Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Front Cell Dev Biol ; 12: 1396890, 2024.
Article in English | MEDLINE | ID: mdl-38983788

ABSTRACT

Background: The Juan-Bi decoction (JBD) is a classic traditional Chinese medicines (TCMs) prescription for the treatment of rheumatoid arthritis (RA). However, the active compounds of the JBD in RA treatment remain unclear. Aim: The aim of this study is to screen effective compounds in the JBD for RA treatment using systems pharmacology and experimental approaches. Method: Botanical drugs and compounds in the JBD were acquired from multiple public TCM databases. All compounds were initially screened using absorption, distribution, metabolism, excretion, and toxicity (ADMET) and physicochemical properties, and then a target prediction was performed. RA pathological genes were acquired from the DisGeNet database. Potential active compounds were screened by constructing a compound-target-pathogenic gene (C-T-P) network and calculating the cumulative interaction intensity of the compounds on pathogenic genes. The effectiveness of the compounds was verified using lipopolysaccharide (LPS)-induced RAW.264.7 cells and collagen-induced arthritis (CIA) mouse models. Results: We screened 15 potentially active compounds in the JBD for RA treatment. These compounds primarily act on multiple metabolic pathways, immune pathways, and signaling transduction pathways. Furthermore, in vivo and in vitro experiments showed that bornyl acetate (BAC) alleviated joint damage, and inflammatory cells infiltrated and facilitated a smooth cartilage surface via the suppression of the steroid hormone biosynthesis. Conclusion: We screened potential compounds in the JBD for the treatment of RA using systems pharmacology approaches. In particular, BAC had an anti-rheumatic effect, and future studies are required to elucidate the underlying mechanisms.

2.
Heliyon ; 10(11): e31709, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845903

ABSTRACT

To improve the effectiveness of external stakeholder risks (ESRs) management in project portfolios (PPs), a portfolio-wide risk response approach is required. However, current research is inadequate to effectively identify response strategies for ESRs, which brings challenges to managing ESRs in PPs. In this context, the purpose of this study is to select an appropriate combination of response strategies for ESRs by considering interactions among ESRs, projects, and response strategies in the PP. A Bayesian influence diagram (BID) coupled with a multi-objective optimization model is deemed suitable for this context. Firstly, a probability-sensitivity matrix is established to determine the key ESRs. Then, a BID is constructed to calculate the expected values of different combinations of response strategies. Finally, integrating stakeholder satisfaction and strategy cost, an optimization model for risk response strategy selection is established to obtain candidate combinations. By combining expected values and candidate combinations, the optimal strategy combination is selected. The proposed model comprehensively considers and evaluates the interactions between risks, projects, and risk responses. This enhances the desirability of expected outcomes and reduces project execution costs.

3.
Biomed Pharmacother ; 177: 116898, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38878635

ABSTRACT

Liver disease affects millions of people in the world, and China has the highest prevalence of liver disease in the world. Small ubiquitin-related modifier (SUMO) modification is a highly conserved post-translational modification of proteins. They are widely expressed in a variety of tissues, including the heart, liver, kidney and lung. SUMOylation of protein plays a key role in the occurrence and development of liver disease. Therefore, this study reviewed the effects of SUMO protein on non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), viral hepatitis, hepatic fibrosis (HF), hepatocellular carcinoma (HCC), and other liver diseases to provide novel strategies for targeted treatment of liver disease.

