Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 257
Filter
1.
Front Cell Dev Biol ; 12: 1431558, 2024.
Article in English | MEDLINE | ID: mdl-39011392

ABSTRACT

Care for patients with peripheral nerve injury is multifaceted, as traditional methods are not devoid of limitations. Although the utilization of neural conduits shows promise as a therapeutic modality for peripheral nerve injury, its efficacy as a standalone intervention is limited. Hence, there is a pressing need to investigate a composite multifunctional neural conduit as an alternative treatment for peripheral nerve injury. In this study, a BDNF-loaded chitosan-based mimetic mussel polymer conduit was prepared. Its unique adhesion characteristics allow it to be suture-free, improve the microenvironment of the injury site, and have good antibacterial properties. Researchers utilized a rat sciatic nerve injury model to evaluate the progression of nerve regeneration at the 12-week postoperative stage. The findings of this study indicate that the chitosan-based mimetic mussel polymer conduit loaded with BDNF had a substantial positive effect on myelination and axon outgrowth. The observed impact demonstrated a favorable outcome in terms of sciatic nerve regeneration and subsequent functional restoration in rats with a 15-mm gap. Hence, this approach is promising for nerve tissue regeneration during peripheral nerve injury.

2.
Front Oncol ; 14: 1364306, 2024.
Article in English | MEDLINE | ID: mdl-38835375

ABSTRACT

Spontaneous ventilation video-assisted thoracoscopic surgery (SV-VATS) has rapidly developed in recent years. The application scope is still being continuously explored. We describe a case in which a 40-year-old woman with mixed ground-glass opacity (GGO) and an esophageal leiomyoma successfully underwent simultaneous segmentectomy and leiomyoma resection through spontaneous ventilation video-assisted thoracoscopic surgery. The perioperative course was uneventful. Postoperative pathology revealed minimally invasive adenocarcinoma and esophageal leiomyoma.

3.
Oncogenesis ; 13(1): 23, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906857

ABSTRACT

Lacking effective therapeutic targets heavily restricts the improvement of clinical prognosis for patients diagnosed with esophageal squamous cell carcinoma (ESCC). Ubiquitin Specific Peptidase 21 (USP21) is dysregulated in plenty of human cancers, however, its potential function and relevant molecular mechanisms in ESCC malignant progression as well as its value in clinical translation remain largely unknown. Here, in vitro and in vivo experiments revealed that aberrant upregulation of USP21 accelerated the proliferation and metastasis of ESCC in a deubiquitinase-dependent manner. Mechanistically, we found that USP21 binds to, deubiquitinates, and stabilizes the G3BP Stress Granule Assembly Factor 1 (G3BP1) protein, which is required for USP21-mediated ESCC progression. Further molecular studies demonstrated that the USP21/G3BP1 axis played a tumor-promoting role in ESCC progression by activating the Wnt/ß-Catenin signaling pathway. Additionally, disulfiram (DSF), an inhibitor against USP21 deubiquitylation activity, markedly abolished the USP21-mediated stability of G3BP1 protein and significantly displayed an anti-tumor effect on USP21-driving ESCC progression. Finally, the regulatory axis of USP21/G3BP1 was demonstrated to be aberrantly activated in ESCC tumor tissues and closely associated with advanced clinical stages and unfavorable prognoses, which provides a promising therapeutic strategy targeting USP21/G3BP1 axis for ESCC patients.

