Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
Article in English | MEDLINE | ID: mdl-38977548

ABSTRACT

Melting is an efficient method to turn municipal solid waste incineration (MSWI) fly ash (FA) into non-hazardous material. Coal fly ash (CFA) was selected as the silica-alumina source to carry out co-melting research with MSWI FA in this work. The effects of the temperature and the CFA content on mineral transformation and the migration characteristics of heavy metals were analyzed. The results showed that the mixtures of MSWI FA and CFA reacted at high temperatures to mainly generate Ca2Al2SiO7, Ca2SiO4, and CaAl2Si2O8 primarily and then melted and formed the amorphous-phase vitreous body when the CFA content was more than 40% and the temperature was higher than 1300 °C. During the melting process, Cd and Pb were almost volatilized, while Cr, Mn, and Ni were almost retained. Besides, the volatilization rates of Cu and Zn fluctuated with the temperature and the CFA content. Suitable treatment temperature and CFA content were conducive to the transformation of the heavy metals in the FA into stable forms, and the melting products were no longer hazardous wastes because the vitreous body could effectively encapsulate heavy metals. This study aims to help reuse the FA and CFA collaboratively and be more environmentally friendly.

2.
Molecules ; 29(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38999139

ABSTRACT

With the intensification of the energy crisis, it is urgent to vigorously develop new environment-friendly energy storage materials. In this work, coexisting ferroelectric and relaxor-ferroelectric phases at a nanoscale were constructed in Sr(Zn1/3Nb2/3)O3 (SZN)-modified (Bi0.5Na0.5)0.94Ba0.06TiO3 (BNBT) ceramics, simultaneously contributing to large polarization and breakdown electric field and giving rise to a superior energy storage performance. Herein, a high recoverable energy density (Wrec) of 5.0 J/cm3 with a conversion efficiency of 82% at 370 kV/cm, a practical discharged energy density (Wd) of 1.74 J/cm3 at 230 kV/cm, a large power density (PD) of 157.84 MW/cm3, and an ultrafast discharge speed (t0.9) of 40 ns were achieved in the 0.85BNBT-0.15SZN ceramics characterized by the coexistence of a rhombohedral-tetragonal phase (ferroelectric state) and a pseudo-cubic phase (relaxor-ferroelectric state). Furthermore, the 0.85BNBT-0.15SZN ceramics also exhibited excellent temperature stability (25-120 °C) and cycling stability (104 cycles) of their energy storage properties. These results demonstrate the great application potential of 0.85BNBT-0.15SZN ceramics in capacitive pulse energy storage devices.

3.
Front Microbiol ; 15: 1409593, 2024.
Article in English | MEDLINE | ID: mdl-39027101

ABSTRACT

Neoehrlichia mikurensis (N. mikurensis) is an emerging tick-borne pathogen that can cause neoehrlichiosis. Rodents are considered the major host for N. mikurensis. Currently, N. mikurensis has been detected in rodents in several studies from China and other countries. However, no research on N. mikurensis infection in rodents has been reported in the Liupan mountain region. The region of Liupan Mountain, located in northwestern China, is the center of the triangle formed by the cities of Xi'an, Yinchuan, and Lanzhou, with multiple tourist sites in the region. To survey whether there is N. mikurensis in hosts, rodents were captured in this region in September 2020. A nested polymerase chain reaction was used to detect the DNA of N. mikurensis, followed by nucleotide sequencing and phylogenetic analysis. In the region, among 88 rodents, 3 rodents were detected positive for N. mikurensis, a detection rate of 3.4%. Based on phylogenetic analysis of the partial groEL gene sequences, N. mikurensis from rodents in Liupan Mountain clustered in the same evolutionary branch with those found in rodents from Japan, Russia, and northeastern China, and also in ticks and clinical cases from Heilongjiang Province in northeastern China.

