Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Plant Physiol ; 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38427921

Leaf senescence is a vital aspect of plant physiology and stress responses and is induced by endogenous factors and environmental cues.. The plant-specific NAC (NAM, ATAF1/2, CUC2) transcription factor family influences growth, development, and stress responses in Arabidopsis (Arabidopsis thaliana) and other species. However, the roles of NACs in tobacco (Nicotiana tabacum) leaf senescence are still unclear. Here, we report that NtNAC56 regulates leaf senescence in tobacco. Transgenic plants overexpressing NtNAC56 (NtNAC56-OE) showed induction of senescence-related genes and exhibited early senescence and lower chlorophyll content compared to wild-type (WT) plants and the Ntnac56-19 mutant. In addition, root development and seed germination were inhibited in the NtNAC56-OE lines. Transmission electron microscopy observations accompanied by physiological and biochemical assays revealed that NtNAC56 overexpression triggers chloroplast degradation and reactive oxygen species accumulation in tobacco leaves. Transcriptome analysis demonstrated that NtNAC56 activates leaf senescence-related genes and jasmonic acid (JA) biosynthesis pathway genes. In addition, the JA content of NtNAC56-OE plants was higher than in WT plants, and JA treatment induced NtNAC56 expression. We performed DNA affinity purification sequencing to identify direct targets of NtNAC56, among which we focused on LIPOXYGENASE 5 (NtLOX5), a key gene in JA biosynthesis. A dual-luciferase reporter assay and a yeast one-hybrid assay confirmed that NtNAC56 directly binds to the TTTCTT motif in the NtLOX5 promoter. Our results reveal a mechanism whereby NtNAC56 regulates JA-induced leaf senescence in tobacco and provide a strategy for genetically manipulating leaf senescence and plant growth.

2.
Front Plant Sci ; 13: 1005811, 2022.
Article En | MEDLINE | ID: mdl-36275561

Trichomes are specialized hair-like organs found on epidermal cells of many terrestrial plants, which protect plant from excessive transpiration and numerous abiotic and biotic stresses. However, the genetic basis and underlying mechanisms are largely unknown in Nicotiana tabacum (common tobacco), an established model system for genetic engineering and plant breeding. In present study, we identified, cloned and characterized an unknown function transcription factor NtMYB306a from tobacco cultivar K326 trichomes. Results obtained from sequence phylogenetic tree analysis showed that NtMYB306a-encoded protein belonged to S1 subgroup of the plants' R2R3-MYB transcription factors (TFs). Observation of the green fluorescent signals from NtMYB306a-GFP fusion protein construct exhibited that NtMYB306a was localized in nucleus. In yeast transactivation assays, the transformed yeast containing pGBKT7-NtMYB306a construct was able to grow on SD/-Trp-Ade+X-α-gal selection media, signifying that NtMYB306a exhibits transcriptional activation activity. Results from qRT-PCR, in-situ hybridization and GUS staining of transgenic tobacco plants revealed that NtMYB306a is primarily expressed in tobacco trichomes, especially tall glandular trichomes (TGTs) and short glandular trichomes (SGTs). RNA sequencing (RNA-seq) and qRT-PCR analysis of the NtMYB306a-overexpressing transgenic tobacco line revealed that NtMYB306a activated the expression of a set of key target genes which were associated with wax alkane biosynthesis. Gas Chromatography-Mass Spectrometry (GC-MS) exhibited that the total alkane contents and the contents of n-C28, n-C29, n-C31, and ai-C31 alkanes in leaf exudates of NtMYB306a-OE lines (OE-3, OE-13, and OE-20) were significantly greater when compared to WT. Besides, the promoter region of NtMYB306a contained numerous stress-responsive cis-acting elements, and their differential expression towards salicylic acid and cold stress treatments reflected their roles in signal transduction and cold-stress tolerance. Together, these results suggest that NtMYB306a is necessarily a positive regulator of alkane metabolism in tobacco trichomes that does not affect the number and morphology of tobacco trichomes, and that it can be used as a candidate gene for improving stress resistance and the quality of tobacco.