4.
Biomed Pharmacother ; 176: 116931, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870630

ABSTRACT

The lysine-specific demethylase 1 (KDM1A) is reported to be a regulator in learning and memory. However, the effect of KDM1A in oxycodone rewarding memory has yet to be studied. In our study, rewarding memory was assessed by using conditioned place preference (CPP) in male mice. Next generation sequencing and chromatin immunoprecipitation-PCR were used to explore the molecular mechanisms. Oxycodone significantly decreased PP1α mRNA and protein levels in hippocampal neurons. Oxycodone significantly increased KDM1A and H3K4me1 levels, while significantly decreased H3K4me2 levels in a time- and dose-dependent manner. Behavioral data demonstrated that intraperitoneal injection of ORY-1001 (KDM1A inhibitor) or intra-hippocampal injection of KDM1A siRNA/shRNA blocked the acquisition and expression of oxycodone CPP and facilitated the extinction of oxycodone CPP. The decrease of PP1α was markedly blocked by the injection of ORY-1001 or KDM1A siRNA/shRNA. Oxycodone-induced enhanced binding of CoRest with KDM1A and binding of CoRest with the PP1α promoter was blocked by ORY-1001. The level of H3K4me2 demethylation was also decreased by the treatment. The results suggest that oxycodone-induced upregulation of KDM1A via demethylation of H3K4me2 promotes the binding of CoRest with the PP1α promoter, and the subsequent decrease in PP1α expression in hippocampal neurons may contribute to oxycodone reward.


Subject(s)
Epigenesis, Genetic , Histone Demethylases , Oxycodone , Animals , Male , Epigenesis, Genetic/drug effects , Mice , Oxycodone/pharmacology , Histone Demethylases/metabolism , Histone Demethylases/genetics , Hippocampus/drug effects , Hippocampus/metabolism , Reward , Conditioning, Psychological/drug effects , Mice, Inbred C57BL , Histones/metabolism , Neurons/drug effects , Neurons/metabolism , Memory/drug effects
5.
Plants (Basel) ; 13(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38891310

ABSTRACT

Ginkgo biloba L. is a rare dioecious species that is valued for its diverse applications and is cultivated globally. This study aimed to develop a rapid and effective method for determining the sex of a Ginkgo biloba. Green and yellow leaves representing annual growth stages were scanned with a hyperspectral imager, and classification models for RGB images, spectral features, and a fusion of spectral and image features were established. Initially, a ResNet101 model classified the RGB dataset using the proportional scaling-background expansion preprocessing method, achieving an accuracy of 90.27%. Further, machine learning algorithms like support vector machine (SVM), linear discriminant analysis (LDA), and subspace discriminant analysis (SDA) were applied. Optimal results were achieved with SVM and SDA in the green leaf stage and LDA in the yellow leaf stage, with prediction accuracies of 87.35% and 98.85%, respectively. To fully utilize the optimal model, a two-stage Period-Predetermined (PP) method was proposed, and a fusion dataset was built using the spectral and image features. The overall accuracy for the prediction set was as high as 96.30%. This is the first study to establish a standard technique framework for Ginkgo sex classification using hyperspectral imaging, offering an efficient tool for industrial and ecological applications and the potential for classifying other dioecious plants.

6.
Ecol Appl ; 34(5): e2984, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38753679

ABSTRACT

Seed rain and the soil seed bank represent the dispersal of seeds in space and time, respectively, and can be important sources of recruitment of new individuals during plant community regeneration. However, the temporal dynamics of seed rain and the mechanisms by which the seed rain and soil seed bank may play a role in plant community regeneration with increased grazing disturbance remain unclear. Seed rain, soil seed bank, aboveground vegetation, and rodent density were sampled along a grazing gradient in an alpine marsh on the eastern Tibetan Plateau. We described the temporal dynamics of seed dispersal using Bayesian generalized mixed models, and nonmetric multidimensional scaling and the structural equation model were used to examine the effects of grazing disturbance on the relative role of seed rain and soil seed bank on aboveground plant community regeneration. The temporal dynamics of seed rain changed from a unimodal to a bimodal pattern with increased grazing disturbance. Both species diversity and seed density of the seed rain and seed bank increased significantly with increased grazing disturbance. Increased grazing disturbance indirectly increased the similarity of composition between seed rain, seed bank, and aboveground plant community by directly increasing species diversity and abundance of aboveground plant community. However, increased grazing disturbance also indirectly decreased the similarity of seed rain, soil seed bank, and aboveground plant community by directly increasing rodent density. The similarity between seed rain and aboveground plant community was greater than that of the soil seed bank and aboveground plant community with increased grazing disturbance. Grazing disturbance spreads the risk of seed germination and seedling establishment by changing the temporal dynamics of seed dispersal. Plants (positive) and rodents (negative) mediated the role of seed rain and soil seed bank in plant community regeneration. The role of seed rain in plant community regeneration is higher than the seed bank in disturbed alpine marshes. Our findings increase our understanding of the regeneration process of the plant community, and they provide valuable information for the conservation and restoration of alpine marsh ecosystems.


