Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Sci Total Environ ; 945: 173967, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38897474

ABSTRACT

Ammonia (NH3), which is a precursor of secondary particulate matter (PM), can be produced through three-way catalyst (TWC) side reactions in light-duty gasoline vehicles (LDGVs), posing a threat to human health and air quality. To explore ammonia emission characteristics, 8 LDGVs and 1 hybrid electric light-duty vehicle (HEV) with various mileages traveled were analyzed with a chassis dynamometer system during regulation driving cycles. The emission factors of the adopted China VI in-use LDGVs were 7.04 ± 2.61 mg/km under cold-start conditions and 4.94 ± 1.69 mg/km under hot-start conditions. With increasing mileage traveled, the total ammonia emissions increased, and the difference between the cold/hot-start results decreased. The emissions of in-use LDGVs with bi-fuel engines were analyzed, and more ammonia was generated in the compressed natural gas (CNG) mode through the hydrocarbon (HC) reforming reaction. The relationship between the emissions of ammonia and conventional pollutants was established. During the initial cold-start phase, a delay in ammonia formation was observed, and the ammonia emissions conformed with the CO and HC emissions after exhaust heating. Vehicle specific power (VSP) analysis revealed that the interval of highest ammonia emissions corresponded to acceleration events at high speeds. For the HEV, the transition from motor to engine drive conditions contributed to ammonia emission occurrence because of the more pronounced cold-start events. The use of HEV technology could introduce additional uncertainties in controlling urban ammonia emissions. Detailed analysis of emission characteristics could provide data support for future research on ammonia emission standards and control strategies for LDGVs.

2.
Chem Sci ; 15(25): 9806-9813, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38939133

ABSTRACT

Carbon quantum dots (C-dots) have developed into potential nanomaterials for lighting, catalysis and bioimaging because of their excellent optical properties and good biocompatibility. However, it is still a challenge to produce efficient red emitting carbon quantum dots (R-C-dots) due to their obscure formation mechanism. This work offered a method to reveal the formation process from the precursor o-phenylenediamine (o-PDA) to R-C-dots. Different from traditional hydrothermal reactions, R-C-dots were synthesized at relatively low temperature and ambient pressure. The pre-oxidation intermediate aminophenol played an important role in the synthesis of R-C-dots, which further cross-linked and polymerized with o-PDA in an acid environment to form R-C-dots. The obtained R-C-dots had a photoluminescence quantum yield of up to 33.26% and excellent two-photon fluorescence properties. A white light-emitting diode (WLED) based on R-C-dots as the red phosphor exhibited standard white light CIE color coordinates of (0.33, 0.33) with a correlated color temperature of 5342 K and a high color rendering index (CRI) of 94.5. The obtained rendering index is the highest value among WLEDs with color coordinates of (0.33, 0.33) based on C-dots. This work provides a new perspective for the controllable large-scale synthesis of red C-dots.

3.
Small ; : e2401812, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816772

ABSTRACT

Carbon quantum dots (C-dots) have emerged as efficient fluorescent materials for solid-state lighting devices. However, it is still a challenge to obtain highly bright solid-state C-dots because of the aggregation caused quenching. Compared to the encapsulation of as-prepared C-dots in matrices, one-step preparation of C-dots/matrix complex is a good method to obtain highly bright solid-state C-dots, which is still quite limited. Here, an efficient and controllable vacuum-boosting gradient heating approach is demonstrated for in situ synthesis of a stable and efficient C-dots/matrix complex. The addition of boric acid strongly bonded with urea, promoting the selectivity of the reaction between citric acid and urea. Benefiting from the high reaction selectivity and spatial-confinement growth of C-dots in porous matrices, in situ synthesize C-dots bonded can synthesized dominantly with a crosslinked octa-cyclic compound, biuret and cyanuric acid (triuret). The obtained C-dots/matrix complex exhibited bright green emission with a quantum yield as high as 90% and excellent thermal and photo stability. As a proof-of-concept, the as-prepared C-dots are used for the fabrication of white light-emitting diodes (LEDs) with a color rendering index of 84 and luminous efficiency of 88.14 lm W-1, showing great potential for applications in LEDs.