3.
Physiol Plant ; 174(5): e13794, 2022 Sep.
Article En | MEDLINE | ID: mdl-36193016

Protein acetylation and crotonylation are important posttranslational modifications of lysine. In animal cells, the correlation of acetylation and crotonylation has been well characterized and the lysines of some proteins are acetylated or crotonylated depending on the relative concentrations of acetyl-CoA and crotonyl-CoA. However, in plants, the correlation of acetylation and crotonylation and the effects of the relative intracellular concentrations of crotonyl-CoA and acetyl-CoA on protein crotonylation and acetylation are not well known. In our previous study, PaACL silencing changed the content of acetyl-CoA in petunia (Petunia hybrida) corollas, and the effect of PaACL silencing on the global acetylation proteome in petunia was analyzed. In the present study, we found that PaACL silencing did not significantly alter the content of crotonyl-CoA. We performed a global crotonylation proteome analysis of the corollas of PaACL-silenced and control petunia plants; we found that protein crotonylation was closely related to protein acetylation and that proteins with more crotonylation sites often had more acetylation sites. Crotonylated proteins and acetylated proteins were enriched in many common Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. However, PaACL silencing resulted in different KEGG pathway enrichments of proteins with different levels of crotonylation sites and acetylation sites. PaACLB1-B2 silencing did not led to changes in the opposite direction in crotonylation and acetylation levels at the same lysine site in cytoplasmic proteins, which indicated that cytoplasmic lysine acetylation and crotonylation might not depend on the relative concentrations of acetyl-CoA and crotonyl-CoA. Moreover, the global crotonylome and acetylome were weakly positively correlated in the corollas of PaACL-silenced and control plants.


Petunia , Acetylation , Petunia/genetics , Lysine , Proteome/metabolism , Acetyl Coenzyme A/genetics , Acetyl Coenzyme A/metabolism , Protein Processing, Post-Translational
4.
Physiol Plant ; 174(5): e13795, 2022 Sep.
Article En | MEDLINE | ID: mdl-36193023

Anthocyanins are important pigments in plants and glycosylation plays an important role in the stability of anthocyanins. Anthocyanin 5-O-glucosyltransferase (5GT) can glycosylate anthocyanin at the 5-O-position. Till now, the enzymatic activity characteristics of 5GT had been studied in vitro in a variety of plants. However, the subcellular localization of 5GT protein still remained unclear, and little genetic evidence on the roles of 5GT in plants has been reported. The full-length Ph5GT gene from petunia (Petunia hybrida) was isolated in this study. Green fluorescent fusion protein assays revealed that Ph5GT protein was localized to the cytoplasm. Ph5GT was found to be highly expressed in flowers, with highest levels of expression occurring during the coloring stage of flower development. Furthermore, Ph5GT silencing led to the change in flower color from purple to light purple and a significant reduction in total anthocyanin content. The metabolome analysis revealed that the content of malvidins and petunidins modified by glycosylation at the 5-O-position was significantly reduced, while the content of their precursor without glycosylation was significantly increased, implying that Ph5GT could glycosylate malvidin and petunidin derivatives and that the substrate types of Ph5GT were expanded in comparison to previous studies.


Anthocyanins , Petunia , Anthocyanins/metabolism , Petunia/genetics , Flavonoids/metabolism , Flowers/genetics , Flowers/metabolism , Plants/metabolism , Metabolome , Color
5.
BMC Plant Biol ; 22(1): 38, 2022 Jan 19.
Article En | MEDLINE | ID: mdl-35045826

BACKGROUND: Agronomic treatments such as the application of nitrogen fertilizer and topping (removal of the inflorescence and top leaves) cause substantial changes in plant metabolism. To explore these changes, we conducted comparative transcriptomic and metabolomic analyses of leaves collected from four positions along the stem on plants exposed to two nitrogen doses and with different numbers of leaves retained after topping in tobacco (Nicotiana tabacum). RESULTS: We identified 13,330 unique differentially expressed genes and 32 differentially abundant metabolites. Through RNA-seq and WGCNA analyze, we constructed 2 co-expression networks (green and blue) highly correlation to N application and leaf number retained, predicted a hub gene NtGER3 may play an important role in N metabolism related to amino acid (cysteine) through CK pathway in tobacco leaves, NtARFs may participated in modulating the auxin signal and N in bottom leaves and NtRAP2.12 as key gene involved in N regulation by ethylene pathway. What's more, our data prove C/N transformation and balance affect the "source - flow - sink" redistribution and remobilization in tobacco during growth and development process. CONCLUSIONS: Overall, this comparative transcriptomics study provides novel insight into the complex molecular mechanisms underlying plant responses to different levels of nitrogen application and the number of leaves remaining after topping in plants.


