Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 75
1.
Endocrine ; 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849645

PURPOSE: No study has comprehensively assessed the relationship of metabolic factors including insulin resistance, hypertension, hyperuricemia, and hypercholesterolemia with the development of carotid plaque. Therefore, we constructed metabolic scores based on the above metabolic factors and examined its association with carotid plaque in young and older Chinese adults. METHODS: This study included 17,396 participants who underwent carotid ultrasound examinations, including 14,173 young adults (<65 years) and 3,223 older adults (≥65 years). Individual metabolic score was calculated using triglyceride-glucose (TyG) index, mean arterial pressure (MAP), uric acid, and total cholesterol (TC). Logistic regression models were conducted to examine the role of metabolic score and its components in the prevalence of carotid plaque. The nonlinear relationship was examined using restricted cubic spline regression. Meanwhile, subgroup, interaction, and sensitivity analyses were conducted. RESULTS: The multivariate logistic regression analysis showed that TyG (OR: 1.088; 95%CI: 1.046-1.132), MAP (OR: 1.121; 95%CI: 1.077-1.168), TC (OR: 1.137; 95%CI: 1.094-1.182) and metabolic score (OR: 1.064; 95%CI: 1.046-1.082) were associated with carotid plaque prevalence in young adults rather than older adults. The nonlinear association was not observed for metabolic scores and carotid plaque. Subgroup analyses showed significant associations between metabolic scores and carotid plaque prevalence in men, women, normal-weight, and overweight young adults. No interaction of metabolic score with sex and BMI were observed. CONCLUSIONS: The results support that control of TyG, MAP, TC, and metabolic scores is a key point in preventing the prevalence of carotid plaque in the young adults.

2.
Arch Gerontol Geriatr ; 126: 105525, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38896974

OBJECTIVE: Genetic risks can accelerate ageing, yet better quality sleep may slow down it. We thus examined the interaction and combined effects of genetic predisposition and sleep quality on the risk of accelerate aging. METHODS: This study included 407,027 participants from the UK Biobank. Sleep index of each participant was retrieved from the following seven sleep behaviors: snoring, chronotype, daytime sleepiness, sleep duration, insomnia, nap and difficulties in getting up. The biological age (PhenoAge) were estimated by corresponding algorithms based on clinical traits, and their residual discrepancies with chronological age were defined as the age accelerations (PhenoAgeaccel). We explored the interaction and combined effects of genetic risk and sleep quality on accelerated ageing by constructing a linear model. RESULTS: Compared with participants in low sleep quality group, those in medium and high sleep quality group decreased 0.727 (95%CI, 0.653 to 0.801) and 1.056 (95%CI, 0.982 to 1.130) years of PhenoAgeaccel, respectively. Compared with participants in low genetic risk group, those in medium and high genetic risk group increased 0.833 (95%CI, 0.792 to 0.874) and 1.543 (95%CI, 1.494 to 1.592) years of PhenoAgeaccel, respectively. There was interaction between the genetic risk and sleep quality (P-interaction<0.001). For combined effect, compared to the group with high sleep quality and lower genetic risk, people with low sleep quality and high genetic risk had 2.747 (95%CI, 2.602 to 2.892) years higher PhenoAgeaccel. CONCLUSION: Our findings elucidate that better sleep quality could lessen accelerated biological ageing especially among population with high genetic risk.

3.
Eur J Pharm Sci ; 200: 106829, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38866111

Drug-induced liver injury (DILI) is prevalent in the treatment of chronic kidney disease (CKD). Advanced oxidation protein products (AOPPs) are markers of CKD progression and participate in the occurrence and development of liver diseases. However, the mechanisms underlying the regulation of DILI in CKD have not been established. Herein, we demonstrate the involvement of Cytochrome p450 2E1 (CYP2E1) in DILI induced by AOPPs is exacerbated by exposure to acetaminophen (APAP). We used a adenine-induced CKD model, a model of DILI induced by APAP, and the AOPPs model was generated by intraperitoneal injection. The decline in renal function was associated with a significantly increased concentration of Scr, BUN and AOPPs, and renal tissue fibrosis. The ALT, AST, and AOPPs levels and liver tissue necrosis increased significantly in CKD model group compared with the sodium carboxymethyl cellulose (CMCNa) group. In the AOPPs model, compared to the PBS controls, ALT, AST, and AOPP levels, and liver tissue necrosis increased significantly. In HepG2 or L0-2 cell lines, cell survival was significantly reduced in the AOPP + APAP treatment and CYP2E1 protein expression was increased. FPS-ZM1 or NAC attenuated the hepatocyte toxicity induced by AOPP + APAP and suppression of CYP2E1 expression. AOPPs exacerbated APAP-induced DILI through CYP2E1 signaling pathways. Protein uremic toxins, such as AOPPs, can modify drug toxicity in patients with CKD. This study provides new a rationale to reduce the generation of DILIs in clinical treatment in patients with CKD. AOPPs targeting may present a novel approach to reduce the occurrence of DILI.