4.
Int J Biol Macromol ; 265(Pt 2): 130952, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499119

ABSTRACT

The traditional textile degumming process produces abundant wastewater, which contains a lot of monosaccharides and oligosaccharides. It is of great economic and environmental significance to utilize these carbohydrates in high value. In this study, high performance liquid chromatography (HPLC) was used to analyze the carbohydrate components in kenaf degumming wastewater, and then the production of C-dots using the wastewater was explored. The results showed that the types and content in the degumming wastewater were monosaccharides (glucose, xylose and arabinose) and oligosaccharides (dextran, xylan and araban). The carbohydrate (mainly glucan and xylan) content in wastewater accounted for 91.16 % of the total carbohydrates weight loss in kenaf degumming process. By using hydrolysis and hydrothermal reaction on kenaf degumming wastewater, blue-green carbon dots (C-dots) with good performance were prepared and successfully applied to anti-counterfeiting printing. In particular, the as-prepared C-dots prepared from kenaf degumming wastewater with urea added (WUC-dots) showed an excitation-dependent photoluminescence (PL) spectrum and quantum yield (QY) of 2.4 % in aqueous solution. The fluorescent code exhibited a clear outline, excitation-tunable color and good stability, showing a great potential for anti-counterfeiting system.


Subject(s)
Hibiscus , Quantum Dots , Wastewater , Carbon/chemistry , Xylans , Monosaccharides , Oligosaccharides , Quantum Dots/chemistry
5.
Environ Pollut ; 348: 123869, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38548150

ABSTRACT

The Chinese central government has initiated pilot projects to promote the adoption of gasoline containing 10%v ethanol (E10). Vehicle emissions using ethanol blended fuels require investigation to estimate the environmental impacts of the initiative. Five fuel formulations were created using two blending methods (splash blending and match blending) to evaluate the impacts of formulations on speciated volatile organic compounds (VOCs) from exhaust emissions. Seven in-use vehicles covering China 4 to China 6 emission standards were recruited. Vehicle tests were conducted using the Worldwide Harmonized Test Cycle (WLTC) in a temperature-controlled chamber at 23 °C and -7 °C. Splash blended E10 fuels led to significant reductions in VOC emissions by 12%-75%. E10 fuels had a better performance of reducing VOC emissions in older model vehicles than in newer model vehicles. These results suggested that E10 fuel could be an option to mitigate the VOC emissions. Although replacing methyl tert-butyl ether (MTBE) with ethanol in regular gasoline had no significant effects on VOC emissions, the replacement led to lower aromatic emissions by 40%-60%. Alkanes and aromatics dominated approximately 90% of VOC emissions for all vehicle-fuel combinations. Cold temperature increased VOC emissions significantly, by 3-26 folds for all vehicle/fuel combinations at -7 °C. Aromatic emissions were increased by cold temperature, from 2 to 26 mg/km at 23 °C to 33-238 mg/km at -7 °C. OVOC emissions were not significantly affected by E10 fuel or cold temperature. The ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) of splash blended E10 fuels decreased by up to 76% and 81%, respectively, compared with those of E0 fuels. The results are useful to update VOC emission profiles of Chinese vehicles using ethanol blended gasoline and under low-temperature conditions.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Gasoline/analysis , Cold Temperature , Volatile Organic Compounds/analysis , Ethanol , Vehicle Emissions/analysis , China , Air Pollutants/analysis
6.
RSC Adv ; 14(1): 83-89, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38173574

