Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
BMC Cancer ; 24(1): 928, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090568

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is one of the most common primary malignant tumors of bone in children, which develops from osteoblasts and typically occurs during the rapid growth phase of the bone. Recently, Super-Enhancers(SEs)have been reported to play a crucial role in osteosarcoma growth and metastasis. Therefore, there is an urgent need to identify specific targeted inhibitors of SEs to assist clinical therapy. This study aimed to elucidate the role of BRD4 inhibitor GNE-987 targeting SEs in OS and preliminarily explore its mechanism. METHODS: We evaluated changes in osteosarcoma cells following treatment with a BRD4 inhibitor GNE-987. We assessed the anti-tumor effect of GNE-987 in vitro and in vivo by Western blot, CCK8, flow cytometry detection, clone formation, xenograft tumor size measurements, and Ki67 immunohistochemical staining, and combined ChIP-seq with RNA-seq techniques to find its anti-tumor mechanism. RESULTS: In this study, we found that extremely low concentrations of GNE-987(2-10 nM) significantly reduced the proliferation and survival of OS cells by degrading BRD4. In addition, we found that GNE-987 markedly induced cell cycle arrest and apoptosis in OS cells. Further study indicated that VHL was critical for GNE-987 to exert its antitumor effect in OS cells. Consistent with in vitro results, GNE-987 administration significantly reduced tumor size in xenograft models with minimal toxicity, and partially degraded the BRD4 protein. KRT80 was identified through analysis of the RNA-seq and ChIP-seq data. U2OS HiC analysis suggested a higher frequency of chromatin interactions near the KRT80 binding site. The enrichment of H3K27ac modification at KRT80 was significantly reduced after GNE-987 treatment. KRT80 was identified as playing an important role in OS occurrence and development. CONCLUSIONS: This research revealed that GNE-987 selectively degraded BRD4 and disrupted the transcriptional regulation of oncogenes in OS. GNE-987 has the potential to affect KRT80 against OS.


Subject(s)
Apoptosis , Bone Neoplasms , Cell Cycle Proteins , Cell Proliferation , Osteosarcoma , Transcription Factors , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bromodomain Containing Proteins , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic/drug effects , Mice, Nude , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Osteosarcoma/genetics , Osteosarcoma/metabolism , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Xenograft Model Antitumor Assays
2.
J Exp Clin Cancer Res ; 43(1): 205, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044280

ABSTRACT

BACKGROUND: Despite the use of targeted therapeutic approaches, T-cell acute lymphoblastic leukemia (T-ALL) is still associated with a high incidence of complications and a poor prognosis. Indisulam (also known as E7070), a newly identified molecular glue compound, has demonstrated increased therapeutic efficacy in several types of cancer through the rapid degradation of RBM39. This study aimed to evaluate the therapeutic potential of indisulam in T-ALL, elucidate its underlying mechanisms and explore the role of the RBM39 gene. METHODS: We verified the anticancer effects of indisulam in both in vivo and in vitro models. Additionally, the construction of RBM39-knockdown cell lines using shRNA confirmed that the malignant phenotype of T-ALL cells was dependent on RBM39. Through RNA sequencing, we identified indisulam-induced splicing anomalies, and proteomic analysis helped pinpoint protein changes caused by the drug. Comprehensive cross-analysis of these findings facilitated the identification of downstream effectors and subsequent validation of their functional roles. RESULTS: Indisulam has significant antineoplastic effects on T-ALL. It attenuates cell proliferation, promotes apoptosis and interferes with cell cycle progression in vitro while facilitating tumor remission in T-ALL in vivo models. This investigation provides evidence that the downregulation of RBM39 results in the restricted proliferation of T-ALL cells both in vitro and in vivo, suggesting that RBM39 is a potential target for T-ALL treatment. Indisulam's efficacy is attributed to its ability to induce RBM39 degradation, causing widespread aberrant splicing and abnormal translation of the critical downstream effector protein, THOC1, ultimately leading to protein depletion. Moreover, the presence of DCAF15 is regarded as critical for the effectiveness of indisulam, and its absence negates the ability of indisulam to induce the desired functional alterations. CONCLUSION: Our study revealed that indisulam, which targets RBM39 to induce tumor cell apoptosis, is an effective drug for treating T-ALL. Targeting RBM39 through indisulam leads to mis-splicing of pre-mRNAs, resulting in the loss of key effectors such as THOC1.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , RNA-Binding Proteins , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Mice , Animals , Cell Line, Tumor , Apoptosis/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , RNA Splicing , Sulfonamides/pharmacology , Female
3.
Materials (Basel) ; 17(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38998272