4.
Nutrients ; 16(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38794683

BACKGROUND: High dietary diversity has been found to be associated with frailty. However, the trajectory of dietary diversity intake in relation to frailty is unclear. METHODS: Using the latent class trajectory modeling approach, we identified distinctive dietary variety trajectory groups among 2017 participants based on the Chinese Longitudinal Healthy Longevity Survey acquired at four time points within a 10-year period. Frailty status was assessed using a frailty index comprising 37 health deficits. Dietary diversity was quantified using the dietary variety score (DVS), based on food category consumption frequency. Logistic regression analyses were employed to explore the association between DVS change trajectories and frailty. RESULTS: This study identified two distinct DVS trajectories: "Moderate-Slow decline-Slow growth", encompassing 810 (40.16%) individuals, and "Moderate-Slow growth-Accelerated decline", including 1207 (59.84%) individuals. After adjusting for covariates, the odds ratio for DVS in the "Moderate-Slow decline-Slow growth" group was 1.326 (95% confidence interval: 1.075-1.636) compared to the "Moderate-Slow growth-Accelerated decline" group. The "Moderate-Slow decline-Slow growth" trajectory continued to decrease and was maintained at a low level in the early stages of aging. CONCLUSION: Sustaining a high dietary diversity trajectory over time, particularly in the early stages of aging, could potentially decrease the risk of frailty among older Chinese adults.


Diet , Frail Elderly , Frailty , Latent Class Analysis , Humans , Aged , Female , Male , China/epidemiology , Diet/statistics & numerical data , Longitudinal Studies , Frail Elderly/statistics & numerical data , Aged, 80 and over , Cohort Studies , Asian People , Geriatric Assessment/methods , East Asian People
5.
J Clin Transl Hepatol ; 12(5): 481-495, 2024 May 28.
Article En | MEDLINE | ID: mdl-38779521

Background and Aims: Voriconazole (VRC), a widely used antifungal drug, often causes hepatotoxicity, which presents a significant clinical challenge. Previous studies demonstrated that Astragalus polysaccharide (APS) can regulate VRC metabolism, thereby potentially mitigating its hepatotoxic effects. In this study, we aimed to explore the mechanism by which APS regulates VRC metabolism. Methods: First, we assessed the association of abnormal VRC metabolism with hepatotoxicity using the Roussel Uclaf Causality Assessment Method scale. Second, we conducted a series of basic experiments to verify the promotive effect of APS on VRC metabolism. Various in vitro and in vivo assays, including cytokine profiling, immunohistochemistry, quantitative polymerase chain reaction, metabolite analysis, and drug concentration measurements, were performed using a lipopolysaccharide-induced rat inflammation model. Finally, experiments such as intestinal biodiversity analysis, intestinal clearance assessments, and Bifidobacterium bifidum replenishment were performed to examine the ability of B. bifidum to regulate the expression of the VRC-metabolizing enzyme CYP2C19 through the gut-liver axis. Results: The results indicated that APS does not have a direct effect on hepatocytes. However, the assessment of gut microbiota function revealed that APS significantly increases the abundance of B. bifidum, which could lead to an anti-inflammatory response in the liver and indirectly enhance VRC metabolism. The dual-luciferase reporter gene assay revealed that APS can hinder the secretion of pro-inflammatory mediators and reduce the inhibitory effect on CYP2C19 transcription through the nuclear factor-κB signaling pathway. Conclusions: The study offers valuable insights into the mechanism by which APS alleviates VRC-induced liver damage, highlighting its immunomodulatory influence on hepatic tissues and its indirect regulatory control of VRC-metabolizing enzymes within hepatocytes.

