Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Mikrochim Acta ; 190(8): 290, 2023 07 13.
Article En | MEDLINE | ID: mdl-37442817

A cationic perylene probe was designed and synthesized for sensitive determination of tartrazine. In the presence of tartrazine, the fluorescence of the perylene probe was quenched by efficient supramolecular self-assembly of the perylene derivate. The quenching is caused by the synergistic effect of noncovalent interactions including static electricity, π-π stacking, and hydrophobic interaction. Benefiting from these advantages, the probe exhibited excellent sensing performance to tartrazine within 2 min. The detection and quantification limit of tartrazine are as low as 2.42 and 8.07 nmol L-1, respectively, with a wide linear operation range from 15 to 500 nmol L-1. Most importantly, due to the high binding affinity (3.22 × 107 mol L-1) between the perylene probe and tartrazine, the sensing system shows great anti-interference capacity. Subsequently, the visualization application of the approach was evaluated by portable device, and the limits of detection for visual detection for test strip, membrane, and hydrogel were 0.5, 0.5, and 5 µmol L-1, respectively. The approach has been applied to monitor tartrazine in various food condiments with recoveries in the range 91.29-108.83%. As far as we know, this is the first report of using perylene-based probe for tartrazine determination, offering a promising strategy for the construction of perylene-based detection system in the field of food safety.


Perylene , Tartrazine , Fluorescent Dyes/chemistry , Perylene/chemistry , Imides/chemistry
2.
Food Chem ; 425: 136449, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37295213

Accurate on-site analysis of tetracycline (TC) is of great research value for ensuring food safety and estimating environmental pollution. Herein, a smartphone-based fluorescent platform for TC detectionhas been developed based on a europium functionalized metal-organic framework (Zr-MOF/Cit-Eu). Based on the inner filter and antenna effect between Zr-MOF/Cit-Eu and TC, the probe exhibited a ratiometric fluorescent response toward TC, resulting in an emission color change from blue to red. Excellent sensing performance was achieved with a detection limit of 3.9 nM, consistent with the linear operation spanning nearly four orders of magnitude. Subsequently, visual test strips based on Zr-MOF/Cit-Eu were prepared, possessing the potential for accurate testing of TC via RGB signals. Finally, the proposed platform was well applied in actual samples with satisfied recoveries (92.27 to 110.22%). This MOF-based on-site fluorescent platform holds great potential on constructing intelligent platform for visual and quantitative detection of organic contaminants.


Europium , Smartphone , Fluorescent Dyes , Tetracycline , Anti-Bacterial Agents/analysis , Spectrometry, Fluorescence/methods
3.
Anal Chem ; 95(21): 8250-8257, 2023 05 30.
Article En | MEDLINE | ID: mdl-37186575

Aflatoxin B1 (AFB1) is a kind of potently carcinogenic fungal metabolite in food threatening human health, and it is crucial and challenging to develop advanced nonimmune approaches for AFB1 determination. Addressing this challenge, we successfully constructed a nanoassembly (PdE-PDI/SDS) by noncovalently coupling a cationic perylene diimide derivative (PdE-PDI) and sodium dodecyl sulfate (SDS), exhibiting high-density charges and a specific surface area for rapid sensing of AFB1. The large electronic conjugate structure and rigid plane of PdE-PDI enable it to form more stable σ-π, π-π coordination, and hydrogen bonds with AFB1. Additionally, the introduction of SDS significantly amplifies noncovalent interactions and enhances the quenching efficiency of PdE-PDI toward AFB1. The proposed PdE-PDI/SDS exhibited excellent specificity to AFB1 and showed dosage-sensitive detection with detection limit as low as 0.74 ng mL-1. Finally, the PdE-PDI/SDS was successfully applied in cereal samples with good recoveries from 94.61 to 109.92%. To our knowledge, this is the first time a fluorescent strategy from the point of self-assembly for AFB1 determination is reported, which holds great promise for wide applications of perylene diimide derivative in food safety.