ABSTRACT

Silicon (Si) shows great potential as an anode material for lithium-ion batteries. However, it experiences significant expansion in volume as it undergoes the charging and discharging cycles, presenting challenges for practical implementation. Nanostructured Si has emerged as a viable solution to address these challenges. However, it requires a complex preparation process and high costs. In order to explore the above problems, this study devised an innovative approach to create Si/C composite anodes: micron-porous silicon (p-Si) was synthesized at low cost at a lower silver ion concentration, and then porous silicon-coated carbon (p-Si@C) composites were prepared by compositing nanohollow carbon spheres with porous silicon, which had good electrochemical properties. The initial coulombic efficiency of the composite was 76.51%. After undergoing 250 cycles at a current density of 0.2 A·g-1, the composites exhibited a capacity of 1008.84 mAh·g-1. Even when subjected to a current density of 1 A·g-1, the composites sustained a discharge capacity of 485.93 mAh·g-1 even after completing 1000 cycles. The employment of micron-structured p-Si improves cycling stability, which is primarily due to the porous space it provides. This porous structure helps alleviate the mechanical stress caused by volume expansion and prevents Si particles from detaching from the electrodes. The increased surface area facilitates a longer pathway for lithium-ion transport, thereby encouraging a more even distribution of lithium ions and mitigating the localized expansion of Si particles during cycling. Additionally, when Si particles expand, the hollow carbon nanospheres are capable of absorbing the resulting stress, thus preventing the electrode from cracking. The as-prepared p-Si utilizing metal-assisted chemical etching holds promising prospects as an anode material for lithium-ion batteries.

4.
Sensors (Basel) ; 24(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38793884

ABSTRACT

Autonomous Underwater Vehicles (AUVs) play a significant role in ocean-related research fields as tools for human exploration and the development of marine resources. However, the uncertainty of the underwater environment and the complexity of underwater motion pose significant challenges to the fault-tolerant control of AUV actuators. This paper presents a fault-tolerant control strategy for AUV actuators based onTakagi and Sugeno (T-S) fuzzy logic and pseudo-inverse quadratic programming under control constraints, aimed at addressing potential actuator faults. Firstly, considering the steady-state performance and dynamic performance of the control system, a T-S fuzzy controller is designed. Next, based on the redundant configuration of the actuators, the propulsion system is normalized, and the fault-tolerant control of AUV actuators is achieved using the pseudo-inverse method under thrust allocation. When control is constrained, a quadratic programming approach is used to compensate for the input control quantity. Finally, the effectiveness of the fuzzy control and fault-tolerant control allocation methods studied in this paper is validated through mathematical simulation. The experimental results indicate that in various fault scenarios, the pseudo-inverse combined with a nonlinear quadratic programming algorithm can compensate for the missing control inputs due to control constraints, ensuring the normal thrust of AUV actuators and achieving the expected fault-tolerant effect.

5.
J Colloid Interface Sci ; 668: 551-564, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38691964

ABSTRACT

To reveal the mechanism of charge transfer between interfaces of BiVO4-based heterogeneous materials in photoelectrochemical water splitting system, the cocatalyst was grown in situ using tannic acid (TA) as a ligand and Fe and Co ions as metal centers (TAFC), and then uniformly and ultra-thinly coated on BiVO4 to form photoanodes. The results show that the BiVO4/TAFC achieves a superior photocurrent density (4.97 mA cm-2 at 1.23 VRHE). The charge separation and charge injection efficiencies were also significantly higher, 82.0 % and 78.9 %, respectively. From XPS, UPS, KPFM, and density functional theory calculations, Ligand-to-metal charge transfer (LMCT) acts as an electron transport highway in TAFC ultrathin layer to promote the concentration of electrons towards metal center, leading to an increase in the work function, which enhances the built-in electric field and further improves the charge transport. This study demonstrated that the LMCT pathway on TA-metal complexes enhances the built-in electric field in BiVO4/TAFC to promote charge transport and thus enhance water oxidation, providing a new understanding of the performance improvement mechanism for the surface-modified composite photoanodes.