Fertilizers , Nicotiana/drug effects , Nitrogen/pharmacology , Plant Leaves/drug effects , Plant Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Gene Regulatory Networks , Inflorescence , Metabolome , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Sequence Analysis, RNA , Nicotiana/genetics , Nicotiana/metabolism
6.
FASEB J ; 35(5): e21565, 2021 05.
Article En | MEDLINE | ID: mdl-33864414

The uterus undergoes distinct molecular and functional changes during pregnancy and parturition. These processes are associated with the dramatic changes in various proteins. Given that the maturation and activation of many proteins require proteolytic processing by proprotein convertases (PCs), we sought to explore the role of PCs in uterine activation for labor. First, we found that furin was the most dramatically increased PC member in myometrial tissues from the pregnant women after onset of labor at term. Using the model of cultured human myometrial smooth muscle cells (HMSMCs), we showed that furin inhibitor CMK, D6R treatment and furin siRNA transfection suppressed contractility. Inhibition of furin activity or interfering furin expression decreased connexin 43 (CX43), prostaglandin (PG) endoperoxide synthase-2 (COX-2) and PGF2α receptor (FP) expression and NF-κB activation. In mouse model, administration of furin inhibitors prolonged gestational length. However, D6R treatment did not affect RU38486- and lipopolysaccharides (LPS)-induced preterm birth. Furthermore, D6R and furin siRNA treatment reduced the release of soluble form of tumor necrosis factor (TNF)-related weak inducer of apoptosis (TWEAK), while furin overexpression led to an increase in soluble TWEAK release in cultured HMSMCs. D6R treatment decreased TWEAK level in blood of pregnant mice. TWEAK treatment promoted contractility and NF-κB activation, while TWEAK receptor fibroblast growth factor-inducible 14 (FN14) antagonist treatment inhibited contractility and NF-κB activation in HMSMCs. In pregnant mice, administration of FN14 antagonist prolonged gestational length. Our data suggest that furin can act as a stimulator for uterine activation for labor at term. TWEAK is one of the potential substrates which mediate furin regulation of parturition initiation.


Disease Models, Animal , Furin/metabolism , Gene Expression Regulation , Labor, Obstetric , Myocytes, Smooth Muscle/physiology , Myometrium/physiology , Uterine Contraction , Animals , Cells, Cultured , Female , Furin/genetics , Humans , Mice , Mice, Inbred ICR , Myocytes, Smooth Muscle/cytology , Myometrium/cytology , NF-kappa B/genetics , NF-kappa B/metabolism , Pregnancy , Premature Birth/physiopathology , Receptors, Tumor Necrosis Factor/genetics , Receptors, Tumor Necrosis Factor/metabolism , Signal Transduction , Tumor Necrosis Factors/genetics , Tumor Necrosis Factors/metabolism
7.
Plant Sci ; 305: 110835, 2021 Apr.
Article En | MEDLINE | ID: mdl-33691969

Anthocyanins are important flavonoid pigments in plants. Malonyl CoA is an important intermediate in anthocyanin synthesis, and citrate, formed by citrate synthase (CS) catalysing oxaloacetate, is the precursor for the formation of malonyl-CoA. CS is composed of two isoforms, mitochondrial citrate synthase (mCS), a key enzyme of the tricarboxylic acid (TCA) cycle, and citrate synthase (CSY) localizated in microbodies in plants. However, no CS isoform involvement in anthocyanin synthesis has been reported. In this study, we identified the entire CS family in petunia (Petunia hybrida): PhmCS, PhCSY1 and PhCSY2. We obtained petunia plants silenced for the three genes. PhmCS silencing resulted in abnormal development of leaves and flowers. The contents of citrate and anthocyanins were significantly reduced in flowers in PhmCS-silenced plants. However, silencing of PhCSY1 and/or PhCSY2 did not cause a visible phenotype change in petunia. These results showed that PhmCS is involved in anthocyanin synthesis and the development of leaves and flowers, and that the citrate involved in anthocyanin synthesis mainly derived from mitochondria rather than microbodies in petunia.