4.
Biochem Biophys Res Commun ; 725: 150248, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38870847

ABSTRACT

The excessive migration and proliferation of vascular smooth muscle cells (VSMCs) plays a vital role in vascular intimal hyperplasia. CIRBP is involved in the proliferation of various cancer cells. This study was aimed to explore the role of CIRBP in the proliferation and migration of VSMCs. Adenovirus was used to interfere with cold-inducible RNA-binding protein (CIRBP) expression, while lentivirus was used to overexpress Ras homolog enriched in brain (Rheb). Western blotting and qRT-PCR were used to evaluate the expression of CIRBP, Rheb, and mechanistic target of rapamycin complex 1 (mTORC1) activity. The cell proliferation was determined by Ki67 immunofluorescence staining and CCK-8 assay. The wound healing assay was performed to assess cell migration. Additionally, immunohistochemistry was conducted to explore the role of CIRBP in intimal hyperplasia after vascular injury. We found that silencing CIRBP inhibited the proliferation and migration of VSMCs, decreased the expression of Rheb and mTORC1 activity. Restoration of mTORC1 activity via insulin or overexpression of Rheb via lentiviral transfection both attenuated the inhibitory effects of silencing CIRBP on the proliferation and migration of VSMCs. Moreover, Rheb overexpression abolished the inhibitory effect of silencing CIRBP on mTORC1 activity in VSMCs. CIRBP was upregulated in the injured carotid artery. Silencing CIRBP ameliorated intimal hyperplasia after vascular injury. In the summary, silencing CIRBP attenuates mTORC1 activity via reducing Rheb expression, thereby supressing the proliferation and migration of VSMCs and intimal hyperplasia after vascular injury.


Subject(s)
Cell Movement , Cell Proliferation , Mechanistic Target of Rapamycin Complex 1 , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , RNA-Binding Proteins , Ras Homolog Enriched in Brain Protein , Mechanistic Target of Rapamycin Complex 1/metabolism , Ras Homolog Enriched in Brain Protein/metabolism , Ras Homolog Enriched in Brain Protein/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/pathology , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/cytology , Cells, Cultured , Signal Transduction , Male , Rats , Rats, Sprague-Dawley , Humans
5.
Opt Express ; 32(11): 19105-19116, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859053

ABSTRACT

The practical application of integrated gyroscopes in engineering has not yet been fully realized due to the linear correlation between the Sagnac effect and dimensions. In recent demonstrations, gyroscopes operating near exceptional points (EPs) under parity-time (PT) symmetry have shown significant potential in enhancing their response to rotational rates. However, constructing higher-order EPs with refined physical properties poses a considerable challenge. Additionally, current methods for constructing higher-order EPs with robustness primarily rely on passive cavities, with almost no reports on constructing robust EPs using PT-symmetric systems that encompass both gain and loss. Here, we propose a robust design for a scalable fabrication of higher-order EP gyroscopes with PT-symmetric structure. We investigate the influence of perturbations on the frequency splitting of the higher-order EP gyroscope and demonstrate that it is possible to achieve a resonance splitting eight orders of magnitude higher than that obtained through the classical Sagnac effect. In comparison to the previously proposed PT-symmetric gyroscope, our solution allows a tunable frequency splitting by adjusting the phase shift, making it more measurable at the output power spectrum.

6.
Zookeys ; 1204: 105-133, 2024.
Article in English | MEDLINE | ID: mdl-38873219

ABSTRACT

Three new species of the genus Stenohya Beier, 1967 from China are described: Stenohyagibba sp. nov. and S.papillata sp. nov. from Hunan Province, and S.guangmingensis sp. nov. from Jiangxi Province. In addition to their sexually dimorphic pedipalp, these three new species also have a uniquely sexual dimorphic leg I, which has not been reported in other Stenohya species. Additionally, an updated key to the Chinese Stenohya species is provided.