6.
Cancer Lett ; 591: 216882, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38636893

ABSTRACT

Super enhancers (SEs) are genomic regions comprising multiple closely spaced enhancers, typically occupied by a high density of cell-type-specific master transcription factors (TFs) and frequently enriched in key oncogenes in various tumors, including neuroblastoma (NB), one of the most prevalent malignant solid tumors in children originating from the neural crest. Cyclin-dependent kinase 5 regulatory subunit-associated protein 3 (CDK5RAP3) is a newly identified super-enhancer-driven gene regulated by master TFs in NB; however, its function in NB remains unclear. Through an integrated study of publicly available datasets and microarrays, we observed a significantly elevated CDK5RAP3 expression level in NB, associated with poor patient prognosis. Further research demonstrated that CDK5RAP3 promotes the growth of NB cells, both in vitro and in vivo. Mechanistically, defective CDK5RAP3 interfered with the UFMylation system, thereby triggering endoplasmic reticulum (ER) phagy. Additionally, we provide evidence that CDK5RAP3 maintains the stability of MEIS2, a master TF in NB, and in turn, contributes to the high expression of CDK5RAP3. Overall, our findings shed light on the molecular mechanisms by which CDK5RAP3 promotes tumor progression and suggest that its inhibition may represent a novel therapeutic strategy for NB.


Subject(s)
Cell Cycle Proteins , Gene Expression Regulation, Neoplastic , Neuroblastoma , Humans , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Animals , Cell Line, Tumor , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Endoplasmic Reticulum/metabolism , Enhancer Elements, Genetic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Proliferation , Mice, Nude , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Prognosis
7.
Cell Death Discov ; 10(1): 186, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649363

ABSTRACT

Neuroblastoma (NB) is a common childhood tumor with a high incidence worldwide. The regulatory role of RNA N6-methyladenosine (m6A) in gene expression has attracted significant attention, and the impact of methyltransferase-like 14 (METTL14) on tumor progression has been extensively studied in various types of cancer. However, the specific influence of METTL14 on NB remains unexplored. Using data from the Target database, our study revealed significant upregulation of METTL14 expression in high-risk NB patients, with strong correlation with poor prognosis. Furthermore, we identified ETS1 and YY1 as upstream regulators that control the expression of METTL14. In vitro experiments involving the knockdown of METTL14 in NB cells demonstrated significant inhibition of cell proliferation, migration, and invasion. In addition, suppressing METTL14 inhibited NB tumorigenesis in nude mouse models. Through MeRIP-seq and RNA-seq analyses, we further discovered that YWHAH is a downstream target gene of METTL14. Mechanistically, we observed that methylated YWHAH transcripts, particularly those in the 5' UTR, were specifically recognized by the m6A "reader" protein YTHDF1, leading to the degradation of YWHAH mRNA. Moreover, the downregulation of YWHAH expression activated the PI3K/AKT signaling pathway, promoting NB cell activity. Overall, our study provides valuable insights into the oncogenic effects of METTL14 in NB cells, highlighting its role in inhibiting YWHAH expression through an m6A-YTHDF1-dependent mechanism. These findings also suggest the potential utility of a biomarker panel for prognostic prediction in NB patients.