Anthocyanins/biosynthesis , Anthocyanins/genetics , Citrate (si)-Synthase/genetics , Citrate (si)-Synthase/metabolism , Flowers/enzymology , Flowers/genetics , Petunia/enzymology , Petunia/genetics , Gene Expression Regulation, Plant , Genes, Mitochondrial
8.
J Chromatogr A ; 1626: 461361, 2020 Aug 30.
Article En | MEDLINE | ID: mdl-32797840

The alkaloid enantiomers are well-known to have different physiological and pharmacological effects, and to play an important role in enantioselectivity metabolism with enzymes catalysis in tobacco plants. Here, we developed an improved method for simultaneous and high-precision determination of the individual enantiomers of nornicotine, anatabine and anabasine in four tobacco matrices, based on an achiral gas chromatography-nitrogen phosphorus detector (GCNPD) with commonly available Rtx-200 column using (1S)-(-)-camphanic chloride derivatization. The method development consists of the optimization of extraction and derivatization, screening of achiral column, analysis of the fragmentation mechanisms and evaluation of matrix effect (ME). Under the optimized experimental conditions, the current method exhibited excellent detection capability for the alkaloid enantiomers, with coefficients of determination (R2) > 0.9989 and normality test of residuals P > 0.05 in linear regression parameters. The ME can be neglected for the camphanic derivatives. The limit of detection (LOD) and limit of quantitation (LOQ) ranged from 0.087 to 0.24 µg g - 1 and 0.29 to 0.81 µg g - 1, respectively. The recoveries and within-laboratory relative standard deviations (RSDR) were 94.3%~104.2% and 0.51%~3.89%, respectively. The developed method was successfully applied to determine the enantiomeric profiling of cultivars and curing processes. Tobacco cultivars had a significant impact on the nornicotine, anatabine, anabasine concentration and enantiomeric fraction (EF) of (R)-nornicotine, whereas the only significant change induced by the curing processes was an increase in the EF of (R)-anabasine.


Alkaloids/analysis , Anabasine/analysis , Chromatography, Gas/methods , Nicotiana/chemistry , Nicotine/analogs & derivatives , Pyridines/analysis , Alkaloids/chemistry , Anabasine/chemistry , Bridged-Ring Compounds/chemistry , Chlorides/chemistry , Lactones/chemistry , Nicotine/analysis , Nicotine/chemistry , Pyridines/chemistry , Stereoisomerism
10.
Sci Rep ; 10(1): 10846, 2020 07 02.
Article En | MEDLINE | ID: mdl-32616740

In plants, the shikimate pathway generally occurs in plastids and leads to the biosynthesis of aromatic amino acids. Chorismate synthase (CS) catalyses the last step of the conversion of 5-enolpyruvylshikimate 3-phosphate (EPSP) to chorismate, but the role of CS in the metabolism of higher plants has not been reported. In this study, we found that PhCS, which is encoded by a single-copy gene in petunia (Petunia hybrida), contains N-terminal plastidic transit peptides and peroxisomal targeting signals. Green fluorescent protein (GFP) fusion protein assays revealed that PhCS was localized in chloroplasts and, unexpectedly, in peroxisomes. Petunia plants with reduced PhCS activity were generated through virus-induced gene silencing and further characterized. PhCS silencing resulted in reduced CS activity, severe growth retardation, abnormal flower and leaf development and reduced levels of folate and pigments, including chlorophylls, carotenoids and anthocyanins. A widely targeted metabolomics analysis showed that most primary and secondary metabolites were significantly changed in pTRV2-PhCS-treated corollas. Overall, the results revealed a clear connection between primary and specialized metabolism related to the shikimate pathway in petunia.