7.
Exp Biol Med (Maywood) ; 249: 10112, 2024.
Article in English | MEDLINE | ID: mdl-38715976

ABSTRACT

Chronic inflammation is a key element in the progression of essential hypertension (EH). Calcium plays a key role in inflammation, so its receptor, the calcium-sensing receptor (CaSR), is an essential mediator of the inflammatory process. Compelling evidence suggests that CaSR mediates inflammation in tissues and immune cells, where it mediates their activity and chemotaxis. Macrophages (Mφs) play a major role in the inflammatory response process. This study provided convincing evidence that R568, a positive regulator of CaSR, was effective in lowering blood pressure in spontaneously hypertensive rats (SHRs), improving cardiac function by alleviating cardiac hypertrophy and fibrosis. R568 can increase the content of CaSR and M2 macrophages (M2Mφs, exert an anti-inflammatory effect) in myocardial tissue, reduce M1 macrophages (M1Mφs), which have a pro-inflammatory effect in this process. In contrast, NPS2143, a negative state regulator of CaSR, exerted the opposite effect in all of the above experiments. Following this study, R568 increased CaSR content in SHR myocardial tissue, lowered blood pressure, promoted macrophages to M2Mφs and improved myocardial fibrosis, but interestingly, both M1Mφs and M2Mφs were increased in the peritoneal cavity of SHRs, the number of M2Mφs remained lower than M1Mφs. In vitro, R568 increased CaSR content in RAW264.7 cells (a macrophage cell line), regulating intracellular Ca2+ ([Ca2+]i) inhibited NOD-like receptor family protein 3 (NLRP3) inflammasome activation and ultimately prevented its conversion to M1Mφs. The results showed that a decrease in CaSR in hypertensive rats causes further development of hypertension and cardiac damage. EH myocardial remodeling can be improved by CaSR overexpression by suppressing NLRP3 inflammasome activation and macrophage polarization toward M1Mφs and increasing M2Mφs.


Subject(s)
Macrophages , Receptors, Calcium-Sensing , Ventricular Remodeling , Animals , Male , Mice , Rats , Blood Pressure , Fibrosis/metabolism , Hypertension/metabolism , Hypertension/pathology , Macrophages/metabolism , Myocardium/pathology , Myocardium/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Inbred SHR , Receptors, Calcium-Sensing/metabolism , Ventricular Remodeling/physiology
8.
Indian J Orthop ; 58(5): 587-597, 2024 May.
Article in English | MEDLINE | ID: mdl-38694692

ABSTRACT

Background: Lumbar disc herniation is a common degenerative lumbar disease with an increasing incidence. Percutaneous endoscopic lumbar discectomy can treat lumbar disc herniation safely and effectively with a minimally invasive procedure. However, the learning curve of this technology is steep, which means that initial learners are often not sufficiently proficient in endoscopic operations, which can easily lead to iatrogenic damage. At present, the application of computer deep learning technology to clinical diagnosis, treatment, and surgical navigation has achieved satisfactory results. Purpose: The objective of our team is to develop a multi-element identification system for the visual field of endoscopic spine surgery using deep learning algorithms and to evaluate the feasibility of this system. Method: We established an image database by collecting surgical videos of 48 patients diagnosed with lumbar disc herniation, which was labeled by two spinal surgeons. We selected 6000 images of the visual field of percutaneous endoscopic spine surgery (including various tissue structures and surgical instruments), divided into the training data, validation data, and test data according to 2:1:2. We developed convolutional neural network models based on instance segmentation-Solov2, CondInst, Mask R-CNN and Yolact, and set the four network model backbone as ResNet101 and ResNet50 respectively. Mean average precision (mAP) and frames per second (FPS) were used to measure the performance of each model for classification, localization and recognition in real time, and AP (average) is used to evaluate how easily an element is detected by neural networks based on computer deep learning. Result: Comprehensively comparing mAP and FSP of each model for bounding box test and segmentation task for the test set of images, we found that Solov2 (ResNet101) (mAP = 73.5%, FPS = 28.9), Mask R-CNN (ResNet101) (mAP = 72.8%, FPS = 28.5) models are the most stable, with higher precision and faster image processing speed. Combining the average precision of the elements in the bounding box test and segmentation tasks in each network, the AP(average) was highest for tool 3 (bbox-0.85, segm-0.89) and lowest for tool 5 (bbox-0.63, segm-0.72) in the instrumentation, whereas in the anatomical tissue elements, the fibrosus annulus (bbox-0.68, segm-0.69) and ligamentum flavum (bbox-0.65, segm-0.62) had higher AP(average),while extra-dural fat (bbox-0.42, segm-0.44) was lowest. Conclusion: Our team has developed a multi-element identification system for the visual field of percutaneous endoscopic spine surgery adapted to the interlaminar and foraminal approaches, which can identify and track anatomical tissue (nerve, ligamentum flavum, nucleus pulposus, etc.) and surgical instruments (endoscopic forceps, an high-speed diamond burr, etc.), which can be used in the future as a virtual educational tool or applied to the intraoperative real-time assistance system for spinal endoscopic operation.