8.
Carcinogenesis ; 45(6): 424-435, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38302114

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematologic malignancy originating from T progenitor cells. It accounts for 15% of childhood and 25% of adult ALL cases. GNE-987 is a novel chimeric molecule developed using proteolysis-targeting chimeras (PROTAC) technology for targeted therapy. It consists of a potent inhibitor of the bromodomain and extraterminal (BET) protein, as well as the E3 ubiquitin ligase Von Hippel-Lindau (VHL), which enables the effective induction of proteasomal degradation of BRD4. Although GNE-987 has shown persistent inhibition of cell proliferation and apoptosis, its specific antitumor activity in T-ALL remains unclear. In this study, we aimed to investigate the molecular mechanisms underlying the antitumor effect of GNE-987 in T-ALL. To achieve this, we employed technologies including RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq) and CUT&Tag. The degradation of BET proteins, specifically BRD4, by GNE-987 has a profound impact on T-ALL cell. In in vivo experiments, sh-BRD4 lentivirus reduced T-ALL cell proliferation and invasion, extending the survival time of mice. The RNA-seq and CUT&Tag analyses provided further insights into the mechanism of action of GNE-987 in T-ALL. These analyses revealed that GNE-987 possesses the ability to suppress the expression of various genes associated with super-enhancers (SEs), including lymphoblastic leukemia 1 (LCK). By targeting these SE-associated genes, GNE-987 effectively inhibits the progression of T-ALL. Importantly, SE-related oncogenes like LCK were identified as critical targets of GNE-987. Based on these findings, GNE-987 holds promise as a potential novel candidate drug for the treatment of T-ALL.


Subject(s)
Apoptosis , Cell Proliferation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Transcription Factors , Xenograft Model Antitumor Assays , Humans , Animals , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Cell Proliferation/drug effects , Apoptosis/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Enhancer Elements, Genetic , Bromodomain Containing Proteins
9.
BMC Cancer ; 24(1): 220, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365636

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is a relatively prevalent primary tumor of the central nervous system in children, characterized by its high malignancy and mortality rates, along with the intricate challenges of achieving complete surgical resection. Recently, an increasing number of studies have focused on the crucial role of super-enhancers (SEs) in the occurrence and development of GBM. This study embarks on the task of evaluating the effectiveness of MZ1, an inhibitor of BRD4 meticulously designed to specifically target SEs, within the intricate framework of GBM. METHODS: The clinical data of GBM patients was sourced from the Chinese Glioma Genome Atlas (CGGA) and the Gene Expression Profiling Interactive Analysis 2 (GEPIA2), and the gene expression data of tumor cell lines was derived from the Cancer Cell Line Encyclopedia (CCLE). The impact of MZ1 on GBM was assessed through CCK-8, colony formation assays, EdU incorporation analysis, flow cytometry, and xenograft mouse models. The underlying mechanism was investigated through RNA-seq and ChIP-seq analyses. RESULTS: In this investigation, we made a noteworthy observation that MZ1 exhibited a substantial reduction in the proliferation of GBM cells by effectively degrading BRD4. Additionally, MZ1 displayed a notable capability in inducing significant cell cycle arrest and apoptosis in GBM cells. These findings were in line with our in vitro outcomes. Notably, MZ1 administration resulted in a remarkable decrease in tumor size within the xenograft model with diminished toxicity. Furthermore, on a mechanistic level, the administration of MZ1 resulted in a significant suppression of pivotal genes closely associated with cell cycle regulation and epithelial-mesenchymal transition (EMT). Interestingly, our analysis of RNA-seq and ChIP-seq data unveiled the discovery of a novel prospective oncogene, SDC1, which assumed a pivotal role in the tumorigenesis and progression of GBM. CONCLUSION: In summary, our findings revealed that MZ1 effectively disrupted the aberrant transcriptional regulation of oncogenes in GBM by degradation of BRD4. This positions MZ1 as a promising candidate in the realm of therapeutic options for GBM treatment.