Anthocyanins/metabolism , Chloroplasts/enzymology , Flowers/growth & development , Gene Expression Regulation, Plant , Peroxisomes/enzymology , Petunia/growth & development , Phosphorus-Oxygen Lyases/metabolism , Flowers/metabolism , Petunia/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
11.
Genomics ; 112(6): 4009-4022, 2020 11.
Article En | MEDLINE | ID: mdl-32650092

Although the leaf is the most important photosynthetic organ in most plants, many of the molecular mechanisms underlying leaf developmental dynamics remain to be explored. To better understand the transcriptional regulatory mechanisms involved in leaf development, we conducted comparative transcriptomic and metabolomic analysis of leaves from seven positions on tobacco (Nicotiana tabacum) plants. A total of 35,622 unique differentially expressed genes and 79 metabolites were identified. A time-series expression analysis detected two interesting transcriptional profiles, one comprising 10,197 genes that displayed continual up-regulation during leaf development and another comprising 4696 genes that displayed continual down-regulation. Combining these data with co-expression network results identified four important regulatory networks involved in photorespiration and the tricarboxylic acid cycle; these networks may regulate carbon/nitrogen balance during leaf development. We also found that the transcription factor NtGATA5 acts as a hub associated with C and N metabolism and chloroplast development during leaf development through regulation of phytohormones. Furthermore, we investigated the transcriptional dynamics of genes involved in the auxin, cytokinin, and jasmonic acid biosynthesis and signaling pathways during tobacco leaf development. Overall, our study greatly expands the understanding of the regulatory network controlling developmental dynamics in plant leaves.


Metabolomics , Nicotiana/genetics , Plant Leaves/genetics , Transcriptome , Nicotiana/metabolism
12.
J Exp Bot ; 71(16): 4858-4876, 2020 08 06.
Article En | MEDLINE | ID: mdl-32364241

Cytosolic acetyl-CoA is an intermediate of the synthesis of most secondary metabolites and the source of acetyl for protein acetylation. The formation of cytosolic acetyl-CoA from citrate is catalysed by ATP-citrate lyase (ACL). However, the function of ACL in global metabolite synthesis and global protein acetylation is not well known. Here, four genes, PaACLA1, PaACLA2, PaACLB1, and PaACLB2, which encode the ACLA and ACLB subunits of ACL in Petunia axillaris, were identified as the same sequences in Petunia hybrida 'Ultra'. Silencing of PaACLA1-A2 and PaACLB1-B2 led to abnormal leaf and flower development, reduced total anthocyanin content, and accelerated flower senescence in petunia 'Ultra'. Metabolome and acetylome analysis revealed that PaACLB1-B2 silencing increased the content of many downstream metabolites of acetyl-CoA metabolism and the levels of acetylation of many proteins in petunia corollas. Mechanistically, the metabolic stress induced by reduction of acetyl-CoA in PaACL-silenced petunia corollas caused global and specific changes in the transcriptome, the proteome, and the acetylome, with the effect of maintaining metabolic homeostasis. In addition, the global proteome and acetylome were negatively correlated under acetyl-CoA deficiency. Together, our results suggest that ACL acts as an important metabolic regulator that maintains metabolic homeostasis by promoting changes in the transcriptome, proteome. and acetylome.


Petunia , Proteome , ATP Citrate (pro-S)-Lyase , Acetyl Coenzyme A , Flowers/genetics , Homeostasis , Petunia/genetics
13.
J Chromatogr A ; 1603: 401-406, 2019 Oct 11.
Article En | MEDLINE | ID: mdl-31122729

Phenols in tobacco smoke can adversely affect health with serious consequences that include cardiovascular toxicity, tumor promotion and genotoxic activity. Hence, an improved method involving in situ acetylation and dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography-mass spectrometry (GC-MS) was developed for the determination of 39 phenols in mainstream tobacco smoke (MTS). The in situ acetylation was optimized using four protocols, after which the effects of experimental variables on acetylation efficiency were studied using a multifactorial experimental design. The optimum conditions were found to involve an initial 75 µL volume of acetic anhydride, 140 mg of NaHCO3 and 72 mg of K2CO3. The phenolic acetates were then subjected to DLLME, after which they were identified and quantified by GC-MS. A total of 32 additional phenols were tentatively identified. Good linearity was observed with R > 0.999 and each lack-of-fit P > 0.05. The relative recoveries were in the range of 94.8-104.3% with repeatabilities and reproducibilities less than 5.5% and 6.8%, respectively. The limits of detection ranged from 1.12 to 1.74 ng cig-1, with high enrichment factors between 87 and 144. This method was applied to the MTS from three commercial cigarettes with different tar levels. The results provide valuable information for assessing the risks of phenols.