Subject(s)
Herbivory , Rodentia , Seeds , Animals , Rodentia/physiology , Seeds/physiology , Seed Bank , Plants/classification , Tibet , Seed Dispersal
8.
Materials (Basel) ; 17(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38793254

ABSTRACT

In engineering practice, similar surface insulation measures are typically applied to different parts of mass concrete surfaces. However, this can lead to cracking at the edges of the concrete surface or the wastage of insulation materials. In comparison to flat surfaces, the edges of mass concrete structures dissipate heat more rapidly, leading to more pronounced stress concentration phenomena. Therefore, reinforced insulation measures are necessary. To reduce energy consumption and enhance overall insulation effectiveness, it is essential to study the specific insulation requirements of both the flat surfaces and edges of concrete separately and implement targeted surface insulation measures. Taking the bridge abutment planned for pouring in Nanjing City as the research object, this study established a finite element model to explore the effects of different ambient temperatures and different surface heat dissipation coefficients on the early-age temperature and stress fields of different parts of the abutment's surface. Based on simulation results, reasonable heat dissipation coefficients that meet the requirements for crack prevention on both the structure's plane and edges under different ambient temperatures were obtained. The results indicate that under the same conditions, the reasonable heat dissipation coefficient at the edges was smaller than that on the flat surfaces, indicating the need for stronger insulation measures at the edges. Finally, mathematical models correlating ambient temperature with reasonable heat dissipation coefficients for the structure's plane and edges at these temperatures were established, with high data correlation and determination coefficients (R2) of 0.95 and 0.92. The mathematical models were validated, and the results from finite element calculations were found to be consistent with those from the mathematical models, validating the accuracy of the mathematical models. The conclusions drawn can provide references for the insulation of similar engineering concrete planes and edges.

9.
Plants (Basel) ; 13(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38794366

ABSTRACT

Informed species delimitation is crucial in diverse biological fields; however, it can be problematic for species complexes. Showing a peripatric distribution pattern, Stewartia gemmata and S. acutisepala (the S. gemmata complex) provide us with an opportunity to study species boundaries among taxa undergoing nascent speciation. Here, we generated genomic data from representative individuals across the natural distribution ranges of the S. gemmata complex using restriction site-associated DNA sequencing (RAD-seq). Based on the DNA sequence of assembled loci containing 41,436 single-nucleotide polymorphisms (SNPs) and invariant sites, the phylogenetic analysis suggested strong monophyly of both the S. gemmata complex and S. acutisepala, and the latter was nested within the former. Among S. gemmata individuals, the one sampled from Mt. Tianmu (Zhejiang) showed the closest evolutionary affinity with S. acutisepala (which is endemic to southern Zhejiang). Estimated from 2996 high-quality SNPs, the genetic divergence between S. gemmata and S. acutisepala was relatively low (an Fst of 0.073 on a per-site basis). Nevertheless, we observed a proportion of genomic regions showing relatively high genetic differentiation on a windowed basis. Up to 1037 genomic bins showed an Fst value greater than 0.25, accounting for 8.31% of the total. After SNPs subject to linkage disequilibrium were pruned, the principal component analysis (PCA) showed that S. acutisepala diverged from S. gemmata along the first and the second PCs to some extent. By applying phylogenomic analysis, the present study determines that S. acutisepala is a variety of S. gemmata and is diverging from S. gemmata, providing empirical insights into the nascent speciation within a species complex.