Subject(s)
Brain Neoplasms , Bromodomain Containing Proteins , Glioblastoma , Animals , Child , Humans , Mice , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Bromodomain Containing Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Prospective Studies , Syndecan-1/antagonists & inhibitors , Transcription Factors/genetics
10.
Cancer Cell Int ; 24(1): 81, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38383388

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is a malignancy of the hematopoietic system, and childhood AML accounts for about 20% of pediatric leukemia. ANP32B, an important nuclear protein associated with proliferation, has been found to regulate hematopoiesis and CML leukemogenesis by inhibiting p53 activity. However, recent study suggests that ANP32B exerts a suppressive effect on B-cell acute lymphoblastic leukemia (ALL) in mice by activating PU.1. Nevertheless, the precise underlying mechanism of ANP32B in AML remains elusive. RESULTS: Super enhancer related gene ANP32B was significantly upregulated in AML patients. The expression of ANP32B exhibited a negative correlation with overall survival. Knocking down ANP32B suppressed the proliferation of AML cell lines MV4-11 and Kasumi-1, along with downregulation of C-MYC expression. Additionally, it led to a significant decrease in H3K27ac levels in AML cell lines. In vivo experiments further demonstrated that ANP32B knockdown effectively inhibited tumor growth. CONCLUSIONS: ANP32B plays a significant role in promoting tumor proliferation in AML. The downregulation of ANP32B induces cell cycle arrest and promotes apoptosis in AML cell lines. Mechanistic analysis suggests that ANP32B may epigenetically regulate the expression of MYC through histone H3K27 acetylation. ANP32B could serve as a prognostic biomarker and potential therapeutic target for AML patients.

12.
Front Nutr ; 10: 1283086, 2023.
Article in English | MEDLINE | ID: mdl-38045816

ABSTRACT

Idesia polycarpa Maxim protein was used as a substrate to prepare a novel food packaging material with bioactive functions for encapsulating and extending the postharvest shelf life of sweet cherries. The film-forming solution was prepared from a mixture of Idesia polycarpa Maxim protein, glycerol, and gelatin, and was cast to form a film at room temperature and evaluated for mechanical, optical, structural, crystallinity, thermal properties, morphology, and antioxidant activity. Idesia polycarpa Maxim protein composite film solution was applied as an edible coating on sweet cherries and evaluated for changes in physical and biochemical parameters of sweet cherries in storage at 20°C and 50% relative humidity for 9 days. The results showed that the film tensile strength increased from 0.589 to 1.981 Mpa and the elongation at break increased from 42.555% to 58.386% with the increase of Idesia polycarpa Maxim protein concentration. And in the in vitro antioxidant assay, IPPF-4.0% was found to have the best antioxidant activity, with scavenging rates of 65.11% ± 1.19%, 70.74% ± 0.12%, and 90.96% ± 0.49% for DPPH radicals, ABTS radicals, and hydroxyl radicals, respectively. Idesia polycarpa Maxim protein coating applied to sweet cherries and after storage at 20°C and 50% relative humidity for 9 days, it was found that the Idesia polycarpa Maxim protein coating significantly reduced the weight loss (54.82% and 34.91% in the Control and Coating-2.5% groups, respectively) and the loss of ascorbic acid content (16.47% and 37.14% in the Control and Coating-2.5% groups, respectively) of the sweet cherries, which can effectively extend the aging of sweet cherry fruits and prolong their shelf life. The developed protein film of Idesia polycarpa Maxim with antioxidant activity can be used as a new food packaging material in the food industry.