ABSTRACT

Carbon dots (C-dots) as promising fluorescent materials have attracted much attention because of their low toxicity and excellent optoelectronic properties. However, the aggregation-caused quenching (ACQ) of the solid-state C-dots has limited their potential applications in anti-counterfeiting and optoelectronic devices. In this work, C-dot powder was prepared by directly dispersing the as-prepared C-dots in a polymer matrix or in situ formation of the C-dot/Ca-complex by vacuum heating in the presence of boric acid. The as-prepared C-dots have high quantum yields (QYs) in the range of 40-67% with temperature-dependent photoluminescent (PL) properties. As a proof of concept, the as-synthesized C-dots were used to produce a flexible anti-counterfeiting code and showed high-level security. This highlights the potential of C-dots in solid-state information, anti-information encryption and anti-counterfeiting.

7.
Small ; 20(16): e2306453, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38032174

ABSTRACT

Colloidal quantum dots (QDs) are shown to be effective as light-harvesting sensitizers of metal oxide semiconductor (MOS) photoelectrodes for photoelectrochemical (PEC) hydrogen (H2) generation. The CdSe/CdS core/shell architecture is widely studied due to their tunable absorption range and band alignment via engineering the size of each composition, leading to efficient carrier separation/transfer with proper core/shell band types. However, until now the effect of core size on the PEC performance along with tailoring the core/shell band alignment is not well understood. Here, by regulating four types of CdSe/CdS core/shell QDs with different core sizes (diameter of 2.8, 3.1, 3.5, and 4.8 nm) while the thickness of CdS shell remains the same (thickness of 2.0 ± 0.1 nm), the Type II, Quasi-Type II, and Type I core/shell architecture are successfully formed. Among these, the optimized CdSe/CdS/TiO2 photoelectrode with core size of 3.5 nm can achieve the saturated photocurrent density (Jph) of 17.4 mA cm-2 under standard one sun irradiation. When such cores are further optimized by capping alloyed shells, the Jph can reach values of 22 mA cm2 which is among the best-performed electrodes based on colloidal QDs.

8.
J Phys Chem Lett ; 14(41): 9176-9182, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37797292

ABSTRACT

Colloidal carbon dots (C-dots) have attracted a great deal of attention for their unique optical properties. However, it is still a challenge to obtain highly purified C-dots without using multiple-step purification or postsize selection. In this work, a self-precipitation hydrothermal reaction was used to synthesize red-emitting C-dots (R-C-dots) using o-phenylenediamine (o-PDA) as a precursor without using any catalyst. The R-C-dots are able to precipitate on the wall of the reactor, which enables us to obtain solid-state C-dots with high purity. The R-C-dots have a photoluminescence quantum yield (PLQY) of as high as 36.75%, which is among the highest PLQY values reported previously for R-C-dots without using catalysts. The transient PL and transient absorption spectra revealed that 5,14-dihydroquinoxalino[2,3-b]phenazine linked on the surface of the C-dots determined the red luminescence behavior. This work provides a new path for the controllable synthesis of high-purity R-C-dots, showing potential applications in optoelectronic devices.

9.
ACS Appl Mater Interfaces ; 15(29): 34797-34808, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37433096

ABSTRACT

InP quantum dots (QDs) are promising building blocks for use in solar technologies because of their low intrinsic toxicity, narrow bandgap, large absorption coefficient, and low-cost solution synthesis. However, the high surface trap density of InP QDs reduces their energy conversion efficiency and degrades their long-term stability. Encapsulating InP QDs into a wider bandgap shell is desirable to eliminate surface traps and improve optoelectronic properties. Here, we report the synthesis of "giant" InP/ZnSe core/shell QDs with tunable ZnSe shell thickness to investigate the effect of the shell thickness on the optoelectronic properties and the photoelectrochemical (PEC) performance for hydrogen generation. The optical results demonstrate that ZnSe shell growth (0.9-2.8 nm) facilitates the delocalization of electrons and holes into the shell region. The ZnSe shell simultaneously acts as a passivation layer to protect the surface of InP QDs and as a spatial tunneling barrier to extract photoexcited electrons and holes. Thus, engineering the ZnSe shell thickness is crucial for the photoexcited electrons and hole transfer dynamics to tune the optoelectronic properties of "giant" InP/ZnSe core/shell QDs. We obtained an outstanding photocurrent density of 6.2 mA cm-1 for an optimal ZnSe shell thickness of 1.6 nm, which is 288% higher than the values achieved from bare InP QD-based PEC cells. Understanding the effect of shell thickness on surface passivation and carrier dynamics offers fundamental insights into the suitable design and realization of eco-friendly InP-based "giant" core/shell QDs toward improving device performance.