10.
Sci Total Environ ; 927: 172110, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38565348

ABSTRACT

Recently, it is reported that bacterial communication coordinates the whole consortia to jointly resist the adverse environments. Here, we found the bacterial communication inevitably distinguished bacterial adaptation among different species in partial nitrification reactor under decreasing temperatures. We operated a partial nitrification reactor under temperature gradient from 30 °C to 5 °C and found the promotion of bacterial communication on adaptation of ammonia-oxidizing bacteria (AOB) was greater than that of nitrite-oxidizing bacteria (NOB). Signal pathways with single-component sensing protein in AOB can regulate more genes involved in bacterial adaptation than that with two-component sensing protein in NOB. The negative effects of bacterial communication, which were seriously ignored, have been highlighted, and Clp regulator downstream diffusible signal factor (DSF) based signal pathways worked as transcription activators and inhibitors of adaptation genes in AOB and NOB respectively. Bacterial communication can induce differential adaptation through influencing bacterial interactions. AOB inclined to cooperate with DSF synthesis bacteria as temperature declined, however, cooperation between NOB and DSF synthesis bacteria inclined to get weakening. According to the regulatory effects of signal pathways, bacterial survival strategies for self-protection were revealed. This study hints a potential way to govern niche differentiation in the microbiota by bacterial communication, contributing to forming an efficient artificial ecosystem.


Subject(s)
Bioreactors , Nitrification , Bioreactors/microbiology , Bacteria/metabolism , Adaptation, Physiological , Ammonia/metabolism , Bacterial Physiological Phenomena
11.
Eye Vis (Lond) ; 11(1): 12, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561862

ABSTRACT

BACKGROUND: Near work is generally considered as a risk factor for myopia onset and progression. This study aimed to investigate the choroidal responses to a brief-period of near work in children and young adults. METHODS: Thirty myopic medical students (aged 18-28 years) and 30 myopic children (aged 8-12 years) participated in this study. The submacular total choroidal area (TCA), luminal area (LA), stromal area (SA), choroidal vascularity index (CVI) and choriocapillaris flow deficit (CcFD), as well as subfoveal choroidal thickness (SFCT) were measured with swept-source optical coherence tomography/optical coherence tomography angiography (SS-OCT/OCTA) before and immediately after 20 min, 40 min, 60 min of near work at a distance of 33 cm. RESULTS: In adults, 20 min of near work induced a significant reduction in SFCT (- 5.1 ± 6.5 µm), LA [(- 19.2 ± 18.6) × 103 µm2], SA [(- 8.2 ± 12.6) × 103 µm2] and TCA [(- 27.4 ± 24.9) × 103 µm2] (all P < 0.01). After 40 min of near work, LA was still reduced [(- 9.4 ± 18.3) × 103 µm2], accompanied with a decreased CVI (- 0.39% ± 0.70%) and an increased CcFD (0.30% ± 0.78%) (all P < 0.05). After 60 min of near work, CVI was still reduced (- 0.28% ± 0.59%), and CcFD was still increased (0.37% ± 0.75%) (all P < 0.05). In children, 20 min of near work induced a significant increase in CcFD (0.55% ± 0.64%), while 60 min of near work induced increases in SA [(7.2 ± 13.0) × 103 µm2] and TCA [(9.7 ± 25.3) × 103 µm2] and a reduction in CVI (- 0.28% ± 0.72%) (all P < 0.05). Children exhibited lower near work-induced LA and TCA reduction than adults, with a mean difference of - 0.86% and - 0.82%, respectively (all P < 0.05). CONCLUSIONS: The temporal characteristics and magnitude of changes of choroidal vascularity and choriocapillaris perfusion during near work was not identical between children and adults. The initial response to near work was observed in choriocapillaris in children, whereas it was observed in the medium- and large-sized vessels in adults. TRIAL REGISTRATION: Clinical Trial Registry (ChiCTR), ChiCTR2000040205. Registered on 25 November 2020, https://www.chictr.org.cn/bin/project/edit?pid=64501 .