Gas Chromatography-Mass Spectrometry/methods , Liquid Phase Microextraction/methods , Phenols/analysis , Tobacco Smoke Pollution/analysis , Acetylation , Limit of Detection , Reference Standards , Reproducibility of Results , Solvents/chemistry
14.
J Sep Sci ; 40(23): 4571-4582, 2017 Dec.
Article En | MEDLINE | ID: mdl-29131486

This work describes a rapid, stable, and accurate method for determining the free amino acids, biogenic amines, and ammonium in tobacco. The target analytes were extracted with microwave-assisted extraction and then derivatized with diethyl ethoxymethylenemalonate, followed by ultra high performance liquid chromatography analysis. The experimental design used to optimize the microwave-assisted extraction conditions showed that the optimal extraction time was 10 min with a temperature of 60°C. The stability of aminoenone derivatives was improved by keeping the pH near 9.0, and there was no obvious degradation during the 80°C heating and room temperature storage. Under optimal conditions, this method showed good linearity (R2 > 0.999) and sensitivity (limits of detection 0.010-0.081 µg/mL). The extraction recoveries were between 88.4 and 106.5%, while the repeatability and reproducibility ranged from 0.48 to 5.12% and from 1.56 to 6.52%, respectively. The newly developed method was employed to analyze the tobacco from different geographical origins. Principal component analysis showed that four geographical origins of tobacco could be clearly distinguished and that each had their characteristic components. The proposed method also showed great potential for further investigations on nitrogen metabolism in plants.


Amino Acids/analysis , Ammonium Compounds/analysis , Biogenic Amines/analysis , Nicotiana/chemistry , Chromatography, High Pressure Liquid , Microwaves , Reproducibility of Results
15.
Reproduction ; 153(5): 535-543, 2017 05.
Article En | MEDLINE | ID: mdl-28188160

Recent evidence suggests that uterine activation for labor is associated with inflammation within uterine tissues. Hydrogen sulfide (H2S) plays a critical role in inflammatory responses in various tissues. Our previous study has shown that human myometrium produces H2S via its generating enzymes cystathionine-γ-lyase (CSE) and cystathionine-ß-synthetase (CBS) during pregnancy. We therefore explored whether H2S plays a role in the maintenance of uterine quiescence during pregnancy. Human myometrial biopsies were obtained from pregnant women at term. Uterine smooth muscle cells (UMSCs) isolated from myometrial tissues were treated with various reagents including H2S. The protein expression of CSE, CBS and contraction-associated proteins (CAPs) including connexin 43, oxytocin receptor and prostaglandin F2α receptor determined by Western blot. The levels of cytokines were measured by ELISA. The results showed that CSE and CBS expression inversely correlated to the levels of CAPs and activated NF-κB in pregnant myometrial tissues. H2S inhibited the expression of CAPs, NF-κB activation and the production of interleukin (IL)-1ß, IL-6 and tumor necrosis factor α (TNFα) in cultured USMCs. IL-1ß treatment reversed H2S inhibition of CAPs. Knockdown of CSE and CBS prevented H2S suppression of inflammation. H2S modulation of inflammation is through KATP channels and phosphoinositide 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) signaling pathways. H2S activation of PI3K and ERK signaling is dependent on KATP channels. Our data suggest that H2S suppresses the expression of CAPs via inhibition of inflammation in myometrium. Endogenous H2S is one of the key factors in maintenance of uterine quiescence during pregnancy.


