neurodevelopment monitoring and early intervention should be taken seriously for preterm infants with a gestational age of <32 weeks.


Subject(s)
Aftercare , Infant, Premature , Infant , Child , Infant, Newborn , Humans , Child, Preschool , Patient Discharge , Gestational Age
14.
Ying Yong Sheng Tai Xue Bao ; 33(10): 2853-2861, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36384623

ABSTRACT

The increasingly frequent algal blooms in freshwater have become a major environmental problem in the world. In recent years, algae removal by the biological method is receiving more attention for its eco-friendly characteristics. In this study, we examined the effects of Bellamya aeruginosa, a common macrobenthic snail in eutrophic lakes in China, on the growth and photosynthesis activities of the common algae occurred in freshwater blooms, including cyanobacterium Microcystis aeruginosa, coupled with green algae Chlorella vulgaris and Scenedesmus obliquus. The main aims were to clarify the interactive relationships between B. aeruginosa and algae, and to verify feasibility of using B. aeruginosa as an algal-removing organism. The results showed that B. aeruginosa could feed a large amount of algae cells in a short period after inoculation, and reached the maximal removal rate of toxic and non-toxic M. aeruginosa as well as S. obliquus within 12 hours, which were 73.7%, 73.2%, and 51.1%, respectively. Furthermore, its feeding on C. vulgaris was stronger than on other algae, with the removal rate reaching 99.2% by the end of the experiment. The microcystins produced by the toxic M. aeruginosa accumulated in the body of B. aeruginosa induced the histopathological changes in the liver tissue, and thereby hindered the feeding of B. aeruginosa. In the late stage of the experiment, the photosynthetic activities of the algal cells under each treatment were significantly lower than that in the control, indicating that the feeding of B. aeruginosa damaged algal cells and inhibited their proliferation. In addition, in the mixture of non-toxic M. aeruginosa and S. obliquus, the selective feeding of B. aeruginosa caused the dominance of non-toxic M. aeruginosa to be replaced by S. obliquus. Therefore, B. aeruginosa could inhibit the photosynthesis and reduce the biomass of algae through feeding, and thus would eliminate or mitigate the formation of algal blooms.


Subject(s)
Chlorella vulgaris , Microcystis , Pseudomonas aeruginosa , Plants , Lakes
15.
J Clin Transl Hepatol ; 10(5): 955-964, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36304509

ABSTRACT

The rising global prevalence of metabolic diseases has increased the prevalence of non-alcoholic fatty liver disease (NAFLD), leading to an increase in cases of NAFLD-related hepatocellular carcinoma (HCC). To provide an updated literature review detailing epidemiology, risk factors, pathogenic pathways, and treatment strategies linked to NAFLD-related HCC, we conducted a literature search on PubMed from its inception to December 31, 2021. About 25% of the global population suffers from NAFLD. The annual incidence of HCC among NAFLD patients is approximately 1.8 per 1,000 person-years. Older age, male sex, metabolic comorbidities, unhealthy lifestyle habits (such as smoking and alcohol consumption), physical inactivity, genetic susceptibility, liver fibrosis, and degree of cirrhosis in NAFLD patients are important risk factors for NAFLD-related HCC. Therefore, low-calorie diet, moderate-intensity exercise, treatment of metabolic comorbidities, and cessation of smoking and alcohol are the main measures to prevent NAFLD-related HCC. In addition, all patients with advanced NAFLD-related fibrosis or cirrhosis should be screened for HCC. Immune suppression disorders and changes in the liver microenvironment may be the main pathogenesis of NAFLD-related HCC. Hepatic resection, liver transplantation, ablation, transarterial chemoembolization, radiotherapy, targeted drugs, and immune checkpoint inhibitors are used to treat NAFLD-related HCC. Lenvatinib treatment may lead to better overall survival, while immune checkpoint inhibitors may lead to worse overall survival. Given the specific risk factors for NAFLD-related HCC, primary prevention is key. Moreover, the same treatment may differ substantially in efficacy against NAFLD-related HCC than against HCC of other etiologies.