6.
Gels ; 10(5)2024 May 10.
Article En | MEDLINE | ID: mdl-38786243

Excessive blood loss could lead to pathological conditions such as tissue necrosis, organ failure, and death. The limitations of recently developed hemostatic approaches, such as their low mechanical strength, inadequate wet tissue adhesion, and weak hemostatic activity, pose challenges for their application in controlling visceral bleeding. In this study, a novel hydrogel (CT) made of collagen and tannic acid (TA) was proposed. By altering the proportions between the two materials, the mechanical properties, adhesion, and coagulation ability were evaluated. Compared to commercial hydrogels, this hydrogel has shown reduced blood loss and shorter hemostatic time in rat hepatic and cardiac bleeding models. This was explained by the hydrogel's natural hemostatic properties and the significant benefits of wound closure in a moist environment. Better biodegradability was achieved through the non-covalent connection between tannic acid and collagen, allowing for hemostasis without hindering subsequent tissue repair. Therefore, this hydrogel is a new method for visceral hemostasis that offers significant advantages in treating acute wounds and controlling major bleeding. And the production method is simple and efficient, which facilitates its translation to clinical applications.

7.
Int J Pharm ; 659: 124284, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38810934

The study aimed to create a low loading, high retention, easier to apply O/W mometasone furoate (MF) cream using a chemical enhancer (CE) approach to provide more options for patients with atopic dermatitis (AD) and to investigate molecular mechanisms of its increased release and retention. A Box-Behnken design determined the optimal formulation based on stability and in vitro skin retention. Evaluations included appearance, rheological properties, irritation, in vivo tissue distribution and pharmacodynamics. Molecular mechanisms of enhanced release were studied using high-speed centrifugation, molecular dynamics and rheology. The interaction between the CE, MF and skin was studied by tape stripping, CLSM, ATR-FTIR and SAXS. The formulation was optimized to contain 0.05% MF and used 10% polyglyceryl-3 oleate (POCC) as the CE. There was no significant difference from Elocon® cream in in vivo retention and pharmacodynamics but increased in vivo retention by 3.14-fold and in vitro release by 1.77-fold compared to the basic formulation. POCC reduced oil phase cohesive energy density, enhancing drug mobility and release. It disrupted skin lipid phases, aiding drug entry and formed hydrogen bonds, prolonging retention. This study highlights POCC as a CE in the cream, offering insights for semi-solid formulation development.


Drug Liberation , Mometasone Furoate , Skin Cream , Skin , Mometasone Furoate/administration & dosage , Mometasone Furoate/pharmacokinetics , Mometasone Furoate/chemistry , Animals , Skin Cream/administration & dosage , Skin Cream/chemistry , Skin/metabolism , Skin/drug effects , Administration, Cutaneous , Male , Skin Absorption/drug effects , Chemistry, Pharmaceutical/methods , Glycerol/chemistry , Glycerol/analogs & derivatives , Dermatitis, Atopic/drug therapy , Female , Excipients/chemistry , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/pharmacokinetics , Drug Compounding/methods , Oleic Acid/chemistry , Polymers/chemistry
8.
Genet Mol Biol ; 47(2): e20230181, 2024.
Article En | MEDLINE | ID: mdl-38626574

High heritability and strong correlation have been observed in breast and ovarian cancers. However, their shared genetic architecture remained unclear. Linkage disequilibrium score regression (LDSC) and heritability estimation from summary statistics (ρ-HESS) were applied to estimate heritability and genetic correlations. Bivariate causal mixture model (MiXeR) was used to qualify the polygenic overlap. Then, stratified-LDSC (S-LDSC) was used to identify tissue and cell type specificity. Meanwhile, the adaptive association test called MTaSPUsSet was performed to identify potential pleiotropic genes. The Single Nucleotide Polymorphisms (SNP) heritability was 13% for breast cancer and 5% for ovarian cancer. There was a significant genetic correlation between breast and ovarian cancers (rg=0.21). Breast and ovarian cancers exhibited polygenic overlap, sharing 0.4 K out 2.8 K of causal variants. Tissue and cell type specificity displayed significant enrichment in female breast mammary, uterus, kidney tissues, and adipose cell. Moreover, the 74 potential pleiotropic genes were identified between breast and ovarian cancers, which were related to the regulation of cell cycle and cell death. We quantified the shared genetic architecture between breast and ovarian cancers and shed light on the biological basis of the co-morbidity. Ultimately, these findings facilitated the understanding of disease etiology.