Aptamers, Nucleotide , Biosensing Techniques , Perylene , Humans , Food Contamination/analysis , Fluorescent Dyes/chemistry , Aflatoxin B1/analysis , Sodium Dodecyl Sulfate , Limit of Detection , Aptamers, Nucleotide/chemistry
4.
Small ; 19(9): e2205092, 2023 Mar.
Article En | MEDLINE | ID: mdl-36534831

Three CoFe-bimetallic oxides with different compositions (termed as CoFeOx -A/N/H) are prepared by thermally treating metal-organic-framework (MOF) precursors under different atmospheres (air, N2, and NaBH4 /N2 ), respectively. With the aid of vast oxygen vacancies (Ov ), cobalt at tetrahedral sites (Co2+ (Th)) in spinel Co3 O4 is diffused into interstitial octahedral sites (Oh) to form rocksalt CoO and ternary oxide CoFe2 O4 has been induced to give the unique defective CoO/CoFe2 O4 heterostructure. The resultant CoFeOx -H exhibits superb electrocatalytic activity toward water oxidation: overpotential at 10 mA cm-2 is 192 mV, which is 122 mV smaller than that of CoFeOx -A. The smaller Tafel slope (42.53 mV dec-1 ) and higher turnover frequency (785.5 h-1 ) suggest fast reaction kinetics. X-ray absorption spectroscopy, ex situ characterizations, and theoretical calculations reveal that defect engineering effectively tunes the electronic configuration to a more active state, resulting in the greatly decreased binding energy of oxo intermediates, and consequently much lower catalytic overpotential. Moreover, the construction of hetero-interface in CoFeOx -H can provide rich active sites and promote efficient electron transfer. This work may shed light on a comprehensive understanding of the modulation of electron configuration of bimetallic oxides and inspire the smart design of high-performance electrocatalysts.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121843, 2023 Jan 15.
Article En | MEDLINE | ID: mdl-36099730

Surface-enhanced Raman scattering (SERS) enables food contaminants monitoring become facile and efficient. Herein, a facile strategy of integrating three-dimensional Ni form with Co/Ni bimetal-organic frameworks combining Ag nanoparticles via electrochemical synthesis method was proposed to develop a high-performance SERS substrate (CoNi-ZIFs@Ag@NF) for efficient detection of tetracycline. The flexible Ni foam (NF) acted as scaffold which can contribute to dramatically enhancing intrinsic electrical conductivity and endowing prepared substrate with high stability and uniform distribution of Ag nanoparticles. Furthermore, the pre-concentration effect of CoNi-ZIFs@Ag@NF for target molecules enhanced SERS performance dramatically. Besides, tetracycline was sensitively detected using CoNi-ZIFs@Ag@NF with low limit of detection (1.0 × 10-11 M) and wide linear detection range (10-10 - 10-5 M) in aqueous solution. Also, the satisfactory recovery (94.45 - 114.25 %) was realized with less than 6.78 % of RSD in real samples. This method would provide a potential and high-performance substrate for SERS monitoring of tetracycline in food and environment.


Metal Nanoparticles , Silver , Silver/chemistry , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Electrochemical Techniques , Tetracycline , Anti-Bacterial Agents
6.
Ying Yong Sheng Tai Xue Bao ; 33(7): 1843-1852, 2022 Jul.
Article Zh | MEDLINE | ID: mdl-36052787

Soil crust is a normal natural phenomenon with different water hydrophilicity and repellency due to different formation mechanism, thus affecting soil hydraulic characteristics and hydrological cycle. In this study, we measured water repellent characteristics of physical and biological crusts under different vegetations in the field using water drop penetration time (WDPT). The surface morphology of crusts was observed using scanning electron microscopy, and the infiltration characteristics of crusts and their non-crust soils (control) was evaluated with micro-infiltration device. The results showed that: 1) The average WDPT of physical crusts and the control soils was 3.3 s and 0.9 s, respectively, indicating that both were hydrophilic. The average WDPT of biological crusts ranged from 20.9 s to 140.9 s, which was 2.8 to 19 times that of control, and that under Diospyros lotus and Robinia pseudoacacia was 134.5 s and 140.9 s, respectively. 2) Compared with the control, the cumulative infiltration amount, average infiltration rate and moisture absorption force of physical crusts decreased by 0-4.3%, 3.5%-5.1%, and 27.2%-90.1%, respectively, while those of biological crusts decreased by 0-25%, 1.4%-28.2% and 36.0%-84.9%, respectively. 3) Regardless of the presence of crusts or not, there were "hockey-stick-like" curves by using Philip model to fit infiltration data. Before the WRCT point in the "hockey-stick-like" curve, the point source infiltration was mainly horizontal diffusion. After the WRCT point, the infiltration was mainly vertical diffusion. The presence of soil crust prolonged the formation time of the turning point. In all, physical crusts formed by inorganic mineral particles blocking the surface soil did not affect water repellency, while biological crusts that reflected the effects of hydrophobic organic compounds on soil structure enhanced its water repellency. Both physical crusts and biological crusts decreased the cumulative infiltration amount and average infiltration rate of soil. Compared with the control, physical crusts mainly affected soil hygroscopicity, but with limited effects on the steady infiltration rate. Biological crust decreased soil hygroscopicity and increased steady infiltration rate.