10.
J Hazard Mater ; 458: 131914, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37379594

ABSTRACT

Ammonia emissions from motor vehicles have great effect on air pollution and human health in urban areas. Recently, many countries have focus on ammonia emission measurement and control technologies for light-duty gasoline vehicles (LDGVs). To analyze ammonia emission characteristics, three conventional LDGVs and one hybrid electric light-duty vehicle (HEV) were evaluated over different driving cycles. The average ammonia emission factor at 23℃ was 4.5 ± 1.6 mg/km over Worldwide harmonized light vehicles test cycle (WLTC). Most ammonia emissions mainly concentrated in low and medium speed sections at cold-start stage, which were related to rich burn conditions. The increasing ambient temperatures led to the decrease of ammonia emissions, but high load caused by extremely elevated ambient temperature led to obvious ammonia emissions. The ammonia formation is also related to three-way catalytic converter (TWC) temperatures, and underfloor TWC catalyst could eliminate ammonia partly. The ammonia emission from HEV, which are significant less than LDGV, corresponded to the engine working state. The large temperature difference in the catalysts caused by power source shifts were the main reason. Exploring the effects of various factors on the ammonia emission is beneficial for revealing the instinct formation conditions, providing theoretical support for the future regulations.

11.
Langmuir ; 39(20): 7184-7191, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37167539

ABSTRACT

Benefiting from the wide-range absorption and adjustable energy gap, carbon dots (C-dots) have attracted a great deal of attention and they have been used to sensitize semiconductor nanocomposites to boost the efficiency of energy conversion devices, while there is still a lack of fundamental understanding of the interaction between such materials and their influence on the catalytic activity on the reaction process. In this study, C-dots were used to modify TiO2 to form a direct Z-scheme (DZS) junction for enhancement of the photocatalytic activity. The C-dot/TiO2 composite was prepared by ultrasonication at room temperature through coupling between the Ti-O-C bond and electrostatic interaction. The C-dots can dramatically enhance the absorption of the composite by forming the DZS, and the composite is enabled to generate more free radicals, which facilitate ∼10 times higher photocatalytic activity compared to that of TiO2. As a proof of concept, the as-prepared C-dot/TiO2 was used for textile wastewater dye degradation. This study provides an efficient approach for room-temperature preparation of C-dot/TiO2 composites with high photocatalytic activity.