9.
Int J Biol Macromol ; 267(Pt 2): 131650, 2024 May.
Article En | MEDLINE | ID: mdl-38636756

Diabetic wounds are a common complication of diabetes. The prolonged exposure to high glucose and oxidative stress in the wound environment increases the risk of bacterial infection and abnormal angiogenesis, leading to amputation. Microneedle patches have shown promise in promoting the healing of diabetic wounds through transdermal drug delivery. These patches target the four main aspects of diabetic wound treatment: hypoglycemia, antibacterial action, inflammatory regulation, and tissue regeneration. By overcoming the limitations of traditional administration methods, microneedle patches enable targeted therapy for deteriorated tissues. The design of these patches extends beyond the selection of needle tip material and biomacromolecule encapsulated drugs; it can also incorporate near-infrared rays to facilitate cascade reactions and treat diabetic wounds. In this review, we comprehensively summarize the advantages of microneedle patches compared to traditional treatment methods. We focus on the design and mechanism of these patches based on existing experimental articles in the field and discuss the potential for future research on microneedle patches.


Drug Delivery Systems , Needles , Wound Healing , Humans , Wound Healing/drug effects , Animals , Drug Delivery Systems/methods , Transdermal Patch , Administration, Cutaneous , Diabetes Mellitus
10.
J Diabetes ; 16(5): e13554, 2024 May.
Article En | MEDLINE | ID: mdl-38664883

Diabetic wounds cannot undergo normal wound healing due to changes in the concentration of hyperglycemia in the body and soon evolve into chronic wounds causing amputation or even death of patients. Diabetic wounds directly affect the quality of patients and social medical management; thus researchers started to focus on skin transplantation technology. The acellular fish skin grafts (AFSGs) are derived from wild fish, which avoids the influence of human immune function and the spread of the virus through low-cost decellularization. AFSGs contain a large amount of collagen and omega-3 polyunsaturated fatty acids and they have an amazing effect on wound regeneration. However, after our search in major databases, we found that there were few research trials in this field, and only one was clinically approved. Therefore, we summarized the advantages of AFSGs and listed the problems faced in clinical use. The purpose of this paper is to enable researchers to better carry out original experiments at various stages.


Skin Transplantation , Wound Healing , Humans , Animals , Skin Transplantation/methods , Fishes , Diabetic Foot/surgery , Diabetic Foot/therapy
11.
J Am Chem Soc ; 146(7): 4913-4921, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38319594

Colloidal quantum dots with lower surface ligand density are desired for preparing the active layer for photovoltaic, lighting, and other potential optoelectronic applications. In emerging perovskite quantum dots (PQDs), the diffusion of cations is thought to have a high energy barrier, relative to that of halide anions. Herein, we investigate the fast cross cation exchange approach in colloidal lead triiodide PQDs containing methylammonium (MA+) and formamidinium (FA+) organic cations, which exhibits a significantly lower exchange barrier than inorganic cesium (Cs+)-FA+ and Cs+-MA+ systems. First-principles calculations further suggest that the fast internal cation diffusion arises due to a lowering in structural distortions and the consequent decline in attractive cation-cation and cation-anion interactions in the presence of organic cation vacancies in mixed MA+-FA+ PQDs. Combining both experimental and theoretical evidence, we propose a vacancy-assisted exchange model to understand the impact of structural features and intermolecular interaction in PQDs with fewer surface ligands. Finally, for a realistic outcome, the as-prepared mixed-cation PQDs display better photostability and can be directly applied for one-step coated photovoltaic and photodetector devices, achieving a high photovoltaic efficiency of 15.05% using MA0.5FA0.5PbI3 PQDs and more precisely tunable detective spectral response from visible to near-infrared regions.