12.
Precis Clin Med ; 7(1): pbae004, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38516531

ABSTRACT

Owing to its constant exposure to the external environment and various stimuli, skin ranks among the organs most vulnerable to manifestations of aging. Preventing and delaying skin aging has become one of the prominent research subjects in recent years. Mesenchymal stem cells (MSCs) are multipotent stem cells derived from mesoderm with high self-renewal ability and multilineage differentiation potential. MSC-derived extracellular vesicles (MSC-EVs) are nanoscale biological vesicles that facilitate intercellular communication and regulate biological behavior. Recent studies have shown that MSC-EVs have potential applications in anti-aging therapy due to their anti-inflammatory, anti-oxidative stress, and wound healing promoting abilities. This review presents the latest progress of MSC-EVs in delaying skin aging. It mainly includes the MSC-EVs promoting the proliferation and migration of keratinocytes and fibroblasts, reducing the expression of matrix metalloproteinases, resisting oxidative stress, and regulating inflammation. We then briefly discuss the recently discovered treatment methods of MSC-EVs in the field of skin anti-aging. Moreover, the advantages and limitations of EV-based treatments are also presented.

13.
Bone Res ; 12(1): 20, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553442

ABSTRACT

To date, several molecules have been found to facilitate iron influx, while the types of iron influx channels remain to be elucidated. Here, Piezo1 channel was identified as a key iron transporter in response to mechanical stress. Piezo1-mediated iron overload disturbed iron metabolism and exaggerated ferroptosis in nucleus pulposus cells (NPCs). Importantly, Piezo1-induced iron influx was independent of the transferrin receptor (TFRC), a well-recognized iron gatekeeper. Furthermore, pharmacological inactivation of Piezo1 profoundly reduced iron accumulation, alleviated mitochondrial ROS, and suppressed ferroptotic alterations in stimulation of mechanical stress. Moreover, conditional knockout of Piezo1 (Col2a1-CreERT Piezo1flox/flox) attenuated the mechanical injury-induced intervertebral disc degeneration (IVDD). Notably, the protective effect of Piezo1 deficiency in IVDD was dampened in Piezo1/Gpx4 conditional double knockout (cDKO) mice (Col2a1-CreERT Piezo1flox/flox/Gpx4flox/flox). These findings suggest that Piezo1 is a potential determinant of iron influx, indicating that the Piezo1-iron-ferroptosis axis might shed light on the treatment of mechanical stress-induced diseases.


Subject(s)
Ferroptosis , Intervertebral Disc Degeneration , Nucleus Pulposus , Animals , Mice , Stress, Mechanical , Mitochondria , Iron , Mice, Knockout , Ion Channels/genetics
15.
Oncogene ; 43(12): 899-917, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38317006

ABSTRACT

Dysregulation of MOF (also known as MYST1, KAT8), a highly conserved H4K16 acetyltransferase, plays important roles in human cancers. However, its expression and function in esophageal squamous cell carcinoma (ESCC) remain unknown. Here, we report that MOF is highly expressed in ESCC tumors and predicts a worse prognosis. Depletion of MOF in ESCC significantly impedes tumor growth and metastasis both in vitro and in vivo, whereas ectopic expression of MOF but not catalytically inactive mutant (MOF-E350Q) promotes ESCC progression, suggesting that MOF acetyltransferase activity is crucial for its oncogenic activity. Further analysis reveals that USP10, a deubiquitinase highly expressed in ESCC, binds to and deubiquitinates MOF at lysine 410, which protects it from proteosome-dependent protein degradation. MOF stabilization by USP10 promotes H4K16ac enrichment in the ANXA2 promoter to stimulate ANXA2 transcription in a JUN-dependent manner, which subsequently activates Wnt/ß-Catenin signaling to facilitate ESCC progression. Our findings highlight a novel USP10/MOF/ANXA2 axis as a promising therapeutic target for ESCC.