9.
Int J Nanomedicine ; 19: 4121-4136, 2024.
Article in English | MEDLINE | ID: mdl-38736655

ABSTRACT

Purpose: This study aims to broaden the application of nano-contrast agents (NCAs) within the realm of the musculoskeletal system. It aims to introduce novel methods, strategies, and insights for the clinical management of ischemic muscle disorders, encompassing diagnosis, monitoring, evaluation, and therapeutic intervention. Methods: We developed a composite encapsulation technique employing O-carboxymethyl chitosan (OCMC) and liposome to encapsulate NCA-containing gold nanorods (GNRs) and perfluoropentane (PFP). This nanoscale contrast agent was thoroughly characterized for its basic physicochemical properties and performance. Its capabilities for in vivo and in vitro ultrasound imaging and photothermal imaging were authenticated, alongside a comprehensive biocompatibility assessment to ascertain its effects on microcirculatory perfusion in skeletal muscle using a murine model of hindlimb ischemia, and its potential to augment blood flow and facilitate recovery. Results: The engineered GNR@OCMC-liposome/PFP nanostructure exhibited an average size of 203.18±1.49 nm, characterized by size uniformity, regular morphology, and a good biocompatibility profile. In vitro assessments revealed NCA's potent photothermal response and its transformation into microbubbles (MBs) under near-infrared (NIR) irradiation, thereby enhancing ultrasonographic visibility. Animal studies demonstrated the nanostructure's efficacy in photothermal imaging at ischemic loci in mouse hindlimbs, where NIR irradiation induced rapid temperature increases and significantly increased blood circulation. Conclusion: The dual-modal ultrasound/photothermal NCA, encapsulating GNR and PFP within a composite shell-core architecture, was synthesized successfully. It demonstrated exceptional stability, biocompatibility, and phase transition efficiency. Importantly, it facilitates the encapsulation of PFP, enabling both enhanced ultrasound imaging and photothermal imaging following NIR light exposure. This advancement provides a critical step towards the integrated diagnosis and treatment of ischemic muscle diseases, signifying a pivotal development in nanomedicine for musculoskeletal therapeutics.


Subject(s)
Contrast Media , Gold , Ischemia , Muscle, Skeletal , Nanotubes , Ultrasonography , Animals , Gold/chemistry , Nanotubes/chemistry , Contrast Media/chemistry , Contrast Media/pharmacology , Mice , Ischemia/diagnostic imaging , Ischemia/therapy , Muscle, Skeletal/diagnostic imaging , Ultrasonography/methods , Hindlimb/blood supply , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Liposomes/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Muscular Diseases/diagnostic imaging , Muscular Diseases/therapy , Photothermal Therapy/methods , Disease Models, Animal , Humans , Pentanes
10.
Oncol Lett ; 28(1): 320, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38807668

ABSTRACT

Gliomas are highly malignant and invasive tumors lacking clear boundaries. Previous bioinformatics and experimental analyses have indicated that F-box and leucine-rich repeat protein 6 (FBXL6), a protein crucial for the cell cycle and tumorigenesis, is highly expressed in certain types of tumors. The high expression level of FBXL6 is reported to promote tumor growth and adversely affect patient survival. However, the molecular mechanism, prognostic value and drug sensitivity of FBXL6 in glioma remain unclear. To address this, the present study analyzed FBXL6 expression in gliomas, utilizing data from The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases. Analysis of FBXL6 mRNA expression levels, combined with patient factors such as age, sex and tumor grade using Kaplan-Meier plots and nomograms, demonstrated a strong correlation between FBXL6 expression and glioma progression. Co-expression networks provided further insights into the biological function of FBXL6. Additionally, using CIBERSORT and TISDB tools, the correlation between FBXL6 expression correlation tumor-infiltrating immune cells and immune genes was demonstrated to be statistically significant. These findings were validated by examining FBXL6 mRNA and protein levels in glioma tissues using various techniques, including western blot, reverse transcription-quantitative PCR and immunohistochemistry. These assays demonstrated the role of FBXL6 in glioma progression. Furthermore, drug sensitivity analysis demonstrated a strong correlation between FBXL6 expression and various drugs, which indicated that FBXL6 may potentially act as a future promising therapeutic target in glioma treatment. Therefore, the present study identified FBXL6 as a diagnostic and prognostic marker in patients with gliomas and highlighted its potential role in glioma progression.