4.
Genomics ; 116(5): 110892, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944356

ABSTRACT

BACKGROUND: The lack of specific molecular targets and the rapid spread lead to a worse prognosis of triple-negative breast cancer (TNBC). Therefore, identifying new therapeutic and prognostic biomarkers helps to develop effective treatment strategies for TNBC. METHODS: Through preliminary bioinformatics analysis, FOXCUT was found to be significantly overexpressed in breast cancer, especially in TNBC. Tissue samples were collected from 15 TNBC patients, and qRT-PCR was employed to validate the expression of FOXCUT in both TNBC patient tissues and TNBC cell lines. We also carried out the GSEA analysis and KEGG enrichment analysis of FOXCUT. Additionally, the effects of FOXCUT knockdown on TNBC cell malignant behaviors, and aerobic glycolysis were assessed by methods including CCK-8, Transwell, western blot, and Seahorse XF 96 analyses. Moreover, utilizing databases predicting interactions between ceRNAs, corresponding lncRNA-miRNA binding relationships, and miRNA-mRNA interactions were predicted. These predictions were subsequently validated through RNA immunoprecipitation and dual-luciferase reporter assays. RESULTS: FOXCUT exhibited high expression in both TNBC tissues and cell lines, fostering cell malignant behaviors and glycolysis. FOXCUT was found to sponge miR-337-3p, while miR-337-3p negatively regulated the expression of ANP32E. Consequently, FOXCUT ultimately facilitated the malignant phenotype of TNBC by upregulating ANP32E expression. CONCLUSION: This study elucidated the role of FOXCUT in elevating aerobic glycolysis levels in TNBC and driving malignant cancer cell development via the miR-337-3p/ANP32E regulatory axis.

5.
Eur J Med Chem ; 275: 116581, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38870831

ABSTRACT

Nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) constitutes an essential inflammasome sensor protein, pivotal in the orchestration of innate immunity. Given its paramount role, NLRP3 has recently emerged as an enticing therapeutic target for disorders associated with inflammation. In this study, we embarked on the design and synthesis of two series of compounds, endowed with the capacity to induce NLRP3 degradation via autophagy-tethering compounds (ATTECs)-an innovative targeted protein degradation technology. Notably, MC-ND-18 emerged as the most potent agent for effectuating NLRP3 degradation through autophagic mechanisms and concurrently exhibited marked anti-inflammatory efficacy in mice model of dextran sulfate sodium (DSS)-induced colitis. Consequently, we have successfully developed a pioneering NLRP3 protein degrader, offering a novel therapeutic avenue for ameliorating NLRP3-associated pathologies.


Subject(s)
Autophagy , Dextran Sulfate , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Animals , Autophagy/drug effects , Mice , Humans , Molecular Structure , Structure-Activity Relationship , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Immunotherapy , Drug Discovery , Dose-Response Relationship, Drug , Mice, Inbred C57BL , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , Proteolysis/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis
6.
J Med Chem ; 67(9): 7431-7442, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38664896

ABSTRACT

Since hydrogen sulfide (H2S) is an important endogenous gaseous mediator, therapeutic manipulation of H2S is promising for anticancer treatment. In this work, we develop a novel theranostic nanoplatform with H2S-specific and photocontrolled synergistic activation for imaging-guided H2S depletion and downregulation along with promoted photothermal therapy. Such a nanoplatform is fabricated by integration of a H2S-responsive molecule probe that can generate a cystathionine-ß-synthase (CBS) inhibitor AOAA and a photothermal transducer into an NIR-light-responsive container. Our nanoplatform can turn on NIR fluorescence specifically in H2S-rich cancers, guiding further laser irradiation. Furthermore, prominent conversion of photoenergy into heat guarantees special container melting with controllable AOAA release for H2S-level downregulation. This smart regulation of the endogenous H2S level amplifies the PTT therapeutic effect, successfully suppressing colorectal tumor in living mice under NIR fluorescence imaging guidance. Thus, we believe that this nanoplatform may provide a powerful tool toward H2S-concerned cancer treatment with an optimized diagnostic and therapeutic effect.


Subject(s)
Colorectal Neoplasms , Down-Regulation , Hydrogen Sulfide , Photothermal Therapy , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/chemistry , Animals , Photothermal Therapy/methods , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/therapy , Colorectal Neoplasms/pathology , Humans , Mice , Down-Regulation/drug effects , Cystathionine beta-Synthase/metabolism , Cystathionine beta-Synthase/antagonists & inhibitors , Optical Imaging , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Mice, Inbred BALB C , Mice, Nude , Nanoparticles/chemistry , Infrared Rays , Cell Line, Tumor , Theranostic Nanomedicine/methods
7.
J Hematol Oncol ; 17(1): 1, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38178200