Air Pollutants/pharmacology , Hydrogen Sulfide/pharmacology , Inflammation/drug therapy , Labor, Obstetric/drug effects , Uterine Contraction/drug effects , Uterus/drug effects , Cells, Cultured , Cystathionine gamma-Lyase/metabolism , Cytokines/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Gene Expression Regulation/drug effects , Humans , Inflammation/metabolism , Labor, Obstetric/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myometrium/cytology , Myometrium/drug effects , Myometrium/metabolism , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pregnancy , Signal Transduction/drug effects , Uterine Contraction/metabolism , Uterus/metabolism
16.
J Exp Bot ; 68(3): 457-467, 2017 01 01.
Article En | MEDLINE | ID: mdl-28204578

Anthocyanins, a class of flavonoids, are responsible for the orange to blue coloration of flowers and act as visual attractors to aid pollination and seed dispersal. Malonyl-CoA is the precursor for the formation of flavonoids and anthocyanins. Previous studies have suggested that malonyl-CoA is formed almost exclusively by acetyl-CoA carboxylase, which catalyzes the ATP-dependent formation of malonyl-CoA from acetyl-CoA and bicarbonate. In the present study, the full-length cDNA of Petunia hybrida acyl-activating enzyme 13 (PhAAE13), a member of clade VII of the AAE superfamily that encodes malonyl-CoA synthetase, was isolated. The expression of PhAAE13 was highest in corollas and was down-regulated by ethylene. Virus-induced gene silencing of petunia PhAAE13 significantly reduced anthocyanin accumulation, fatty acid content, and cuticular wax components content, and increased malonic acid content in flowers. The silencing of PhAAE3 and PhAAE14, the other two genes in clade VII of the AAE superfamily, did not change the anthocyanin content in petunia flowers. This study provides strong evidence indicating that PhAAE13, among clade VII of the AAE superfamily, is specifically involved in anthocyanin biosynthesis in petunia flowers.


Anthocyanins/metabolism , Flowers/metabolism , Gene Expression , Gene Silencing , Malonates/metabolism , Petunia/genetics , Plant Proteins/genetics , Amino Acid Sequence , Ethylenes/metabolism , Gene Expression/drug effects , Gene Expression/radiation effects , Petunia/enzymology , Petunia/metabolism , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Sequence Alignment , Ultraviolet Rays
17.
J Sep Sci ; 39(13): 2573-83, 2016 Jul.
Article En | MEDLINE | ID: mdl-27145427

Polyamines are ubiquitous polycationic molecules that play a key role in many biological processes such as nucleic acid metabolism, protein synthesis, cell growth, and nicotine synthesis precursors. This work describes a rapid, sensitive, convenient, green, and cost-effective method for the determination of polyamines in Nicotiana tabacum by ultra high performance liquid chromatography with photodiode array detection. The analytes were derivatized with 3,5-dinitrobenzoyl chloride at low temperature (about 4°C) and then extracted with vortex-assisted liquid-liquid microextraction. The experimental designs based on quarter-fractional factorial design and Doehlert design were used to screen and optimize the important factors in microextraction process. Under the optimal conditions, the method was linear over 0.05-8.00 µg/mL with an r(2) ≥ 0.992 and exhibited good repeatability and reproducibility less than 6.0 and 6.9%, respectively. The limit of detection ranged between 0.013 and 0.029 µg/g. The newly developed method was successfully employed to analyze different leaf samples of Nicotiana tabacum, among which the polyamines contents were found to be very different. Moreover, tyramine, 1,3-diaminopropane, homospermidine, and canavalmine were tentatively identified with the electrospray ionization quadrupole time-of-flight mass spectrometry. To our knowledge, this is the first report of identification of canavalmine in Nicotiana Tabacum.


Liquid Phase Microextraction , Nicotiana/chemistry , Polyamines/analysis , Temperature , Molecular Conformation
18.
Anal Chim Acta ; 882: 90-100, 2015 Jul 02.
Article En | MEDLINE | ID: mdl-26043096