12.
Inflammopharmacology ; 32(2): 1277-1294, 2024 Apr.
Article En | MEDLINE | ID: mdl-38407703

OBJECTIVE: Ferroptosis has been reported to play a role in rheumatoid arthritis (RA). Sulfasalazine, a common clinical treatment for ankylosing spondylitis, also exerts pathological influence on the progression of rheumatoid arthritis including the induced ferroptosis of fibroblast-like synoviocytes (FLSs), which result in the perturbated downstream signaling and the development of RA. The aim of this study was to investigate the underlying mechanism so as to provide novel insight for the treatment of RA. METHODS: CCK-8 and Western blotting were used to assess the effect of sulfasalazine on FLSs. A collagen-induced arthritis mouse model was constructed by the injection of collagen and Freund's adjuvant, and then, mice were treated with sulfasalazine from day 21 after modeling. The synovium was extracted and ferroptosis was assessed by Western blotting and immunofluorescence staining. RESULTS: The results revealed that sulfasalazine promotes ferroptosis. Compared with the control group, the expression levels of ferroptosis-related proteins such as glutathione peroxidase 4, ferritin heavy chain 1, and solute carrier family 7, member 11 (SLC7A11) were lower in the experimental group. Furthermore, deferoxamine inhibited ferroptosis induced by sulfasalazine. Sulfasalazine-promoted ferroptosis was related to a decrease in ERK1/2 and the increase of P53. CONCLUSIONS: Sulfasalazine promoted ferroptosis of FLSs in rheumatoid arthritis, and the PI3K-AKT-ERK1/2 pathway and P53-SLC7A11 pathway play an important role in this process.


Arthritis, Rheumatoid , Ferroptosis , Mice , Animals , Sulfasalazine/pharmacology , Sulfasalazine/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Tumor Suppressor Protein p53/metabolism , MAP Kinase Signaling System , Phosphatidylinositol 3-Kinases/metabolism , Arthritis, Rheumatoid/metabolism , Cells, Cultured , Cell Proliferation
13.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(1): 57-64, 2024 Jan 30.
Article Zh | MEDLINE | ID: mdl-38384218

Adhesives have emerged as an effective method for wound closure, hemostasis and tissue engineering in recent years, which not only are suitable for the adhesion of wet tissues, but also can adapt to the peristalsis and mechanical stretching of tissues and organs, especially for arteries and organize bleeding. With the further development of technology, existing adhesives can be modified through different strategies, and new materials are explored, giving new properties and uses to adhesives, such as drug delivery, temperature sensitivity, light sensitivity and so on. Nevertheless, there are many questions about the design and practical clinical application of adhesives in the future. The recent research progress of traditional adhesives and their application in hemostasis is reviewed, and the design and development ideas of future adhesives are discussed in the study.


Hemostatics , Tissue Adhesives , Adhesives , Hemostatics/therapeutic use , Biocompatible Materials , Tissue Adhesives/therapeutic use , Hemostasis
14.
Drug Des Devel Ther ; 18: 13-28, 2024.
Article En | MEDLINE | ID: mdl-38205394

Purpose: This study aims to investigate the effects of Huang Gan formula (HGF), a Chinese herbal prescription used for chronic kidney disease (CKD), on the regulation of the gut microbiota and colonic microenvironment of CKD. Methods: CKD rats were induced by 150 mg/kg adenine gavage for 4 weeks, then orally treated with or without 3.6 g/kg or 7.2 g/kg of HGF for 8 weeks. The renal function and structure were analyzed by biochemical detection, hematoxylin and eosin, Masson's trichrome, Sirius red and immunochemical staining. Average fecal weight and number in the colon were recorded to assess colonic motility. Further, the changes in the gut microbiota and colonic microenvironment were evaluated by 16S rRNA sequencing, RT-PCR or immunofluorescence. The levels of inflammatory cytokines, uremic toxins, and NF-κB signaling pathway were detected by RT-PCR, ELISA, chloramine-T method or Western blotting. Redundancy analysis biplot and Spearman's rank correlation coefficient were used for correlation analysis. Results: HGF significantly improved renal function and pathological injuries of CKD. HGF could improve gut microbial dysbiosis, protect colonic barrier and promote motility of colonic lumens. Further, HGF inhibited systemic inflammation through a reduction of TNF-α, IL-6, IL-1ß, TGF-ß1, and a suppression of NF-κB signaling pathway. The serum levels of the selected uremic toxins were also reduced by HGF treatment. Spearman correlation analysis suggested that high-dose HGF inhibited the overgrowth of bacteria that were positively correlated with inflammatory factors (eg, TNF-α) and uremic toxins (eg, indoxyl sulfate), whereas it promoted the proliferation of bacteria belonging to beneficial microbial groups and was positively correlated with the level of IL-10. Conclusion: Our results suggest that HGF can improve adenine-induced CKD via suppressing systemic inflammation and uremia, which may associate with the regulations of the gut microbiota and colonic microenvironment.