ABSTRACT

Antibody-drug conjugates (ADCs) represent an important class of cancer therapies that have revolutionized the treatment paradigm of solid tumors. To date, many ongoing studies of ADC combinations with a variety of anticancer drugs, encompassing chemotherapy, molecularly targeted agents, and immunotherapy, are being rigorously conducted in both preclinical studies and clinical trial settings. Nevertheless, combination therapy does not always guarantee a synergistic or additive effect and may entail overlapping toxicity risks. Therefore, understanding the current status and underlying mechanisms of ADC combination therapy is urgently required. This comprehensive review analyzes existing evidence concerning the additive or synergistic effect of ADCs with other classes of oncology medicines. Here, we discuss the biological mechanisms of different ADC combination therapy strategies, provide prominent examples, and assess their benefits and challenges. Finally, we discuss future opportunities for ADC combination therapy in clinical practice.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Neoplasms , Humans , Immunoconjugates/therapeutic use , Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Immunotherapy
8.
Cancer ; 130(S8): 1415-1423, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38079306

ABSTRACT

BACKGROUND: Immune-checkpoint blockade (ICB) therapy shows promise for treating aggressive triple-negative breast cancer (TNBC). However, only some patients benefit from ICB, revealing an urgent need for identifying novel strategies for sensitizing patients to ICB. Previously, the authors demonstrated that type-I protein arginine methyltransferases (PRMTs) regulated antiviral innate-immune responses in TNBC by altering RNA splicing. This study aimed to explore the effects of targeting type-I PRMTs on the tumor microenvironment (TME) and the efficacy of ICB therapy against TNBC. METHODS: Single-cell transcriptomic analysis was performed to investigate the effects of type-I PRMT inhibition on the TME, especially T-cell subsets. Single-cell T-cell receptor sequencing was performed to analyze the diversity and dynamics of the T-cell repertoire. A syngeneic murine model of TNBC was used to evaluate the therapeutic efficacy and immune memory effect of combining a type-I PRMT inhibitor (MS023) with an anti-programmed cell death protein 1 (PD-1) antibody. RESULTS: Type-I PRMT inhibition combined with anti-PD-1 therapy reduced tumor growth. Mechanistically, type-I PRMT inhibition reshaped the TME. Increased CD8 T-cell infiltration was verified using flow cytometry. Increased clonotypes and clonal diversity were also observed after MS023 treatment, which contributed to immune memory following combination treatment. CONCLUSIONS: Targeting type-I PRMT can potentially improve immunotherapeutic efficacies in patients with TNBC. By enhancing the tumor immunogenicity and promoting a more favorable immune microenvironment, this combined approach may enable more patients with TNBC to benefit from immunotherapies.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Programmed Cell Death 1 Receptor , Protein-Arginine N-Methyltransferases/genetics , Immunotherapy , Cell Death , Tumor Microenvironment
9.
Small ; 20(22): e2309529, 2024 May.
Article in English | MEDLINE | ID: mdl-38100303

ABSTRACT

Carbon monoxide shows great therapeutic potential in anti-cancer. In particular, the construction of multifunctional CO delivery systems can promote the precise delivery of CO and achieve ideal therapeutic effects, but there are still great challenges in design. In this work, a RSS and ROS sequentially activated CO delivery system is developed for boosting NIR imaging-guided on-demand photodynamic therapy. This designed system is composed of a CO releaser (BOD-CO) and a photosensitizer (BOD-I). BOD-CO can be specifically activated by hydrogen sulfide with simultaneous release of CO donor and NIR fluorescence that can identify H2S-rich tumors and guide light therapy, also depleting H2S in the process. Moreover, BOD-I generates 1O2 under long-wavelength light irradiation, enabling both PDT and precise local release of CO via a photooxidation mechanism. Such sequential activation of CO release by RSS and ROS ensured the safety and controllability of CO delivery, and effectively avoided leakage during delivery. Importantly, cytotoxicity and in vivo studies reveal that the release of CO combined with the depletion of endogenous H2S amplified PDT, achieving ideal anticancer results. It is believed that such theranostic nanoplatform can provide a novel strategy for the precise CO delivery and combined therapy involved in gas therapy and PDT.