Cyanobacteria , Water , Ecosystem , Soil/chemistry , Soil Microbiology , Water/analysis
7.
Food Chem ; 384: 132607, 2022 Aug 01.
Article En | MEDLINE | ID: mdl-35258000

Enhancing catalytic activity is the key to develop electrochemical sensors for monitoring of neonicotinoid such as imidacloprid (IMI), thiamethoxam (THX) and dinotefuran (DNF). Herein, a MOF-derived octahedral NiCu nanoporous carbon composite with abundant N-doped (N/NiCu@C) was synthesized, which was exploited as electrochemical sensor for neonicotinoid determination. Integrating the synergistic effect of NiCu nanoalloy and the hierarchical porous carbon structure, the N/NiCu@C/GCE significantly promoted the diffusion between electrolyte and active site. Meanwhile, the introduction of polyvinylpyrrolidone (PVP) improved the hydrophilicity and dispersibility of N/NiCu@C, endowing superior electrocatalytic performance for IMI, THX and DNF determination, with linear ranges of 0.5-60, 1-60 and 0.5-60 µM, respectively, and detection limits of 0.017, 0.007 and 0.001 µM. Additionally, the sensor can determine IMI, THX and DNF in apples, tomatoes and potatoes with the recovery rate of 92.1-103.4% and RSD ≤ 4.7%. This study has explored a novel modified electrode material for construction of neonicotinoid sensors.


Carbon , Electrochemical Techniques , Carbon/chemistry , Electrodes , Neonicotinoids , Porosity
8.
Small ; 17(37): e2101674, 2021 Sep.
Article En | MEDLINE | ID: mdl-34342118

In order to satisfy the growing requirements of wearable electronic devices, 1D fiber-shaped devices with outstanding sensitivity, flexibility, and stability are urgently needed. In this study, a novel inorganic-organic heterojunction fibrous photodetector (FPD) based on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and highly ordered TiO2 nanotube array is fabricated, which endows a high responsivity, large external quantum efficiency, and fast response speed at 3 V bias. To further ameliorate its performance in the self-powered mode, a facile acid treatment is adopted and the assembled H-PEDOT:PSS/TiO2 FPD demonstrates outstanding self-powered properties with ≈3000% responsivity enhancement (161 mA W-1 at 0 V under 365 nm irradiation, photocurrent enhancement of ≈50 times) compared with the untreated device. It is found that the concentrated H2 SO4 post-treatment helps decrease the tube wall thickness of TiO2 and partially removes the insulated PSS component in PEDOT:PSS, leading to enhanced conductivity and facilitated charge transportation, and thereby superb responsivity/photocurrent enhancement of self-powered H-PEDOT:PSS/TiO2 FPD. This low-cost and high-performance self-powered FPD shows high potential for applications in wearable electronic devices.

9.
Food Chem ; 349: 129202, 2021 Jul 01.
Article En | MEDLINE | ID: mdl-33582540

In this work, we propose a electrochemical enzyme-free glucose sensor by direct growth of conductive Ni/Co bimetal MOF on carbon cloth [Ni/Co(HHTP)MOF/CC] via a facile hydrothermal method. Due to excellent conductivity between Ni/Co(HHTP)MOF and CC, synergic catalytic effect of Ni and Co elements, the Ni/Co(HHTP)MOF/CC not only provides larger surface area and more effective active sites, but also boosts the charge transports and electro-catalytic performance. Under optimized conditions, the Ni/Co(HHTP)MOF/CC shows excellent activity with a linear range of 0.3 µM-2.312 mM, a low detection limit of 100 nM (S/N = 3), a fast response time of 2 s and a high sensitivity of 3250 µA mM-1 cm-2. Furthermore, the Ni/Co(HHTP)MOF/CC was successfully applied for the detection of glucose in real serum and beverages with competitive performances. This facile and cost-effective method provides a novel strategy for monitoring of glucose in biological and food samples.