A novel derivatization-ultrasonic assisted-dispersive liquid-liquid microextraction (UA-DLLME) method for the simultaneous determination of 11 main carbohydrates in tobacco has been developed. The combined method involves pressurized liquid extraction (PLE), derivatization, and UA-DLLME, followed by the analysis of the main carbohydrates with a gas chromatography-flame ionization detector (GC-FID). First, the PLE conditions were optimized using a univariate approach. Then, the derivatization methods were properly compared and optimized. The aldononitrile acetate method combined with the O-methoxyoxime-trimethylsilyl method was used for derivatization. Finally, the critical variables affecting the UA-DLLME extraction efficiency were searched using fractional factorial design (FFD) and further optimized using Doehlert design (DD) of the response surface methodology. The optimum conditions were found to be 44 µL for CHCl3, 2.3 mL for H2O, 11% w/v for NaCl, 5 min for the extraction time and 5 min for the centrifugation time. Under the optimized experimental conditions, the detection limit of the method (LODs) and linear correlation coefficient were found to be in the range of 0.06-0.90 µg mL(-1) and 0.9987-0.9999. The proposed method was successfully employed to analyze three flue-cured tobacco cultivars, among which the main carbohydrate concentrations were found to be very different.


Carbohydrates/analysis , Liquid Phase Microextraction/methods , Nicotiana/chemistry , Ultrasonics , Chromatography, Gas , Pressure
19.
Article Zh | MEDLINE | ID: mdl-25185288

OBJECTIVE: Aimed to discuss the perioperative treatment of the patient with asthma under endoscopic sinus surgery, to reduce the complications, adverse events and improve cure rate. METHOD: One hundred and fifty-two patients with asthma under nasal endoscopic surgery were analyzed retrospectively. RESULT: After specification of perioperative treatment, all patients with good control of asthma were in good condition before surgery. One hundred and sixteen patients were safely backed to ward after surgery. There were 13 cases had asthma attack of different degrees. The other 35 patients were send to ICU for observation of 24 to 48 h. One case had an acute attack after returned from ICU. One patient had instantly attacks of asthma after extubation. All patients improved after treatment,and recovered well after 1 year's follow-up. CONCLUSION: We should pay more attention to the close relationship of CRS and asthma, standardize the perioperative treatment, master the principles of management of acute attack of asthma. As long as to make sufficient perioperative preparation, the nasal endoscopic surgery with asthma is safe, and it can have good efficacy.


Asthma/complications , Endoscopy , Rhinitis/surgery , Sinusitis/surgery , Adolescent , Adult , Aged , Aged, 80 and over , Child , Chronic Disease , Female , Follow-Up Studies , Humans , Male , Middle Aged , Retrospective Studies , Rhinitis/complications , Sinusitis/complications , Treatment Outcome , Young Adult
20.
Int J Mol Sci ; 15(4): 6137-60, 2014 Apr 11.
Article En | MEDLINE | ID: mdl-24733065

The growth and development of plants are sensitive to their surroundings. Although numerous studies have analyzed plant transcriptomic variation, few have quantified the effect of combinations of factors or identified factor-specific effects. In this study, we performed RNA sequencing (RNA-seq) analysis on tobacco leaves derived from 10 treatment combinations of three groups of ecological factors, i.e., climate factors (CFs), soil factors (SFs), and tillage factors (TFs). We detected 4980, 2916, and 1605 differentially expressed genes (DEGs) that were affected by CFs, SFs, and TFs, which included 2703, 768, and 507 specific and 703 common DEGs (simultaneously regulated by CFs, SFs, and TFs), respectively. GO and KEGG enrichment analyses showed that genes involved in abiotic stress responses and secondary metabolic pathways were overrepresented in the common and CF-specific DEGs. In addition, we noted enrichment in CF-specific DEGs related to the circadian rhythm, SF-specific DEGs involved in mineral nutrient absorption and transport, and SF- and TF-specific DEGs associated with photosynthesis. Based on these results, we propose a model that explains how plants adapt to various ecological factors at the transcriptomic level. Additionally, the identified DEGs lay the foundation for future investigations of stress resistance, circadian rhythm and photosynthesis in tobacco.


Nicotiana/genetics , RNA/metabolism , Soil/chemistry , Transcriptome , Circadian Rhythm/physiology , Climate , Gene Expression Profiling , Photosynthesis , Plant Leaves/genetics , Plant Leaves/metabolism , Principal Component Analysis , RNA/chemistry , RNA/isolation & purification , Sequence Analysis, RNA , Nicotiana/growth & development , Nicotiana/metabolism
...