Subject(s)
Carbon Monoxide , Photochemotherapy , Reactive Oxygen Species , Photochemotherapy/methods , Carbon Monoxide/chemistry , Reactive Oxygen Species/metabolism , Humans , Animals , Cell Line, Tumor , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Mice , Infrared Rays , Hydrogen Sulfide/chemistry
10.
Clin Cancer Res ; 30(5): 984-997, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38113039

ABSTRACT

PURPOSE: Antibody-drug conjugate (ADC) has had a transformative effect on the treatment of many solid tumors, yet it remains unclear how ADCs exert bystander activity in the tumor microenvironment. EXPERIMENTAL DESIGN: Here, we directly visualized and spatiotemporally quantified the intratumor biodistribution and pharmacokinetics of different ADC components by developing dual-labeled fluorescent probes. RESULTS: Mechanistically, we found that tumor penetration of ADCs is distinctly affected by their ability to breach the binding site barrier (BSB) in perivascular regions of tumor vasculature, and bystander activity of ADC can only partially breach BSB. Furthermore, bystander activity of ADCs can work in synergy with coadministration of their parental antibodies, leading to fully bypassing BSBs and enhancing tumor penetration via a two-step process. CONCLUSIONS: These promising preclinical data allowed us to initiate a phase I/II clinical study of coadministration of RC48 and trastuzumab in patients with malignant stomach cancer to further evaluate this treatment strategy in humans.


Subject(s)
Cancer Vaccines , Immunoconjugates , Stomach Neoplasms , Humans , Antibodies , Binding Sites , Immunoconjugates/pharmacology , Stomach Neoplasms/drug therapy , Tissue Distribution , Tumor Microenvironment
11.
J Med Chem ; 67(1): 433-449, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38112492

ABSTRACT

Proprotein convertase subtilisin/kexin type-9 (PCSK9), a secreted protein that is synthesized and spontaneously cleaved in the endoplasmic reticulum, has become a hot lipid-lowering target chased by pharmaceutical companies in recent years. Autophagosome-tethering compounds (ATTECs) represent a new strategy to degrade targeted biomolecules. Here, we designed and synthesized PCSK9·ATTECs that are capable of lowering PCSK9 levels via autophagy in vivo, providing the first report of the degradation of a secreted protein by ATTECs. OY3, one of the PCSK9·ATTECs synthesized, shows greater potency to reduce plasma low-density lipoprotein cholesterol (LDL-C) levels and improve atherosclerosis symptoms than treatment with the same dose of simvastatin. OY3 also significantly reduces the high expression of PCSK9 caused by simvastatin administration in atherosclerosis model mice and subsequently increases the level of low-density lipoprotein receptor, promoting simvastatin to clear plasma LDL-C and alleviate atherosclerosis symptoms. Thus, we developed a new candidate compound to treat atherosclerosis that could also promote statin therapy.


Subject(s)
Atherosclerosis , Proprotein Convertase 9 , Mice , Animals , Proprotein Convertase 9/metabolism , Cholesterol, LDL/metabolism , Cholesterol, LDL/therapeutic use , Simvastatin/pharmacology , Simvastatin/therapeutic use , Receptors, LDL/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Autophagy
12.
Nat Commun ; 14(1): 7758, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012202

ABSTRACT

Formic acid (FA) has emerged as a promising one-carbon feedstock for biorefinery. However, developing efficient microbial hosts for economically competitive FA utilization remains a grand challenge. Here, we discover that the bacterium Vibrio natriegens has exceptional FA tolerance and metabolic capacity natively. This bacterium is remodeled by rewiring the serine cycle and the TCA cycle, resulting in a non-native closed loop (S-TCA) which as a powerful metabolic sink, in combination with laboratory evolution, enables rapid emergence of synthetic strains with significantly improved FA-utilizing ability. Further introduction of a foreign indigoidine-forming pathway into the synthetic V. natriegens strain leads to the production of 29.0 g · L-1 indigoidine and consumption of 165.3 g · L-1 formate within 72 h, achieving a formate consumption rate of 2.3 g · L-1 · h-1. This work provides an important microbial chassis as well as design rules to develop industrially viable microorganisms for FA biorefinery.