13.
Front Genet ; 14: 1228028, 2023.
Article in English | MEDLINE | ID: mdl-37745856

ABSTRACT

Background: Chronic rhinosinusitis (CRS) is a complex inflammatory disorder affecting the nasal and paranasal sinuses. Mitophagy, the process of selective mitochondrial degradation via autophagy, is crucial for maintaining cellular balance. However, the role of mitophagy in CRS is not well-studied. This research aims to examine the role of mitophagy-related genes (MRGs) in CRS, with a particular focus on the heterogeneity of endothelial cells (ECs). Methods: We employed both bulk and single-cell RNA sequencing data to investigate the role of MRGs in CRS. We compiled a combined database of 92 CRS samples and 35 healthy control samples from the Gene Expression Omnibus (GEO) database and we explored the differential expression of MRGs between them. A logistic regression model was built based on seven key genes identified through Random Forests and Support Vector Machines - Recursive Feature Elimination (SVM-RFE). Consensus cluster analysis was used to categorize CRS patients based on MRG expression patterns and weighted gene co-expression network analysis (WGCNA) was performed to find modules of highly correlated genes of the different clusters. Single-cell RNA sequencing data was utilized to analyze MRGs and EC heterogeneity in CRS. Results: Seven hub genes-SQSTM1, SRC, UBA52, MFN2, UBC, RPS27A, and ATG12-showed differential expression between two groups. A diagnostic model based on hub genes showed excellent prognostic accuracy. A strong positive correlation was found between the seven hub MRGs and resting dendritic cells, while a significant negative correlation was observed with mast cells and CD8+ T cells. CRS could be divided into two subclusters based on MRG expression patterns. WGCNA analysis identified modules of highly correlated genes of these two different subclusters. At the single-cell level, two types of venous ECs with different MRG scores were identified, suggesting their varying roles in CRS pathogenesis, especially in the non-eosinophilic CRS subtype. Conclusion: Our comprehensive study of CRS reveals the significant role of MRGs and underscores the heterogeneity of ECs. We highlighted the importance of Migration Inhibitory Factor (MIF) and TGFb pathways in mediating the effects of mitophagy, particularly the MIF. Overall, our findings enhance the understanding of mitophagy in CRS, providing a foundation for future research and potential therapeutic developments.

14.
J Immunol Res ; 2023: 3804605, 2023.
Article in English | MEDLINE | ID: mdl-37767202

ABSTRACT

Background: Arising from T progenitor cells, T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor, accounting for 15% of childhood ALL and 25% of adult ALL. Composing of putative enhancers in close genomic proximity, super enhancer (SE) is critical for cell identity and the pathogenesis of multiple cancers. Belonging to the cytosolute linker protein group, FYB1 is essential for TCR signaling and extensively studied in terms of tumor pathogenesis and metastasis. Dissecting the role of FYN binding protein 1 (FYB1) in T-ALL holds the potential to improve the treatment outcome and prognosis of T-ALL. Methods: In this study, SEs were explored using public H3K27ac ChIP-seq data derived from T-ALL cell lines, AML cell lines and hematopoietic stem and progenitor cells (HSPCs). Downstream target of FYB1 gene was identified by RNA-seq. Effects of shRNA-mediated downregulation of FYB1 and immunoglobulin lambda-like polypeptide 1 (IGLL1) on self-renewal of T-ALL cells were evaluated in vitro and/or in vivo. Results: As an SE-driven gene, overexpression of FYB1 was observed in T-ALL, according to the Cancer Cell Line Encyclopedia database. In vitro, knocking down FYB1 led to comprised growth and enhanced apoptosis of T-ALL cells. In vivo, downregulation of FYB1 significantly decreased the disease burden by suppressing tumor growth and improved survival rate. Knocking down FYB1 resulted in significantly decreased expression of IGLL1 that was also an SE-driven gene in T-ALL. As a downstream target of FYB1, IGLL1 exerted similar role as FYB1 in inhibiting growth of T-ALL cells. Conclusion: Our results suggested that FYB1 gene played important role in regulating self-renewal of T-ALL cells by activating IGLL1, representing a promising therapeutic target for T-ALL patients.

15.
Hematology ; 28(1): 2247253, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37594294

ABSTRACT

INTRODUCTION: B-cell acute lymphoblastic leukemia (B-ALL) is the most prevalent malignant tumor affecting children. While the majority of B-ALL patients (90%) experience successful recovery, early relapse cases of B-ALL continue to exhibit high mortality rates. MZ1, a novel inhibitor of Bromodomains and extra-terminal (BET) proteins, has demonstrated potent antitumor activity against hematological malignancies. The objective of this study was to examine the role and therapeutic potential of MZ1 in the treatment of B-ALL. METHODS: In order to ascertain the fundamental mechanism of MZ1, a sequence of in vitro assays was conducted on B-ALL cell lines, encompassing Cell Counting Kit 8 (CCK8) assay, Propidium iodide (PI) staining, and Annexin V/PI staining. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were employed to examine protein and mRNA expression levels. Transcriptomic RNA sequencing (RNA-seq) was utilized to screen the target genes of MZ1, and lentiviral transfection was employed to establish stably-expressing/knockdown cell lines. RESULTS: MZ1 has been observed to induce the degradation of Bromodomain Containing 4 (BRD4), Bromodomain Containing 3 (BRD3), and Bromodomain Containing 2 (BRD2) in B-ALL cell strains, leading to inhibited cell growth and induction of cell apoptosis and cycle arrest in vitro. These findings suggest that MZ1 exhibits cytotoxic effects on two distinct molecular subtypes of B-ALL, namely 697 (TCF3/PBX1) and RS4;11 (MLL-AF4) B-ALL cell lines. Additionally, RNA-sequencing analysis revealed that MZ1 significantly downregulated the expression of Cyclin D3 (CCND3) gene in B-ALL cell lines, which in turn promoted cell apoptosis, blocked cell cycle, and caused cell proliferation inhibition. CONCLUSION: Our results suggest that MZ1 has potential anti-B-ALL effects and might be a novel therapeutic target.