12.
Aesthetic Plast Surg ; 47(5): 1806-1823, 2023 10.
Article in English | MEDLINE | ID: mdl-37198297

ABSTRACT

PURPOSE: Micro-focused ultrasound (MFU) is commonly used to improve facial relaxation and wrinkles. The objective of this study was to determine the efficacy of MFU for facial rejuvenation and patients' satisfaction with the treatment. METHOD: Articles published before December 2022 were retrieved using PubMed, Embase, Web of Science, and Cochrane Library databases. The retrieved literature was screened according to strict criteria, and the risk of bias of each study was assessed. RESULT: A total of 13 MFU studies for facial rejuvenation and tightening were included, involving 477 participants. Efficacy was assessed using the Global Aesthetic Improvement Scale (GAIS), and meta-analysis showed an overall response rate of 0.77 (95%CI: 0.58, 0.96) at 90 days after intervention and 0.69 (95%CI: 0.51, 0.87) at 180 days. 0.78 (95%CI: 0.61, 0.95) and 0.71 (95%CI: 0.54, 0.87) patients were satisfied and very satisfied overall at 90 days and 180 days, respectively. The pain score was on a 10-point scale, and the overall score was 3.10 (95%CI: 2.71, 3.94). There were no instances during treatment where patients could not tolerate pain. Sensitivity analysis showed that the results were robust. CONCLUSION: In conclusion, MFU is an effective way to treat facial rejuvenation and tightening. More large-sample, multicenter and randomized studies are needed to determine the optimal treatment parameters in the future. LEVEL OF EVIDENCE I: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Patient Satisfaction , Skin Aging , Humans , Rejuvenation/physiology , Treatment Outcome , Face/diagnostic imaging , Pain , Multicenter Studies as Topic
13.
Small ; 19(35): e2302056, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37186343

ABSTRACT

The development of high-efficiency non-precious metal electrocatalysts for alkaline electrolyte hydrogen evolution reactions (HER) is of great significance in energy conversion to overcome the limited supply of fossil fuels and carbon emission. Here, a highly active electrocatalyst is presented for hydrogen production, consisting of 2D CoSe2 /Co3 S4 heterostructured nanosheets along Co3 O4 nanofibers. The different reaction rate between the ion exchange reaction and redox reaction leads to the heterogeneous volume swelling, promoting the growth of 2D structure. The 2D/1D heteronanostructures enable the improved the electrochemical active area, the number of active sites, and more favorable H binding energy compared to individual cobalt chalcogenides. The roles of the different composition of the heterojunction are investigated, and the electrocatalysts based on the CoSe2 /Co3 S4 @Co3 O4 exhibited an overpotential as low as 165 mV for 10 mA cm-2 and 393 mV for 200 mA cm-2 in 1 m KOH electrolyte. The as-prepared electrocatalysts remained active after 55 h operation without any significant decrease, indicating the excellent long-term operation stability of the electrode. The Faradaic efficiency of hydrogen production is close to 100% at different voltages. This work provides a new design strategy toward Co-based catalysts for efficient alkaline HER.

14.
Environ Pollut ; 324: 121339, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36863441

ABSTRACT

Vehicles emit substantial amounts of pollutants during start periods. Engine starts mainly occur in urban areas, causing serious harm to humans. To investigate the impacts on extra cold start emissions (ECSEs), eleven China 6 vehicles with various control technologies (fuel injection, powertrain, and aftertreatment) were monitored with a portable emission measurement system (PEMS) at different temperatures. For conventional internal combustion engine vehicles (ICEVs), the average ECSEs of CO2 increased by 24%, while the average ECSEs of NOx and particle number (PN) decreased by 38% and 39%, respectively, with air conditioning (AC) on. Gasoline direct injection (GDI) vehicles had 5% lower CO2 ECSEs, but 261% higher NOx ECSEs and 318% higher PN ECSEs than port fuel injection (PFI) vehicles at 23 °C. The average PN ECSEs were significantly reduced by gasoline particle filters (GPFs). The GPF filtration efficiency was higher in GDI than PFI vehicles due to particle size distribution. Hybrid electric vehicles (HEVs) generated excessive PN extra start emissions (ESEs), resulting in a 518% increase compared to ICEVs. The start times of the GDI-engine HEV accounted for 11% of the whole test time, but the proportion of PN ESEs relative to total emissions were 23%. Linear simulation based on the decrease in ECSEs with increasing temperature underestimated the PN ECSEs from PFI and GDI vehicles by 39% and 21%, respectively. For ICEVs, CO ECSEs varied with temperature in a U shape with a minimum at 27 °C; NOx ECSEs decreased as ambient temperature increased; PFI vehicles generated more PN ECSEs at 32 °C than GDI vehicles, stressing the significance of ECSEs at high temperature. These results are useful for improving emission models and assessing air pollution exposure in urban aeras.