Beverages/analysis , Carbon/chemistry , Cobalt/chemistry , Electrochemistry/instrumentation , Glucose/analysis , Metal-Organic Frameworks/chemistry , Nickel/chemistry , Blood Glucose/analysis , Catalysis , Electric Conductivity , Humans , Limit of Detection
10.
J Hazard Mater ; 411: 125122, 2021 06 05.
Article En | MEDLINE | ID: mdl-33485221

Electrochemical analysis enables pesticides monitoring become rapid and efficient. Herein, novel three dimensional nitrogen-doped macro-meso-microporous carbon composites (N/Cu-HPC) derived from polyvinylpyrrolidone (PVP) doped Cu-metal organic framework were successfully formed via one-pot solvothermal method followed by pyrolysis, which were further applied in high-performance electrochemical determination of neonicotinoid. The introduction of PVP endows the N/Cu-HPC good hydrophilicity preventing aggregation as well as more highly electronegative nitrogen species boosting electro-catalytic property dramatically. Interestingly, the macro-meso-microporous architecture improves mass and charge transports between neonicotinoid molecules and active sites such as Cu nanoparticles and carbon atoms possessing Lewis basicity next to pyridinic-N. Based on the N/Cu-HPC, imidacloprid (IDP), thiamethoxam (THA) and dinotefuran (DNF) were detected with wide linear detection ranges (0.5-60 µM for both IDP and DNF, 1-60 µM for THA) and low detection limits (0.026 µM for IDP, 0.062 µM for THA and 0.01 µM for DNF). Meanwhile, this sensor can be successfully used for determination of IDP, THA and DNF in oat, corn and rice with good recoveries (92.0-100.9%, RSD ≤ 4.8%), demonstrating that the N/Cu-HPC possesses a high potential to be an advanced sensing device for monitoring neonicotinoid in agricultural products.

11.
Food Chem ; 341(Pt 1): 128231, 2021 Mar 30.
Article En | MEDLINE | ID: mdl-33011476

A sensitive photothermal immunochromatographic test strip (PITS) for the detection of deoxynivalenol (DON) was developed using flower-like gold nanoparticle-deposited manganese dioxide nanocarrier (FMD-G NC) labeled antibodies (Abs) as the photothermal-sensing probe. FMD was used as a template to deposit small gold nanoparticles (GNPs) to synthesize FMD-G NC with large specific surface area and significant photothermal conversion property. The FMD-G-Ab probe was competitively captured by DON target and antigen coated on test line (T-line), forming colorimetric signals under naked eyes and photothermal signals under an 808 nm laser. Under optimal conditions, the PITS exhibited sensitive and specific detection of DON from 0.19 ng mL-1 to 12 ng mL-1 with detection limits of 0.013 ng mL-1, which were over 15-fold and 58-fold more sensitive than visual FMD-G-ITS and traditional GNPs-ITS. In addition, the novel FMD-G-PITS possessed a universal applicability, which could be well applied in green bean, corn, and millet.


Chromatography, Affinity/instrumentation , Gold/chemistry , Limit of Detection , Manganese Compounds/chemistry , Metal Nanoparticles/chemistry , Molecular Conformation , Oxides/chemistry , Temperature , Colorimetry
12.
Inorg Chem ; 59(24): 18205-18213, 2020 Dec 21.
Article En | MEDLINE | ID: mdl-33285064

In this work, a novel zirconium-based metal-organic framework (MOF) composite material, UiO-(OH)2@RhB, has been solvothermally prepared with zirconyl chloride octahydrate, 2,5-dihydroxyterephthalic acid, and rhodamine B (RhB) for ratiometric fluorescence sensing of Al3+ ions in an aqueous medium. The luminescence measurement results showed that, at the single excitation wavelength of 420 nm, the fluorescence intensity of the ligand at 500 nm increased significantly in the case of Al3+, while that of RhB at 583 nm changed slightly, together with an apparent color change. Under optimal conditions, UiO-(OH)2@RhB exhibited an extraordinary sensitivity (10 nM), good selectivity, and a fast response (2 min) for Al3+. As far as we know, the limit of detection is superior to that of the current reported MOF-based Al3+ fluorescence sensors. The response mechanism suggested that -OH could capture Al3+ in water through coordination and high electrostatic affinity and achieved turn-on ratiometric fluorescence through the excited-state intramolecular proton transfer process and stable fluorescence of RhB. In addition, this sensor was also applied to actual food samples (grain beans), with the recoveries ranging from 89.08% to 113.61%. Such a turn-on ratiometric fluorescence sensor will provide a constructive strategy for the ultrasensitive detection of Al3+ in practical applications.