Gastrointestinal Microbiome , Renal Insufficiency, Chronic , Uremia , Animals , Rats , NF-kappa B , RNA, Ribosomal, 16S , Tumor Necrosis Factor-alpha , Uremic Toxins , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/drug therapy , Adenine/pharmacology
15.
Colloids Surf B Biointerfaces ; 235: 113766, 2024 Mar.
Article En | MEDLINE | ID: mdl-38278032

Bioadhesives are useful in surgery for hemostasis, tissue sealing and wound healing. However, most bioadhesives have limitations such as weak adhesion in wet conditions, insufficient sealing and poor clotting performance. Inspired by the adhesion mechanism of marine mussels, a novel bioadhesive (PCT) was developed by simply combining polyvinyl alcohol (PVA), collagen (COL) and tannic acid (TA) together. The results showed that the adhesion, sealing and blood coagulation properties boosted with the increase of tannic acid content in PCT. The wet shear adhesion strength of PCT-5 (the weight ratio of PVA:COL:TA=1:1:5) was 60.8 ± 0.6 kPa, the burst pressure was 213.7 ± 0.7 mmHg, and the blood clotting index was 39.3% ± 0.6%, respectively. In rat heart hemostasis tests, PCT-5 stopped bleeding in 23.7 ± 3.2 s and reduced bleeding loss to 83.0 ± 19.1 mg, which outperformed the benchmarks of commercial gauze (53.3 ± 8.7 s and 483.0 ± 15.0 mg) and 3 M adhesive (Type No.1469SB, 35.3 ± 5.0 s and 264.0 ± 14.2 mg). The as-prepared bioadhesive could provide significant benefits for tissue sealing and hemorrhage control along its low cost and facile preparation process.


Collagen , Polyphenols , Polyvinyl Alcohol , Rats , Animals , Hemostasis , Blood Coagulation , Hemorrhage , Tissue Adhesions , Hydrogels
16.
Tissue Eng Part C Methods ; 30(2): 53-62, 2024 02.
Article En | MEDLINE | ID: mdl-38019085

The effect and mechanism of type III recombinant humanized collagen (hCOLIII) on human vascular endothelial EA.hy926 cells at the cellular and molecular levels were investigated. The impact of hCOLIII on the proliferation of EA.hy926 cells was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid assay, the effect of hCOLIII on cell migration was investigated by scratch assay, the impact of hCOLIII on cell cycle and apoptosis was detected by flow cytometry, the ability of hCOLIII to induce angiogenesis of EA.hy926 cells was evaluated by angiogenesis assay, and the effect of hCOLIII on vascular endothelial growth factor (VEGF) expression was detected by real-time reverse transcription-polymerase chain reaction analysis. The hCOLIII at concentrations of 0.5, 0.25, and 0.125 mg/mL all showed specific effects on the proliferation and migration of human vascular endothelial cells. It could also affect the cell cycle, increase the proliferation index, and increase the expression level of VEGF in human vascular endothelial cells. In the meantime, hCOLIII at the concentration of 0.5 mg/mL also showed a promoting effect on vessel formation. hCOLIII can potentially promote the endothelization process of blood vessels, mainly by affecting the proliferation, migration, and vascular-like structure of human endothelial cells. At the same time, hCOLIII can promote the expression of VEGF. This collagen demonstrated its potential as a raw material for cardiovascular implants.


Endothelial Cells , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Collagen Type III/metabolism , Collagen Type III/pharmacology , Collagen/pharmacology , Collagen/metabolism , Cell Movement , Cell Proliferation
17.
Animals (Basel) ; 13(23)2023 Nov 21.
Article En | MEDLINE | ID: mdl-38066942

