Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Pollut ; 356: 124292, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823545

ABSTRACT

Oceans are ultimately a sink of plastic waste. Complex artificial coastlines pose remarkable challenges for coastal plastic waste monitoring. With the development of machine learning methods, high detection accuracy can be achieved; however, many false positives have been noted in various network models used for plastic waste investigation. In this study, extensive surveys of artificial coastlines were conducted using drones along the Dongjiang Port artificial coastline in the Binhai District, Tianjin, China. The deep learning model YOLOv8 was enhanced by integrating the InceptionNeXt and LSK modules into the network to improve its detection accuracy for plastic waste and reduce instances of tourists being misidentified as plastic. In total, 553 high-resolution coastline images with 3488 items of detected plastic waste were compared using the original and improved YOLOv8 models. The improved YOLOv8s-IL model achieved a detection rate of 64.9%, a notable increase of 11.5% compared with that of the original model. The number of false positives in the improved YOLOv8s-IL model was reduced to 32.3%, the multi-class F-score reached 76.5%, and the average detection time per image was only 2.7 s. The findings of this study provide technical support for future large-scale monitoring of plastic waste on artificial coastlines.


Subject(s)
Environmental Monitoring , Machine Learning , Plastics , Plastics/analysis , China , Environmental Monitoring/methods , Tourism
SELECTION OF CITATIONS
SEARCH DETAIL