13.
Anal Chim Acta ; 1131: 109-117, 2020 Sep 22.
Article En | MEDLINE | ID: mdl-32928471

Conventional immunochromatographic assays (ICAs) based on gold nanoparticles (GNPs) suffer from the disadvantage of low sensitivity. In this work, a highly sensitive ICA based on polydopamine coated zirconium metal-organic frameworks labeled antibodies (ZrPA-Ab) as a novel probe was developed for visual determination of deoxynivalenol (DON). The ZrPA was synthesized via an oxidative self-polymerized assembly (OPMA) strategy using porphyrin functionalized zirconium metal-organic frameworks (Zr-MOFs, MOF-525) and polydopamine (PDA). The Abs could directly attach to the ZrPA surface owing to the large specific surface area, excellent water-stability and bio-compatibility of the ZrPA, on this basis, a sensitive, precise and reliable immunoassay method can be developed for rapid and selective detection of DON. Under optimized conditions, a non-linear calibration curve was obtained in the range of 0-50 ng/mL DON concentration with an IC50 of 1.22 ng/mL, and the visual detection limit was 0.18 ng/mL, which was about 8-times more sensitive than that of the conventional GNPs-based ICA. Finally, the proposed ZrPA-ICA was successfully applied for the detection of DON in pig hind legs meat, green bean, maize and millet samples, revealing the feasible and reliable application of this biosensor in different food matrices. Thus, this work broadens the possibilities for the use of MOFs as a novel labeling carrier in immunoassays.


Metal Nanoparticles , Metal-Organic Frameworks , Gold , Immunoassay , Indoles , Polymers , Trichothecenes , Zirconium
14.
Talanta ; 219: 121255, 2020 Nov 01.
Article En | MEDLINE | ID: mdl-32887146

Covalent organic frameworks (COFs) have attracted tremendous interest due to their promising applications, including electrocatalysis originating from their unique structural features. However, it remains a challenge to prepare COFs for p-nitrophenol (PNP) and o-nitrophenol (ONP) electrocatalysis because it is quite difficult to manipulate their dimension, composition, and morphology with abundant active sites. Here, a facile ambient temperature synthesis of unique Fe3O4-based magnetic COFs nanosphere (Fe3O4@AT-COFs) with different surface morphologic structure is reported, which exhibits higher surface area, good water dispersity, long-term stability, excellent electrical conductivity and pre-concentration effect. The prepared Fe3O4@AT-COF-based electrochemical sensor is then directly employed for the simultaneous detection of PNP and ONP with a wide linear detection range of 10-3000 µM and low detection limits (LOD) of 0.2361 µM and 0.6568 µM, respectively. Meanwhile, the Fe3O4@AT-COF can be also well-applied in lake and tap water for monitoring PNP and ONP with outstanding sensitivity and reliability, which is expect to be a high-efficient electrocatalyst with great promise for signal amplification of electrochemical sensing.

15.
Anal Chim Acta ; 1129: 126-135, 2020 Sep 08.
Article En | MEDLINE | ID: mdl-32891382

Acid orange II (AO II), a typical azo pigment, is strictly controlled by legislation and prohibited in foodstuffs. Herein, we prepared gold nanoparticles decorated amino-functionalized Cr-based metal-organic frameworks [NH2-MIL-101(Cr)@Au] via an in-situ reduction method as a surface-enhanced Raman scattering (SERS) substrate for simultaneous adsorption and detection of AO II. Gold nanoparticles are uniformly dispersed on the surface of NH2-MIL-101(Cr) owing to its three-dimensional (3D) structure and the interaction between -NH2 and Au ions, providing more SERS-active "hot spots". These NH2-MIL-101(Cr)@Au nanocomposites exhibited selective and high adsorption performance (419.85 mg g-1) for AO II, and could be used as superior SERS substrates for the detection of AO II with a low limit of detection (LOD) of 0.05 mg L-1 and wide detection range of 0.05-50 mg L-1 using portable Raman spectrometer. Furthermore, this SERS assay has been successfully used to determine AO II in orange juice and chili powder with good sensitivities.