11.
Cell Rep ; 43(4): 114070, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38583156

ABSTRACT

Nucleotide oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome hyperactivation contributes to many human chronic inflammatory diseases, and understanding how NLRP3 inflammasome is regulated can provide strategies to treat inflammatory diseases. Here, we demonstrate that NLRP3 Cys126 is palmitoylated by zinc finger DHHC-type palmitoyl transferase 7 (ZDHHC7), which is critical for NLRP3-mediated inflammasome activation. Perturbing NLRP3 Cys126 palmitoylation by ZDHHC7 knockout, pharmacological inhibition, or modification site mutation diminishes NLRP3 activation in macrophages. Furthermore, Cys126 palmitoylation is vital for inflammasome activation in vivo. Mechanistically, ZDHHC7-mediated NLRP3 Cys126 palmitoylation promotes resting NLRP3 localizing on the trans-Golgi network (TGN) and activated NLRP3 on the dispersed TGN, which is indispensable for recruitment and oligomerization of the adaptor ASC (apoptosis-associated speck-like protein containing a CARD). The activation of NLRP3 by ZDHHC7 is different from the termination effect mediated by ZDHHC12, highlighting versatile regulatory roles of S-palmitoylation. Our study identifies an important regulatory mechanism of NLRP3 activation that suggests targeting ZDHHC7 or the NLRP3 Cys126 residue as a potential therapeutic strategy to treat NLRP3-related human disorders.


Subject(s)
Acetyltransferases , Acyltransferases , Cysteine , Inflammasomes , Lipoylation , NLR Family, Pyrin Domain-Containing 3 Protein , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Acyltransferases/metabolism , Humans , Animals , Cysteine/metabolism , Mice , HEK293 Cells , Mice, Inbred C57BL , trans-Golgi Network/metabolism , Macrophages/metabolism
12.
Med Phys ; 51(6): 4351-4364, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38687043

ABSTRACT

BACKGROUND: Alberta Stroke Program Early Computed Tomography Score (ASPECTS) is a standardized semi-quantitative method for early ischemic changes in acute ischemic stroke. PURPOSE: However, ASPECTS is still affected by expert experience and inconsistent results between readers in clinical. This study aims to propose an automatic ASPECTS scoring model based on diffusion-weighted imaging (DWI) mode to help clinicians make accurate treatment plans. METHODS: Eighty-two patients with stroke were included in the study. First, we designed a new deep learning network for segmenting ASPECTS scoring brain regions. The network is improved based on U-net, which integrates multiple modules. Second, we proposed using hybrid classifiers to classify brain regions. For brain regions with larger areas, we used brain grayscale comparison algorithm to train machine learning classifiers, while using hybrid feature training for brain regions with smaller areas. RESULTS: The average DICE coefficient of the segmented hindbrain area can reach 0.864. With the proposed hybrid classifier, our method performs significantly on both region-level ASPECTS and dichotomous ASPECTS. The sensitivity and accuracy on the test set are 95.51% and 93.43%, respectively. For dichotomous ASPECTS, the intraclass correlation coefficient (ICC) between our automated ASPECTS score and the expert reading was 0.87. CONCLUSIONS: This study proposed an automated model for ASPECTS scoring of patients with acute ischemic stroke based on DWI images. Experimental results show that the method of segmentation first and then classification is feasible. Our method has the potential to assist physicians in the Alberta Stroke Program with early CT scoring and clinical stroke diagnosis.