Subject(s)
Vibrio , Vibrio/metabolism , Formates/metabolism , Carbon/metabolism
13.
Folia Histochem Cytobiol ; 61(3): 172-182, 2023.
Article in English | MEDLINE | ID: mdl-37787036

ABSTRACT

INTRODUCTION: Sonodynamic therapy (SDT), a promising non-invasive therapeutic modality, has attracted increasing attention in the treatment of pancreatic cancer (PC). At present, the role of autophagy in SDT of PC remains unclear. This study aims to explore the role of autophagy in SDT of PC and its effect on apoptosis of PC cells. MATERIAL AND METHODS: PC cells (Capan-1 and BxPC-3) underwent incubation with 5-aminolevulinic acid (5-ALA) or/and ultrasound (US) exposure (control, 5-ALA, US, and SDT groups), followed by measurement of cell apoptosis and autophagy. Specifically, cell viability, apoptosis, and the expression of apoptosis-related proteins (cleaved Caspase-3, Bax, and Bcl-2) were measured using CCK-8 assay, flow cytometry, and western blot analysis, respectively. The mitochondrial morphology was observed with the transmission electron microscopy, accompanied by the detection of autophagosome marker (LC3) co-located with Mito and the protein expression of LC3II/I. Before SDT treatment, the autophagy inhibitor 3-MA and the apoptosis inhibitor z-VAD were respectively added to PC cell cultures to evaluate the effects of autophagy inhibition on apoptosis and apoptosis inhibition on autophagy in PC cells. RESULTS: Compared with the control group, cell viability was inhibited and cell apoptosis and autophagy were enhanced in the SDT group, while cell viability, autophagy, and apoptosis in the 5-ALA and US groups were not significantly changed. Moreover, 3-MA treatment inhibited autophagy and accelerated apoptosis, whereas z-VAD treatment reduced apoptosis but did not affect autophagy in PC cells. CONCLUSIONS: Autophagy was activated in SDT-treated PC cells, and inhibition of autophagy promoted cell apoptosis in PC cells.


Subject(s)
Pancreatic Neoplasms , Ultrasonic Therapy , Humans , Apoptosis , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Autophagy , Apoptosis Regulatory Proteins , Pancreatic Neoplasms/therapy , Cell Line, Tumor
14.
J Mater Chem B ; 11(38): 9300-9310, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37727911

ABSTRACT

The problems of bacterial resistance and high oxidation level severely limit wound healing. Therefore, we constructed a multifunctional platform of chitosan quaternary ammonium salts (QCS)/polyvinyl alcohol (PVA)/polyethylene glycol (PEG) hydrogels (QPP) loaded with ZnO@CeO2 (ZC-QPP). Firstly, the hydrogel was co-cross-linked by hydrogen and borate ester bonds, which allows easy adherence to a tissue surface for offering a protective barrier and moist environment for wounds. The chitosan quaternary ammonium salts due to their amino groups have inherent antibacterial properties to induce bacterial death. In response to the acidic conditions of the bacterial infection microenvironment, the borate ester bonds in the QPP hydrogel break and the ZC NCs dispersed in the hydrogel are released. The gradual dissociation of Zn2+ under acidic conditions can directly damage bacterial membranes. The wound site of bacterial infection always causes overexpression of reactive oxygen species (ROS) levels, often leading to inflammation and preventing rapid wound repair. CeO2 can eliminate excess ROS to reduce the inflammatory response. From in vitro and in vivo results, the high biosafety of the ZC-QPP hydrogel has demonstrated excellent antibacterial and antioxidant performance to enhance wound healing. Therefore, the ZC-QPP hydrogel opens a method to develop multifunctional synergistic therapeutic platforms combining enzyme-like nanomaterials with hydrogels for synergistic antibacterial and antioxidant treatment to promote wound healing.