Subject(s)
Burkitt Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Cell Cycle Proteins/genetics , Cyclin D3 , Nuclear Proteins/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Transcription Factors/genetics
16.
Cell Death Dis ; 14(8): 518, 2023 08 12.
Article in English | MEDLINE | ID: mdl-37573405

ABSTRACT

One of the characteristics of leukemia is that it contains multiple rearrangements of signal transduction genes and overexpression of non-mutant genes, such as transcription factors. As an important regulator of hematopoietic stem cell development and erythropoiesis, LMO2 is considered an effective carcinogenic driver in T cell lines and a marker of poor prognosis in patients with AML with normal karyotype. LDB1 is a key factor in the transformation of thymocytes into T-ALL induced by LMO2, and enhances the stability of carcinogenic related proteins in leukemia. However, the function and mechanism of LMO2 and LDB1 in AML remains unclear. Herein, the LMO2 gene was knocked down to observe its effects on proliferation, survival, and colony formation of NB4, Kasumi-1 and K562 cell lines. Using mass spectrometry and IP experiments, our results showed the presence of LMO2/LDB1 protein complex in AML cell lines, which is consistent with previous studies. Furthermore, in vitro and in vivo experiments revealed that LDB1 is essential for the proliferation and survival of AML cell lines. Analysis of RNA-seq and ChIP-Seq results showed that LDB1 could regulate apoptosis-related genes, including LMO2. In LDB1-deficient AML cell lines, the overexpression of LMO2 partially compensates for the proliferation inhibition. In summary, our findings revealed that LDB1 played an important role in AML as an oncogene, and emphasize the potential importance of the LMO2/LDB1 complex in clinical treatment of patients with AML.


Subject(s)
DNA-Binding Proteins , Leukemia, Myeloid, Acute , Humans , DNA-Binding Proteins/metabolism , LIM-Homeodomain Proteins/metabolism , Proto-Oncogene Proteins/metabolism , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Erythropoiesis , Leukemia, Myeloid, Acute/genetics , Adaptor Proteins, Signal Transducing/metabolism
17.
BMC Immunol ; 24(1): 19, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37430199

ABSTRACT

BACKGROUND: Allergen-specific immunotherapy (AIT) is a causative treatment in allergic rhinitis (AR), comprising long-term allergen administration and over three years of treatment. This study is carried out for revealing the mechanisms and key genes of AIT in AR. METHODS: The present study utilized online Gene Expression Omnibus (GEO) microarray expression profiling dataset GSE37157 and GSE29521 to analyze the hub genes changes related to AIT in AR. Based on limma package, differential expression analysis for the two groups (samples of allergic patients prior to AIT and samples of allergic patients undergoing AIT) was performed to obtain differentially expressed genes (DEGs). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs were conducted using DAVID database. A Protein-Protein Interaction network (PPI) was built and a significant network module was acquired by using Cytoscape software (Cytoscape, 3.7.2). Utilizing the miRWalk database, we identified potential gene biomarkers, constructed interaction networks of target genes and microRNAs (miRNAs) using Cytoscape software, and explore the cell type-specific expression patterns of these genes in peripheral blood using publicly available single-cell RNA sequencing data (GSE200107). Finally, we are using PCR to detect changes in the hub genes that are screened using the above method in peripheral blood before and after AIT treatment. RESULTS: GSE37157 and GSE29521 included 28 and 13 samples, respectively. A total of 119 significantly co-upregulated DEGs and 33 co-downregulated DEGs were obtained from two datasets. The GO and KEGG analyses demonstrated that protein transport, positive regulation of apoptotic process, Natural killer cell mediated cytotoxicity, T cell receptor signaling pathway, TNF signaling pathway, B cell receptor signaling pathway and Apoptosis may be potential candidate therapeutic targets for AIT of AR. From the PPI network, 20 hub genes were obtained. Among them, the PPI sub-networks of CASP3, FOXO3, PIK3R1, PIK3R3, ATF4, and POLD3 screened out from our study have been identified as reliable predictors of AIT in AR, especially the PIK3R1. CONCLUSION: Our analysis has identified novel gene signatures, thereby contributing to a more comprehensive understanding of the molecular mechanisms underlying AIT in the treatment of AR.