Subject(s)
Automation , Deep Learning , Diffusion Magnetic Resonance Imaging , Image Processing, Computer-Assisted , Ischemic Stroke , Humans , Ischemic Stroke/diagnostic imaging , Image Processing, Computer-Assisted/methods , Aged , Male , Middle Aged , Female , Brain Ischemia/diagnostic imaging
13.
Mol Biol Rep ; 51(1): 546, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642246

ABSTRACT

Breast cancer is a leading cause of mortality and the most prevalent form of malignant tumor among women worldwide. Breast cancer cells exhibit an elevated glycolysis and altered glucose metabolism. Moreover, these cells display abnormal glycosylation patterns, influencing invasion, proliferation, metastasis, and drug resistance. Consequently, targeting glycolysis and mitigating abnormal glycosylation represent key therapeutic strategies for breast cancer. This review underscores the importance of protein glycosylation and glucose metabolism alterations in breast cancer. The current research efforts in developing effective interventions targeting glycolysis and glycosylation are further discussed.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/metabolism , Glycosylation , Glycolysis , Glucose/metabolism , Cell Line, Tumor , Cell Proliferation
14.
J Ethnopharmacol ; 330: 118181, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38608798

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cymbopogon (Poaceae) plants have been used for various purposes by many indigenous peoples in all continents. In particular, almost all species in the genus have traditionally been used as folk medicine to treat ailments. Traditional application records indicated that Cymbopogon might be used extensively to treat cold, dizziness, headache, loss of appetite, abdominal pain, rheumatism, diarrhea, whole grass for cold, sore throat, tracheitis and others. AIMS OF THE REVIEW: Despite several research confirmed that Cymbopogon includes a range of active components, no review has been undertaken to consolidate information on its traditional uses, phytochemistry, pharmacology, and/or quality control. Thus this article aims to update a comprehensive review about the traditional uses, phytochemistry, pharmacology, cultivation techniques, economic benefits, trade, threats, and future conservation implications of Cymbopogon species. It may provide informative data for future development and further investigation of this important plant group. MATERIALS AND METHODS: Traditional medicinal books and ethnomedicinal publications related to Cymbopogon from 1992 to 2023 were collated to investigate its ethnobotanical, phytochemical and pharmacological information. The online databases including Google Scholar, SciFinder, Web of Science, Scopus, Springer Link, PubMed, Wiley, China National Knowledge Infrastructure (CNKI), Baidu Scholar, and WanFang Database were screened. RESULTS: Cymbopogon (Gramineae or Poaceae) plants have been grown worldwide. Traditional Chinese medicine and other medicinal systems believes that Cymbopogon has the effect of relieve a cough, analgesia, treating dizziness, traumatic injury and can relieve abdominal pain. A total of 153 compounds, including flavonoids, terpenoids, fatty acid and other compounds were isolated or identified from Cymbopogon species by phytochemical studies. The extracts or compounds from Cymbopogon have exhibited numerous biological activities such as antibacterial, antiinflammatory, antiviral, antineoplastic, antiarrhythmic, antidiabetic and other activities. The rich contents of citronellal, citronellol and geraniol found in Cymbopogon also provide significant nutritional benefits. CONCLUSION: Based on their traditional uses, phytochemicals, and pharmacological activities, Cymbopogon plants are potential medicinal and edible resources with diverse pharmacological effects. Due to various advantages of this group, they possess huge application potential in food and pharmaceutical industries, and animal husbandry. Among them, citronella is very important in terms of economic development. Further comprehensive research to evaluate the medicinal properties of Cymbopogon species will be necessary for future development.