15.
ACS Appl Mater Interfaces ; 15(40): 47669-47681, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37755336

ABSTRACT

Metasurfaces have recently experienced revolutionary progress in sensing and super-resolution imaging fields, mainly due to their manipulation of electromagnetic waves on subwavelength scales. However, on the one hand, the addition of metasurfaces can multiply the complexity of retrieving target information from detected electromagnetic fields. On the other hand, many existing studies utilize deep learning methods to provide compelling tools for electromagnetic problems but mainly concentrate on resolving one single function, limiting their versatilities. In this work, a multifunctional deep learning network is demonstrated to reconstruct diverse target information in a metasurface-target interactive system. First, a preliminary experiment verifies that the metasurface-involved scenario can tolerate the system noises. Then, the captured electric field distributions are fed into the multifunctional network, which can not only accurately sense the quantity and relative permittivity of targets but also generate super-resolution images precisely. The deep learning network, thus, paves an alternative way to recover the targets' information in metasurface-target interactive systems, accelerating the progression of target sensing and superimaging areas. Besides, another new network that allows forward electromagnetic prediction is also proposed and demonstrated. To sum up, the deep learning methodology may hold promise for inverse reconstructions or forward predictions in many electromagnetic scenarios.

16.
Angew Chem Int Ed Engl ; 62(39): e202306691, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37455257

ABSTRACT

Life-like hierarchical architecture shows great potential for advancing intelligent biosensing, but modular expansion of its sensitivity and functionality remains a challenge. Drawing inspiration from intracellular liquid-liquid phase separation, we discovered that a DNA-encoded artificial cell with a liquid core (LAC) can enhance peroxidase-like activity of Hemin and its DNA G-quadruplex aptamer complex (DGAH) without substrate-selectivity, unlike its gelled core (GAC) counterpart. The LAC is easily engineered as an ultrasensitive biosensing system, benefiting from DNA's high programmability and unique signal amplification capability mediated by liquid-liquid phase separation. As proof of concept, its versatility was successfully demonstrated by coupling with two molecular recognition elements to monitor tumor-related microRNA and profile cancer cell phenotypes. This scalable design philosophy offers new insights into the design of next generation of artificial cells-based biosensors.


Subject(s)
Aptamers, Nucleotide , Artificial Cells , Biosensing Techniques , DNA, Catalytic , G-Quadruplexes , MicroRNAs , Neoplasms , Humans , DNA/genetics , Hemin , DNA, Catalytic/metabolism
17.
J Appl Toxicol ; 43(11): 1702-1718, 2023 11.
Article in English | MEDLINE | ID: mdl-37393915

ABSTRACT

Emodin has been demonstrated to possess multiple pharmacological activities. However, emodin has also been reported to induce nephrotoxicity at high doses and with long-term use, and the underlying mechanism has not been fully disclosed. The current study aimed to investigate the roles of oxidative stress and ferroptosis in emodin-induced kidney toxicity. Mice were intraperitoneally treated with emodin, and NRK-52E cells were exposed to emodin in the presence or absence of treatment with Jagged1, SC79, or t-BHQ. Emodin significantly upregulated the levels of blood urea nitrogen, serum creatinine, malondialdehyde, and Fe2+ , reduced the levels of superoxide dismutase and glutathione, and induced pathological changes in the kidneys in vivo. Moreover, the viability of NRK-52E cells treated with emodin was reduced, and emodin induced iron accumulation, excessive reactive oxygen species production, and lipid peroxidation and depolarized the mitochondrial membrane potential (ΔΨm). In addition, emodin treatment downregulated the activity of neurogenic locus notch homolog protein 1 (Notch1), reduced the nuclear translocation of nuclear factor erythroid-2 related factor 2 (Nrf2), and decreased glutathione peroxidase 4 protein levels. However, Notch1 activation by Jagged1 pretreatment, Akt activation by SC79 pretreatment, or Nrf2 activation by t-BHQ pretreatment attenuated the toxic effects of emodin in NRK-52E cells. Taken together, these results revealed that emodin-induced ferroptosis triggered kidney toxicity through inhibition of the Notch1/Nrf2/glutathione peroxidase 4 axis.