Subject(s)
MicroRNAs , Rhinitis, Allergic , Humans , Rhinitis, Allergic/genetics , Rhinitis, Allergic/therapy , Transcription Factors , MicroRNAs/genetics , Allergens/genetics , Immunotherapy , Phosphatidylinositol 3-Kinases
18.
Biochem Biophys Res Commun ; 674: 170-182, 2023 09 24.
Article in English | MEDLINE | ID: mdl-37423037

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor with a poor prognosis. The growth of GBM cells depends on the core transcriptional apparatus, thus rendering RNA polymerase (RNA pol) complex as a candidate therapeutic target. The RNA pol II subunit B (POLR2B) gene encodes the second largest subunit of the RNA pol II (RPB2); however, its genomic status and function in GBM remain unclear. Certain GBM data sets in cBioPortal were used for investigating the genomic status and expression of POLR2B in GBM. The function of RPB2 was analyzed following knockdown of POLR2B expression by shRNA in GBM cells. The cell counting kit-8 assay and PI staining were used for cell proliferation and cell cycle analysis. A xenograft mouse model was established to analyze the function of RPB2 in vivo. RNA sequencing was performed to analyze the RPB2-regulated genes. GO and GSEA analyses were applied to investigate the RPB2-regulated gene function and associated pathways. In the present study, the genomic alteration and overexpression of the POLR2B gene was described in glioblastoma. The data indicated that knockdown of POLR2B expression suppressed tumor cell growth of glioblastoma in vitro and in vivo. The analysis further demonstrated the identification of the RPB2-regulated gene sets and highlighted the DNA damage-inducible transcript 4 gene as the downstream target of the POLR2B gene. The present study provides evidence indicating that RPB2 functions as a growth regulator in glioblastoma and could be used as a potential therapeutic target for the treatment of this disease.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Animals , Mice , Glioblastoma/pathology , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Cell Proliferation/genetics , Brain Neoplasms/pathology , RNA, Small Interfering/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
20.
Materials (Basel) ; 16(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37241262

ABSTRACT

Silicon inverted pyramids have been shown to exhibit superior SERS properties compared to ortho-pyramids, yet low-cost, simple preparation processes are lacking at present. This study demonstrates a simple method, silver-assisted chemical etching combined with PVP, to construct silicon inverted pyramids with a uniform size distribution. Two types of Si substrates for surface-enhanced Raman spectroscopy (SERS) were prepared via silver nanoparticles deposited on the silicon inverted pyramids by electroless deposition and radiofrequency sputtering, respectively. The experiments were conducted using rhodamine 6G (R6G), methylene blue (MB) and amoxicillin (AMX) molecules to test the SERS properties of the Si substrates with inverted pyramids. The results indicate that the SERS substrates show high sensitivity to detect the above molecules. In particular, the sensitivity and reproducibility of the SERS substrates with a denser silver nanoparticle distribution, prepared by radiofrequency sputtering, are significantly higher than those of the electroless deposited substrates to detect R6G molecules. This study sheds light on a potential low-cost and stable method for preparing silicon inverted pyramids, which is expected to replace the costly commercial Klarite SERS substrates.

SELECTION OF CITATIONS
SEARCH DETAIL