Instance segmentation is crucial to modern agriculture and the management of pig farms. In practical farming environments, challenges arise due to the mutual adhesion, occlusion, and dynamic changes in body posture among pigs, making accurate segmentation of multiple target pigs complex. To address these challenges, we conducted experiments using video data captured from varying angles and non-fixed lenses. We selected 45 pigs aged between 20 and 105 days from eight pens as research subjects. Among these, 1917 images were meticulously labeled, with 959 images designated for the training set, 192 for validation, and 766 for testing. To enhance feature utilization and address limitations in the fusion process between bottom-up and top-down feature maps within the feature pyramid network (FPN) module of the YOLACT model, we propose a pixel self-attention (PSA) module, incorporating joint channel and spatial attention. The PSA module seamlessly integrates into multiple stages of the FPN feature extraction within the YOLACT model. We utilized ResNet50 and ResNet101 as backbone networks and compared performance metrics, including AP0.5, AP0.75, AP0.5-0.95, and AR0.5-0.95, between the YOLACT model with the PSA module and YOLACT models equipped with BAM, CBAM, and SCSE attention modules. Experimental results indicated that the PSA attention module outperforms BAM, CBAM, and SCSE, regardless of the selected backbone network. In particular, when employing ResNet101 as the backbone network, integrating the PSA module yields a 2.7% improvement over no attention, 2.3% over BAM, 2.4% over CBAM, and 2.1% over SCSE across the AP0.5-0.95 metric. We visualized prototype masks within YOLACT to elucidate the model's mechanism. Furthermore, we visualized the PSA attention to confirm its ability to capture valuable pig-related information. Additionally, we validated the transfer performance of our model on a top-down view dataset, affirming the robustness of the YOLACT model with the PSA module.

18.
Pharmaceutics ; 15(12)2023 Dec 04.
Article En | MEDLINE | ID: mdl-38140070

Cancer is a serious disease with an abnormal proliferation of organ tissues; it is characterized by malignant infiltration and growth that affects human life. Traditional cancer therapies such as resection, radiotherapy and chemotherapy have a low cure rate and often cause irreversible damage to the body. In recent years, since the traditional treatment of cancer is still very far from perfect, researchers have begun to focus on non-invasive near-infrared (NIR)-responsive natural macromolecular hydrogel assembly drugs (NIR-NMHADs). Due to their unique biocompatibility and extremely high drug encapsulation, coupling with the spatiotemporal controllability of NIR, synergistic photothermal therapy (PTT), photothermal therapy (PDT), chemotherapy (CT) and immunotherapy (IT) has created excellent effects and good prospects for cancer treatment. In addition, some emerging bioengineering technologies can also improve the effectiveness of drug delivery systems. This review will discuss the properties of NIR light, the NIR-functional hydrogels commonly used in current research, the cancer therapy corresponding to the materials encapsulated in them and the bioengineering technology that can assist drug delivery systems. The review provides a constructive reference for the optimization of NIR-NMHAD experimental ideas and its application to human body.

19.
J Colloid Interface Sci ; 652(Pt B): 2108-2115, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37699329

The smooth and dense light-absorbing layer is an essential factor in polycrystalline solar cells to achieve high photovoltaic performance, while it remains challenging in perovskite solar cells because of the difficulty balancing the speed of crystal nucleation and growth in a solution way. Here, we explored a perovskite nucleation/growth compatible model via manipulating the intermediate complex induced by n-hexylamine (NHA) molecule, guiding us to adjustments perovskite nucleation and growth process. We found that the NHA can act as a gearbox-like molecule to sequentially reduce the perovskite nucleation barrier, promote the nucleation velocity, and retard the perovskite growth simultaneously to obtain uniform perovskite films; correspondingly, this modulation also yields the buried interface with fewer voids and low defects density. In addition, the hydrophobic NHA with long alkyl chain improves the moisture tolerance of the perovskite. The treated solar cell power conversion efficiency was 21.91 %. Importantly, in âˆ¼ 70 % humidity at 25 °C for 30 days, the efficiency of the device declined less than 5 %, exhibiting a good stability performance.

20.
Nano Lett ; 23(19): 9143-9150, 2023 Oct 11.
Article En | MEDLINE | ID: mdl-37747809

This study demonstrates an acetate ligand (AcO-)-assisted strategy for the controllable and tunable synthesis of colloidal methylammonium lead iodide (MAPbI3) perovskite nanocrystals (PNCs) for efficient photovoltaic and photodetector devices. The size of colloidal MAPbI3 PNCs can be tuned from 9 to 20 nm by changing the AcO-/MA ratio in the reaction precursor. In situ observations and detailed characterization results show that the incorporation of the AcO- ligand alters the formation of PbI6 octahedral cages, which controls PNC growth. A well-optimized AcO-/MA ratio affords MAPbI3 PNCs with a low defect density, a long carrier lifetime, and unique solid-state isotropic properties, which can be used to fabricate solution-processed dual-mode photovoltaic and photodetector devices with a conversion efficiency of 13.34% and a detectivity of 2 × 1011 Jones, respectively. This study provides an avenue to further the precisely controllable synthesis of hybrid PNCs for multifunctional optoelectronic applications.

...