16.
Medicine (Baltimore) ; 101(8): e28986, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35212311

ABSTRACT

INTRODUCTION: The CXC chemokines are unique cytokines that play a vital role in the progression of many cancers. Association between chemokine (C-X-C motif) receptor 2 (IL8RB) C1208T mutation and cancer risk remains incomprehensive. METHODS: We therefore utilized odds ratios and in silico analysis to explore the relationship of IL8RB polymorphism on risk to cancer. Furthermore, we adopted gene set enrichment analysis to investigate the IL8RB expression in prostate adenocarcinoma. RESULTS: A total of 14 case-control studies combined with 5299 cases and 6899 controls were included in our analysis. We revealed that individuals carrying TT genotype had an 14% increased cancer risk compared with those with TC + colon cancer (CC) genotype (odds ratio [OR] = 1.14, 95% CI = 1.05-1.25, P = .003, I2 = 35.6). Stratification analysis by race showed that East Asians with TT + TC genotype may have a 25% decreased cancer risk compared with control. Stratification analysis by cancer type revealed that individuals with TT genotype were associated with elevated risk of urinary cancer than control. The expression of IL8RB was attenuated in prostate adenocarcinoma. CONCLUSIONS: IL8RB C1208T may be correlated with the risk of cancer, especially prostate adenocarcinoma.


Subject(s)
Adenocarcinoma/genetics , Prostatic Neoplasms/genetics , Receptors, Interleukin-8B/genetics , Case-Control Studies , Genetic Predisposition to Disease , Genotype , Humans , Male , Mutation/genetics , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Risk Factors
17.
Mitochondrial DNA B Resour ; 6(11): 3109-3111, 2021.
Article in English | MEDLINE | ID: mdl-34621991

ABSTRACT

The Lonchodinae (Phasmatodea: Phasmatidae) is rich in insect species with more than 330 species of 40 genera. The phylogenetic relationships within Lonchodinae have been under debate. We successfully sequenced the complete mitogenome of Eurycantha calcarata Lucas, 1869 (Phasmatodea: Lonchodinae) with a length of 16,280 bp, which had the same genes and gene arrangements as those of various published papers on stick insects. The whole mitogenome and control region of E. calcarata had a high AT content of 78.2 and 85.9%, respectively. All PCGs used ATN as the start codon, and most PCGs used TAA/TAG as the stop codons excluding COX2 (T), COX3 (TA), and ND5 (TA). To discuss the phylogeny of Lonchodinae, we reconstructed the phylogenetic relationships of 27 species of Phasmatodea including E. calcarata and two species of Embioptera used as outgroups. In BI and ML trees, the monophyly of Lonchodinae and Necrosciinae was well supported, whereas the monophyly of Clitumninae was not recovered. These results indicated that Lonchodinae was a sister clade to Phylliinae and E. calcarata was a sister clade to Phraortes genus.

18.
Medicine (Baltimore) ; 100(38): e27328, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34559152

ABSTRACT

ABSTRACT: This study compares the efficacy of retroperitoneoscopic ureterolithotomy (RPUL) and ureteroscopic lithotripsy (URL) in the treatment of upper ureteral calculi.The clinical data of 150 patients with upper ureteral calculi who underwent RPUL and 136 patients who underwent URL between January 2014 and October 2019 were retrospectively analyzed. The operation time, postoperative hospital stay, operation success rate, stone clearance rate, and surgical complications were evaluated between the two groups.For the RPUL and URL groups, respectively, the average operation time was 74.5 ±â€Š24.6 minutes and 54.5 ±â€Š13.2 minutes; the postoperative hospital stay was 5.8 ±â€Š1.4 days and 3.2 ±â€Š1.2 days; the operation success rate was 96.0% (144/150) and 85.3% (116/136); the incidence rate of complications was 3.5% (5/144) and 17.5% (18/103); and the stone clearance rate was 100% (144/144) and 88.8% (103/116), which were all statistically significant (P < .05).Both RPUL and URL had the advantages of low trauma and fast recovery rate for patients with upper ureteral calculi. However, patients who underwent RPUL showed higher success and fewer complication rate. RPUL might be a safe and effective laparoscopic method for the treatment of patients with upper ureteral calculi.