Subject(s)
Annexin A2 , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Wnt Signaling Pathway/genetics , Esophageal Neoplasms/pathology , Cell Proliferation/genetics , Acetyltransferases/metabolism , Epigenesis, Genetic , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Movement , Histone Acetyltransferases/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Annexin A2/metabolism
16.
ACS Omega ; 9(3): 3363-3372, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38284082

ABSTRACT

The structural characteristics of the organic matter and biomarker distributions in Shengli lignite (SL) were comprehensively studied by combining a variety of modern analytical techniques and solvent extraction/thermal dissolution. Characterization of SL with Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, solid 13C nuclear magnetic resonance spectroscopy and thermogravimetry showed that organic matter in SL is rich in oxygen functional groups, such as C-O, >C=O, and -COOH, and hydrogen bonds. The hydrogen bonds mainly include -OH···π, self-associated -OH, -OH···ether O, tightly bound cyclic -OH, -OH···N, -COOH dimers, and -SH···N. The highest content of organic nitrogen and sulfur on SL surface are pyrrole nitrogen and aromatic sulfur, respectively. The proportions of aromatic and aliphatic carbons in SL are about 58% and 39%, respectively. The aromatic carbon is mainly composed of protonated aromatic and aromatic bridged carbons; methylene carbon has the highest content among the aliphatic carbons, with chains of average length of 1.43 carbon atoms. The average number of aromatic structural units in the carbon skeleton of SL is about 3, and each aromatic structural unit contains an average of 1-2 substituent groups. Thermogravimetric analysis clarified the distribution of the main types of covalent bonds in SL and their possible cracking temperatures during pyrolysis. The extracts and soluble portion of thermal dissolution from SL were analyzed by a gas chromatograph/mass spectrometer, and a series of biomarkers were identified, mainly concentrated in petroleum ether extract and cyclohexane thermal soluble portion. These included long-chain n-alkanes, isoprenoid alkanes, long-chain n-alkenes, terpenoids, n-alkan-2-ones, long-chain n-alkylbenzene, and long-chain n-alkyltoluene. The comprehensive characterization of the organic matter and the distribution of related biomarkers provided an important scientific basis for understanding the molecular structural characteristics and geochemical information on SL.

17.
Cell Mol Life Sci ; 81(1): 49, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252317

ABSTRACT

Intervertebral disc degeneration (IVDD) is one of the most prevalent spinal degenerative disorders and imposes places heavy medical and economic burdens on individuals and society. Mechanical overloading applied to the intervertebral disc (IVD) has been widely recognized as an important cause of IVDD. Mechanical overloading-induced chondrocyte ferroptosis was reported, but the potential association between ferroptosis and mechanical overloading remains to be illustrated in nucleus pulposus (NP) cells. In this study, we discovered that excessive mechanical loading induced ferroptosis and endoplasmic reticulum (ER) stress, which were detected by mitochondria and associated markers, by increasing the intracellular free Ca2+ level through the Piezo1 ion channel localized on the plasma membrane and ER membrane in NP cells. Besides, we proposed that intracellular free Ca2+ level elevation and the activation of ER stress are positive feedback processes that promote each other, consistent with the results that the level of ER stress in coccygeal discs of aged Piezo1-CKO mice were significantly lower than that of aged WT mice. Then, we confirmed that selenium supplementation decreased intracellular free Ca2+ level by mitigating ER stress through upregulating Selenoprotein K (SelK) expression. Besides, ferroptosis caused by the impaired production and function of Glutathione peroxidase 4 (GPX4) due to mechanical overloading-induced calcium overload could be improved by selenium supplementation through Se-GPX4 axis and Se-SelK axis in vivo and in vitro, eventually presenting the stabilization of the extracellular matrix (ECM). Our findings reveal the important role of ferroptosis in mechanical overloading-induced IVDD, and selenium supplementation promotes significance to attenuate ferroptosis and thus alleviates IVDD, which might provide insights into potential therapeutic interventions for IVDD.