Subject(s)
Cymbopogon , Ethnobotany , Ethnopharmacology , Medicine, Traditional , Phytochemicals , Phytotherapy , Cymbopogon/chemistry , Humans , Phytochemicals/pharmacology , Phytochemicals/analysis , Phytochemicals/chemistry , Animals , Medicine, Traditional/methods , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Plants, Medicinal/chemistry
15.
Int J Biol Macromol ; 268(Pt 2): 131950, 2024 May.
Article in English | MEDLINE | ID: mdl-38685547

ABSTRACT

Hydrogels with favorable biocompatibility and antibacterial properties are essential in postoperative wound hemorrhage care, facilitating rapid wound healing. The present investigation employed electrostatic adsorption of black phosphorus nanosheets (BPNPs) and nano­silver (AgNPs) to cross-link the protonated amino group NH3+ of quaternized chitosan (QCS) with the hydroxyl group of hyaluronic acid (HA). The electrostatic interaction between the two groups resulted in the formation of a three-dimensional gel network structure. Additionally, the hydrogel containing AgNPs deposited onto BPNPs was assessed for its antibacterial properties and effects on wound healing. Hydrogel demonstrated an outstanding drug-loading capacity and could be employed for wound closure. AgNPs loaded on the BPNPs released silver ions and exhibited potent antibacterial properties when exposed to 808 nm near-infrared (NIR) radiation. The ability of the hydrogel to promote wound healing in an acute wound model was further evaluated. The BPNPs were combined with HA and QCS in the aforementioned hydrogel system to improve adhesion, combine the photothermal and antibacterial properties of the BPNPs, and promote wound healing. Therefore, the reported hydrogels displayed excellent biocompatibility and hold significant potential for application in the field of tissue engineering for skin wound treatment.


Subject(s)
Anti-Bacterial Agents , Chitosan , Hydrogels , Metal Nanoparticles , Phosphorus , Silver , Skin , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Wound Healing/drug effects , Silver/chemistry , Silver/pharmacology , Phosphorus/chemistry , Metal Nanoparticles/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Skin/drug effects , Mice , Rats , Male
16.
Adv Mater ; 36(25): e2400681, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555504

ABSTRACT

Photo-mineralization of microplastics under mild conditions has emerged as a promising solution to plastic waste disposal. However, the inadequate contact between oxygen, water-insoluble polyolefin microplastics, and photocatalysts remains a critical issue. In this study, a TiO2 hierarchical porous layer (TiO2-HPL) photocatalyst is presented to establish air-plastic-solid triphase interfaces for the photothermal mineralization of polyolefins. The wettability of the TiO2-HPL-based triphase interface is finely controlled from plastophobic to plastophilic. High-resolution imaging and finite element simulation demonstrate the significance of a semiwetting state in achieving multidirectional oxygen diffusion through the hierarchical pore structure while maintaining sufficient contact between the plastic phase and photocatalysts. For low-density polyethylene, the TiO2-HPL achieves a photothermal mineralization rate of 5.63 mmol g-1 h-1 and a conversion of 26.3% after 20 h of continuous irradiation. Additionally, the triphase photocatalytic system with semiwetting gas-plastic-solid interfaces shows good universality for various polyolefin reagents and products, illustrating its potential in achieving efficient photothermal mineralization of non-degradable microplastics.

17.
Chem Commun (Camb) ; 60(31): 4206-4209, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38523529

ABSTRACT

A novel silyl radical-induced cascade silylation/cyclization of 1,7-dienes has been realized employing readily available hydrosilanes as a silicon source and Cu(I) salt as a catalyst. This protocol introduces diverse silicon fragments into a challenging 7-membered ring structure and provides an efficient approach to a wide array of biologically important silyl-substituted benzo[b]azepin-2-ones. Several control experiments suggest that the reaction undergoes a free radical process. The gram-scale synthesis and late-stage transformations further demonstrate the scalability and applicability of the reaction in organic synthesis.