Metal Nanoparticles , Metal-Organic Frameworks , Adsorption , Azo Compounds , Gold , Naphthalenes , Spectrum Analysis, Raman
16.
Food Chem ; 333: 127495, 2020 Dec 15.
Article En | MEDLINE | ID: mdl-32663747

Various pesticides employed in modern agriculture result in large amounts of pesticide residues in agricultural production, greatly threatening human health. Herein, we report a facile approach to fabricate a reduced graphene oxide/cyclodextrin modified glassy carbon electrode (rGO/CD/GCE) for the sensitive electrochemical sensing of imidacloprid (IDP). Three different modified electrodes using CDs (α-, ß-, γ-CD) were fabricated, and their electrochemical performance was further studied. The results demonstrate that α-CD possesses the best signal amplification for IDP. Compared with wet-chemical synthesis of rGO/CDs (W-rGO/CDs), the electrochemical synthesis of rGO/CDs (E-rGO/CDs) produced sensors that showed better performance for IDP sensing. Taking advantage of prepared E-rGO/α-CD nanocomposite, the fabricated sensor offered a low detection limit (0.02 µM) with a wider linear range (0.5-40 µM) and long-term stability. The new sensor was successfully applied for the detection of IDP in brown rice, providing a new technique for efficient and convenient monitoring of pesticide residues in food.


Cyclodextrins/chemistry , Electrochemical Techniques/methods , Graphite/chemistry , Insecticides/analysis , Neonicotinoids/analysis , Nitro Compounds/analysis , Oryza/chemistry , Carbon/chemistry , Electrochemical Techniques/instrumentation , Electrodes , Food Contamination/analysis , Nanocomposites/chemistry , Oxidation-Reduction , Seeds/chemistry , Sensitivity and Specificity
17.
ACS Omega ; 4(3): 5578-5585, 2019 Mar 31.
Article En | MEDLINE | ID: mdl-31459714

Three-dimensional carbon-based porous materials have proven to be quite useful for tailoring material properties in the energy conservation and environmental protection applications. In view of the three-dimensional and well-defined structure of metal-organic frameworks (MOFs), a novel carbon-based magnetic porous material (HKUST-Fe3O4) has been designed and constructed by MOF-guest interactions of high-temperature pyrolysis. The obtained HKUST-Fe3O4 exhibited the unique features of superparamagnetism, a macro/mesoporous structure, environmental protection (inexistence of toxic heavy metal ions), and physicochemical stability and has shown high adsorption capacity and rapid adsorption for carcinogenic organic pollutants (for example, rhodamine B) with an environmentally friendly character and excellent reusability. We demonstrate that the unique/superior advantages of HKUST-Fe3O4 could meet the requirements of environment cleaning, especially for removing the targeted organic pollutant from water. Moreover, the specific HKUST-Fe3O4 and organic pollutant interaction mechanism has been analyzed in detail via parameter-free calculations. This study proposes a promising strategy for constructing novel carbon-based magnetic nanomaterials for various applications, not limitated to pollutant removal.

18.
J Colloid Interface Sci ; 553: 768-777, 2019 Oct 01.
Article En | MEDLINE | ID: mdl-31254874

Developing a facile method to fabricate new heterogeneous Metal-Organic Framework (MOFs) based catalysts with high catalytic activity and stability has drawn significant attention. Herein, we demonstrate a simple in-situ pyrolysis reduction strategy to fabricate a novel three-dimensional (3D) Cu-based catalyst, which displays an outstanding performance for the decomposition of 4-nitrophenol (4-NP). Detailed characterization including SEM, FTIR, XPS, ICP-OES, HRTEM, SAED, XRD and BET confirmed the formation of the Cu/C porous composites (Cu/C-PC). Taking advantage of enormous Cu particles in the composite as well as ultrahigh surface area (196.7 m2/g) of carbon support, Cu/C-PC presents prominent catalytic activity for the hydrogenation reduction 4-NP to 4-aminophenol (4-AP) with apparent rate constant (Kapp) of 0.0267 s-1 (the ratio of Kapp to the catalyst amount is 119 s-1 g-1), which is dramatically higher than that previous reports. On the contrary, after being washed successively (Cu/C-PC-AW) by FeCl3, HCl aqueous solution and deionized water, the Cu/C porous composite materials exhibit fairly weak catalytic activity. The catalytic performance of Cu/C-PC is better than Cu, Cu2O and CuO nanoparticles as well as other catalysts in previous reports. Furthermore, Cu/C-PC shows excellent reusability, indicating its potential applications in treatment of water pollution.

...