Subject(s)
Emodin , Ferroptosis , Renal Insufficiency , Mice , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Emodin/toxicity , NF-E2-Related Factor 2/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/pharmacology , Kidney , Reactive Oxygen Species/metabolism
18.
ACS Synth Biol ; 12(7): 2135-2146, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37358911

ABSTRACT

Protein lysine acetylation (PLA) is a crucial post-translational modification in organisms that regulates a variety of metabolic and physiological activities. Many advances have been made in PLA-related research; however, the quick and accurate identification of causal relationships between specific protein acetylation events and phenotypic outcomes at the proteome level remains challenging due to the lack of efficient targeted modification techniques. In this study, based on the characteristics of transcription-translation coupling in bacteria, we designed and constructed an in situ targeted protein acetylation (TPA) system integrating the dCas12a protein, guiding element crRNA, and bacterial acetylase At2. Rapid identification of multiple independent protein acetylation and cell phenotypic analyses in Gram-negative Escherichia coli and Gram-positive Clostridium ljungdahlii demonstrated that TPA is a specific and efficient targeting tool for protein modification studies and engineering.


Subject(s)
Acetyltransferases , Bacterial Proteins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Acetylation , Acetyltransferases/metabolism , CRISPR-Cas Systems , Lysine/metabolism , Protein Processing, Post-Translational , Polyesters/metabolism
19.
Saudi Pharm J ; 31(7): 1219-1228, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37293563

ABSTRACT

Benign prostatic hyperplasia (BPH) is a common urinary disease among the elderly, characterized by abnormal prostatic cell proliferation. Neferine is a dibenzyl isoquinoline alkaloid extracted from Nelumbo nucifera and has antioxidant, anti-inflammatory and anti-prostate cancer effects. The beneficial therapeutic effects and mechanism of action of neferine in BPH remain unclear. A mouse model of BPH was generated by subcutaneous injection of 7.5 mg/kg testosterone propionate (TP) and 2 or 5 mg/kg neferine was given orally for 14 or 28 days. Pathological and morphological characteristics were evaluated. Prostate weight, prostate index (prostate/body weight ratio), expression of type Ⅱ 5α-reductase, androgen receptor (AR) and prostate specific antigen were all decreased in prostate tissue of BPH mice after administration of neferine. Neferine also downregulated the expression of pro-caspase-3, uncleaved PARP, TGF-ß1, TGF-ß receptor Ⅱ (TGFBR2), p-Smad2/3, N-cadherin and vimentin. Expression of E-cadherin, cleaved PARP and cleaved caspase-3 was increased by neferine treatment. 1-100 µM neferine with 1 µM testosterone or 10 nM TGF-ß1 were added to the culture medium of the normal human prostate stroma cell line, WPMY-1, for 24 h or 48 h. Neferine inhibited cell growth and production of reactive oxygen species (ROS) in testosterone-treated WPMY-1 cells and regulated the expression of androgen signaling pathway proteins and those related to epithelial-mesenchymal transition (EMT). Moreover, TGF-ß1, TGFBR2 and p-Smad2/3, N-cadherin and vimentin expression were increased but E-cadherin was decreased after 24 h TGF-ß1 treatment in WPMY-1 cells. Neferine reversed the effects of TGF-ß1 treatment in WPMY-1 cells. Neferine appeared to suppress prostate growth by regulating the EMT, AR and TGF-ß/Smad signaling pathways in the prostate and is suggested as a potential agent for BPH treatment.

20.
Chem Commun (Camb) ; 59(47): 7259-7262, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37223984

ABSTRACT

Dynamic covalent polymeric networks (DCPNs) with hindered urea bonds and free thiol groups were prepared. Due to the catalyst-free conversion of dynamic hindered urea bonds to dynamic thiourethane bonds, these materials showed enhanced mechanical properties along with time or triggered by elevated temperature, and exhibited excellent self-healing performance.


Subject(s)
Polymers , Sulfhydryl Compounds , Urea
SELECTION OF CITATIONS
SEARCH DETAIL
...