Subject(s)
Ferroptosis , Intervertebral Disc Degeneration , Nucleus Pulposus , Phospholipid Hydroperoxide Glutathione Peroxidase , Selenium , Selenoproteins , Animals , Humans , Mice , Cell Membrane , Ion Channels , Selenoproteins/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
18.
Cell Prolif ; 57(3): e13554, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37767639

ABSTRACT

'General requirements for the production of extracellular vesicles derived from human stem cells' is the first guideline for stem cells derived extracellular vesicles in China, jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research. This standard specifies the general requirements, process requirements, packaging and labelling requirements and storage requirements for preparing extracellular vesicles derived from human stem cells, which is applicable to the research and production of extracellular vesicles derived from stem cells. It was originally released by the China Society for Cell Biology on 30 August 2022. We hope that the publication of this guideline will promote institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardisation of extracellular vesicles derived from human stem cells.


Subject(s)
Extracellular Vesicles , Stem Cells , Humans , China
19.
J Mater Chem B ; 11(47): 11372-11383, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38009934

ABSTRACT

Developing underwater stable and durable hydrogel coatings with drag-reducing, drug release, and antibacterial properties is essential for lots of biomedical applications. However, most hydrogel coatings cannot meet the requirement of underwater stability and versatility, which severely limits their widespread use. In this work, an underwater stable, durable and substrate-independent gelatin composite hydrogel (GMP) coating is developed through covalent crosslinks, where a silane coupling agent with an unsaturated double bond is grafted onto a substrate of co-deposited polydopamine and polyethylenimine. GMP coating can be easily coated onto various medical device surfaces, such as artificial joints, catheters, tracheal tubes and titanium alloys, showing excellent structural stability and mechanical tunability under extreme conditions of ultrasonic treatment for 1 h (400 W of ultrasonic power) or underwater shearing for 14 days (400 rpm). Besides, friction experiment reveals that GMP coating exhibits good lubrication properties (coefficient of friction < 0.003). The drug-loading and bacterial inhibition ring tests show that the GMP coating has a tunable drug release ability with the final releasing ratios of 70-95% by changing the content of poly (ethylene glycol) diacrylate. This work offers a scalable approach of fabricating bio-functional and stable hydrogel coatings, which can be potentially used in biomedical applications.


Subject(s)
Gelatin , Hydrogels , Hydrogels/chemistry , Polyethylene Glycols , Anti-Bacterial Agents/pharmacology
20.
J Med Chem ; 66(23): 16091-16108, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37982494

ABSTRACT

The master transcription factor receptor retinoic acid receptor-related orphan receptor γt (RORγt) regulates the differentiation of T-helper 17 (Th17) cells and the production of interleukin-17 (IL-17). Activation of RORγt+ T cells in the tumor microenvironment promotes immune infiltration to more effectively inhibit tumor growth. Therefore, RORγt agonists provide a reachable approach to cancer immunotherapy. Herein, a series of biaryl amide derivatives as novel RORγt agonists were designed, synthesized, and evaluated. Starting from the reported RORγt inverse agonist GSK805 (1), "functionality switching" and structure-based drug optimization led to the discovery of a promising RORγt agonist lead compound 14, which displayed potent and selective RORγt agonist activity and significantly improved metabolic stability. With excellent in vivo pharmacokinetic profiles, compound 14 demonstrated robust efficacy in preclinical tumor models of mouse B16F10 melanoma and LLC lung adenocarcinoma. Taken together, current studies indicate that 14 deserves further investigation as a potential lead RORγt agonist for cancer immunotherapy.


Subject(s)
Amides , Neoplasms , Mice , Animals , Amides/pharmacology , Amides/therapeutic use , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Drug Inverse Agonism , Immunotherapy , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...