18.
J Control Release ; 368: 329-343, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431094

ABSTRACT

Rheumatoid arthritis (RA) is a prevalent autoimmune disease characterized by excessive inflammation in the joints. Glucocorticoid drugs are used clinically to manage RA symptoms, while their dosage and duration need to be tightly controlled due to severe adverse effects. Using dexamethasone (DEX) as a model drug, we explored here whether peptide-guided delivery could increase the safety and therapeutic index of glucocorticoids for RA treatment. Using multiple murine RA models such as collagen-induced arthritis (CIA), we found that CRV, a macrophage-targeting peptide, can selectively home to the inflammatory synovium of RA joints upon intravenous injection. The expression of the CRV receptor, retinoid X receptor beta (RXRB), was also elevated in the inflammatory synovium, likely being the basis of CRV targeting. CRV-conjugated DEX increased the accumulation of DEX in the inflamed synovium but not in healthy organs of CIA mice. Therefore, CRV-DEX demonstrated a stronger efficacy to suppress synovial inflammation and alleviate cartilage/bone destruction. Meanwhile, CRV conjugation reduced immune-related adverse effects of DEX even after a long-term use. Last, we found that RXRB expression was significantly elevated in human patient samples, demonstrating the potential of clinical translation. Taken together, we provide a novel, peptide-targeted strategy to improve the therapeutic efficacy and safety of glucocorticoids for RA treatment.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Humans , Mice , Animals , Glucocorticoids/therapeutic use , Arthritis, Rheumatoid/drug therapy , Inflammation , Arthritis, Experimental/drug therapy , Peptides/therapeutic use , Therapeutic Index
19.
Appl Opt ; 63(5): 1347-1354, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38437315

ABSTRACT

A multi-wavelength confocal displacement sensor based on a flat-field concave grating (FFCG) was proposed and designed; the large dispersion and small volume of the FFCG make it an ideal candidate for replacing the complex dispersive lens group. The designed displacement sensor was calibrated by displacement meter, and the characteristics were measured. Consequently, for the proposed displacement sensor, the displacement range of 6.8 mm was measured with the R-square linearity evaluation coefficient of 0.998, and the sensitivity preceded 17.1 nm/mm. The resolution of the displacement sensor was characterized by 70 µm, as well as a full width at half maximum (FWHM) fluctuating around 1.63 nm, indicating high precision and accuracy in displacement measurement. Moreover, the stability and reliability of the sensor were verified within 20 min, with no significant wavelength shifts, and gentle power fluctuations of 557.73 counts at 520 nm and 563.67 counts at 545.05 nm, respectively.

20.
Front Nutr ; 11: 1369331, 2024.
Article in English | MEDLINE | ID: mdl-38549750

ABSTRACT

Background: Early-onset sarcopenia refers to the progressive loss of muscle mass and function that occurs at an early age. This condition perpetuates the vicious cycle of muscle loss and is associated with adverse outcomes. It is important to identify the contributing factors for early intervention and prevention. While diet is known to impact muscle mass, the association of B vitamins with early-onset sarcopenia remains unexplored. Objectives: To investigate the association of B vitamins intake with early-onset sarcopenia risk in a cross-sectional study. Methods: We conducted data analysis on a total of 8,711 participants aged between 20 and 59 years who took part in the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2018. Early-onset sarcopenia was defined as a SMI measured by DXA that was one standard deviation below the sex-specific mean of the reference population. B vitamins intake (B1, B2, B3, B6, B9, and B12) was assessed by 24-h dietary recall. We used weighted multiple logistic regression and RCS models to estimate the OR and 95% CI of sarcopenia by B vitamins intake, adjusting for demographic, physical, lifestyle, comorbidities, and nutritional covariates. Results: Higher intake of vitamin B1 was associated with a 22% lower sarcopenia risk (OR = 0.78, CI = 0.63-0.97, p = 0.022), and higher intake of vitamin B2 with a 16% lower risk (OR = 0.84, CI = 0.74-0.97, p = 0.012) in both genders. Gender-specific analyses showed a 28% reduction in sarcopenia risk among males with each additional mg of vitamin B1 intake (OR = 0.72, CI = 0.52-0.97, p = 0.038), and a 26% decrease among females with each additional mg of vitamin B2 intake (OR = 0.74, CI = 0.57-0.96, p = 0.021). No significant differences were found between vitamin B2 and males, or between vitamin B1 and females. The RCS model suggested a nonlinear relationship between vitamin B2 intake and sarcopenia risk (POverall = 0.001, PNonlinear = 0.033), with a plateau effect above 3 mg/d. Conclusion: Higher intake of vitamin B1 and B2 may lower the risk of early-onset sarcopenia, with gender differences. This suggests the potential of nutritional intervention by increasing these vitamins intake through diet and supplements. Further research is warranted to elucidate the mechanisms and design targeted interventions.

SELECTION OF CITATIONS
SEARCH DETAIL
...