Subject(s)
Air Pollutants , Humans , Air Pollutants/analysis , Gasoline/analysis , Temperature , Vehicle Emissions/analysis , Particulate Matter/analysis , Carbon Dioxide , Motor Vehicles
15.
Small ; 19(15): e2206316, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36642852

ABSTRACT

Manipulating the separation and transfer behaviors of charges has long been pursued for promoting the photoelectrochemical (PEC) hydrogen generation based on II-VI quantum dot (QDs), but remains challenging due to the lack of effective strategies. Herein, a facile strategy is reported to regulate the recombination and transfer of interfacial charges through tuning the surface stoichiometry of heterostructured QDs. Using this method, it is demonstrated that the PEC cells based on CdSe-(Sex S1- x )4 -(CdS)2 core/shell QDs with a proper Ssurface /Cdsurface ratio exhibits a remarkably improved photocurrent density (≈18.4 mA cm-2 under one sun illumination), superior to the PEC cells based on QDs with Cd-rich or excessive S-rich surface. In-depth electrochemical and spectroscopic characterizations reveal the critical role (hole traps) of surface S atoms in suppressing the recombination of photogenerated charges, and further attribute the inferior performance of excessive S-rich QDs to the impeded charge transfer from QDs to TiO2 and electrolyte. This work puts forward a simple surface engineering strategy for improving the performance of QDs PEC cells, providing an efficient method to guide the surface design of QDs for their applications in other optoelectronic devices.

16.
Ann Plast Surg ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38170987

ABSTRACT

OBJECTIVE: The present study aimed to evaluate the effectiveness of minimally invasive 980 nm laser-assisted lipolysis and skin tightening in lower eyelid blepharoplasty of Asian patients. METHODS: Patients with mild and moderate degree of eyebags underwent 980 nm laser-assisted lipolysis via lower eyelid stab incision between December 2017 and December 2019. Evaluation criteria was reviewed by photographs taken preoperatively and 6 months postoperatively in accordance with guidelines of Global Aesthetic Improvement Scale, the patient's perspective from the questionnaire with the perception of reduction in eyebags size, the average perception of improvement in skin tightening, and the patient overall satisfaction, all with a score of 1 to 5 (5 being the most noticeable and very satisfied) and complications such as dyspigmentation, hematoma, prolonged edema, skin bump and thermal burn were documented as well. RESULTS: A total of 178 cases with 137 women and 41 men (age range from 23 to 50 years) were included. Total energy of 1200 J to 2000 J was delivered to both eyebags at 6 to 10 W. They were followed up for at least 6 months. A total of 166 patients (93.26%) revealed an improvement in Global Aesthetic Improvement Scale, with the 12 patients (6.74%) complaint no change 6 month postoperatively. Perception of improvement in eye bag protrusion scored 4.39 ± 0.59, improvement in skin tightening scored 4.42 ± 0.58 and the overall patient's satisfaction scored 4.59 ± 0.53. The patients' average recovered swelling from 4.35 ± 2.3 days. There were 5 patients (2.8%) with dyspigmentation, 3 patients (1.69%) with prolonged edema and 2 patients (1.12%) with skin bump and none of the patients had thermal burn. All of them resolve after 6 months of follow up. CONCLUSION: Patients with mild to moderate degree of eyebags who resist surgery are good candidates for laser-assisted lower eyelid blepharoplasty.

17.
Front Oncol ; 12: 1064048, 2022.
Article in English | MEDLINE | ID: mdl-36523969

ABSTRACT

Infantile hemangiomas (IHs) are benign vascular tumors commonly observed in children. A small number of cases can manifest as organ or system dysfunction, permanent scarring, or even disfigurement. Currently, diagnosis is mainly based on clinical history, physical examination, and auxiliary inspection. In the treatment of a hemangioma, the functional damage caused by the lesion and complications that may endanger the patient's life should be given priority. This suggests that identification, diagnosis, and referral to specialists during the early stages of IHs are important factors in preventing related complications and obtaining a better prognosis. During the past few decades, researchers have explored different treatments according to the condition, including oral or topical drugs, topical drug injections, laser surgery, and surgical treatment. However, oral propranolol remains a well-accepted first-line treatment. This article will primarily focus on the recent advances in the clinical diagnosis and treatment of hemangiomas, along with a literature review on the subject.