Subject(s)
Laparoscopy/statistics & numerical data , Lithotripsy, Laser/statistics & numerical data , Ureterolithiasis/surgery , Ureteroscopy/statistics & numerical data , Adult , Aged , Female , Humans , Laparoscopy/methods , Lasers, Solid-State/therapeutic use , Male , Middle Aged , Retroperitoneal Space/surgery , Retrospective Studies , Ureteroscopy/methods
19.
Insects ; 12(9)2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34564235

ABSTRACT

The order Microcoryphia, commonly known as bristletails, is considered as the most primitive one among living insects. Within this order, two species, Coreamachilis coreanus and C. songi (Machilidae: Machilinae), display the following contrasting reproductive strategies: parthenogenesis occurs in C. coreanus, whereas sexual reproduction is found in C. songi. In the present study, the complete mitogenomes of C. coreanus and C. songi were sequenced to compare their mitogenome structure, analyze relationships within the Microcoryphia, and assess adaptive evolution. The length of the mitogenomes of C. coreanus and C. songi were 15,578 bp and 15,570 bp, respectively, and the gene orders were those of typical insects. A long hairpin structure was found between the ND1 and 16S rRNA genes of both species that seem to be characteristic of Machilinae and Petrobiinae species. Phylogenetic assessment of Coreamachilis was conducted using BI and ML analyses with concatenated nucleotide sequences of the 13 protein-coding genes. The results showed that the monophyly of Machilidae, Machilinae, and Petrobiinae was not supported. The genus Coreamachilis (C. coreanus and C. songi) was a sister clade to Allopsontus helanensis, and then the clade of ((C. coreanus + C. songi) + A. helanensis) was a sister clade to A. baii, which suggests that the monophyly of Allopsontus was not supported. Positive selection analysis of the 13 protein-coding genes failed to reveal any positive selection in C. coreanus or C. songi. The long hairpin structures found in Machilinae and Petrobiinae were highly consistent with the phylogenetic results and could potentially be used as an additional molecular characteristic to further discuss relationships within the Microcoryphia.

20.
Insects ; 12(7)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34357316

ABSTRACT

We determined 15 complete and two nearly complete mitogenomes of Heptageniidae belonging to three subfamilies (Heptageniinae, Rhithrogeninae, and Ecdyonurinae) and six genera (Afronurus, Epeorus, Leucrocuta, Maccaffertium, Stenacron, and Stenonema). Species of Rhithrogeninae and Ecdyonurinae had the same gene rearrangement of CR-I-M-Q-M-ND2, whereas a novel gene rearrangement of CR-I-M-Q-NCR-ND2 was found in Heptageniinae. Non-coding regions (NCRs) of 25-47 bp located between trnA and trnR were observed in all mayflies of Heptageniidae, which may be a synapomorphy for Heptageniidae. Both the BI and ML phylogenetic analyses supported the monophyly of Heptageniidae and its subfamilies (Heptageniinae, Rhithrogeninae, and Ecdyonurinae). The phylogenetic results combined with gene rearrangements and NCR locations confirmed the relationship of the subfamilies as (Heptageniinae + (Rhithrogeninae + Ecdyonurinae)). To assess the effects of low-temperature stress on Heptageniidae species from Ottawa, Canada, we found 27 positive selection sites in eight protein-coding genes (PCGs) using the branch-site model. The selection pressure analyses suggested that mitochondrial PCGs underwent positive selection to meet the energy requirements under low-temperature stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...