18.
Nanoscale Horiz ; 8(1): 83-94, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36321503

ABSTRACT

Luminescent solar concentrators (LSCs) are able to collect sunlight from a large-area to generate electric power with a low cost, showing great potential in building-integrated photovoltaics. However, the low efficiency of large-area LSCs caused by the reabsorption losses is a critical issue that hampers their practical applications. In this work, we synthesized novel yellow emissive carbon dots (CDs) with a large Stokes shift of 193 nm, which exhibit nearly zero reabsorption. The quantum yield (QY) of the yellow emitting CDs is up to 61%. The yellow emitting CDs can be employed to fabricate high-performance large-area LSCs due to successful suppression of the reabsorption losses. The as-prepared LSCs are able to absorb 14% of the sunlight as the absorption of the CDs matches well with the sun's spectrum. The large-area LSC (10 × 10 cm2) with a laminated structure based on the yellow emitting CDs achieves an optical conversion efficiency (ηopt) of 4.56% and power conversion efficiency (ηPCE) of 4.1% under natural sunlight (45 mW cm-2), which are significantly higher than other previously reported works with similar sizes. Furthermore, the prepared high-performance LSCs show good stability. This method of synthesizing novel CDs for high-efficiency LSCs provides a useful platform for future study and practical application of LSCs.

19.
Nanomaterials (Basel) ; 12(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36144956

ABSTRACT

Carbon dots (C-dots) are fluorescent nanomaterials, exhibiting excellent structure-dependent optical properties for various types of optical and electrical applications. Although many precursors were used for C-dots production, it is still a challenge to produce high-quality C-dots using environmentally-friendly natural precursors. In this work, multiple-colored colloidal C-dots were synthesized via a heating reaction using natural plant dyes as precursors, for example, Indigo, Carcuma longa, and Sophora japonica L. The as-prepared C-dots have absorption in the UV range of 220 to 450 nm with the typical emission ranging from 350 to 600 nm. The as-obtained C-dots have a quantum yield as high as 3.8% in an aqueous solution. As a proof-of-concept, we used the as-prepared C-dots as fluorescence inks for textile secure printing. The printed patterns are almost invisible under daylight and have distinct and clear patterns under 365 and 395 nm light, proving the great potential in optical anti-counterfeiting. This work demonstrates the advanced strategy for high-performance C-dots production from natural dyes and their potential application in flexible secure printing systems.

20.
Nanoscale Adv ; 4(7): 1758-1769, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-36132161

ABSTRACT

Compared to noble metals, transition metal oxides (TMOs) have positive development prospects in the field of electrocatalysis, and the synergy between the elements in multi-element TMO-based materials can improve their catalytic activity. However, it is still a challenge to synthesize multi-component TMO-based catalysts and deeply understand the effects of components on the catalytic performance of the catalysts. Here, we demonstrate multi-element ultra-small-sized nanofibers for efficient hydrogen production. The ternary NiFeCoO nanofiber-based electrode reached an overpotential of 82 mV at the current density of 10 mA cm-2 with a Tafel slope of 56 mV dec-1 in 1 M KOH, which are close to those of Pt plate (66 mV at 10 mA cm-2; the Tafel slope is 32 mV dec-1). In addition, the current density maintained 97% of its initial value after 10 h operation. We used the ternary NiFeCoO nanofiber-based electrode as an efficient counter electrode in photoelectrochemical hydrogen production to demonstrate the versatility of these nanofibers.

SELECTION OF CITATIONS
SEARCH DETAIL
...