Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
Huan Jing Ke Xue ; 45(8): 4610-4618, 2024 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-39168680

ABSTRACT

The microplastics in aquatic ecosystems pose a serious threat to ecological security and environmental health, which have received widespread attention. To reveal the response of a water-Vallisneria natans-sediment system to microplastics exposure, the V. natans was exposed to polyethylene microplastics (PE-MPs) with different mass fractions (1%-5%, sediment wet mass fraction), and the effects of PE-MPs on the physiochemical indicators of water quality, morphological characteristics of submerged plants, physiological characters, antioxidant system, and microbial community structure in sediments were studied respectively. The results showed that the physiochemical properties of the water body were not significantly changed in the PE-MPs treatment group, whereas the plant height, oxidative stress index, and antioxidant system were significantly inhibited. For the plant height, the 1% PE-MPs treatment group height was only 47.44% of that in the control group. Chlorophyll a content was 81.04% of that in the control group, and the activities of catalase (CAT), malondialdehyde (MDA), and peroxidase (POD) increased by 233.70%, 117.82%, and 61.62%, respectively. Different mass fractions of PE-MPs had a certain impact on microbial community structure in sediments. The above results are helpful to improve the evaluation system of PE-MPs ecological risk in the water-submerged plant-sediment system.


Subject(s)
Geologic Sediments , Microplastics , Polyethylene , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Microplastics/toxicity , Geologic Sediments/chemistry , Hydrocharitaceae/growth & development , Hydrocharitaceae/drug effects , Ecosystem , Environmental Monitoring
2.
Environ Sci Pollut Res Int ; 31(29): 42174-42184, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38861066

ABSTRACT

Contaminants from wastewater of aquaculture are increasing the risks of red tides in coastal areas. Such types of contaminants are difficult to remove by using conventional biological and ecological treatment methods because of the relatively low C/N ratios and the high salinity in coastal water ambience. Fe is considered a key element in natural chemical cycling and promotes the growth of animals and plants as well. The cycling of Fe ion combined with carbon, nitrogen, and phosphorus stimulates bacterial growth. As a result, it acts as a microbial carbon pump in coastal areas, such as natural wetlands, which have been activated and adapted to be salinity resistant and insufficient energy supply. Along these lines, in this work, constructed wetlands (CWs) with high ecological benefits and low cost of maintenance were used to treat aquaculture wastewater. The impact of Fe ion recycling on multiple contaminants was also systematically investigated. The two types of Fe dosage were pure ferrous ions and a mixture of iron powder and ferrous ions. After the application of a 3-day treatment, the dosage of iron powder/ferric ions (1:1 m/m) at a concentration of 15 mg L-1 showed a better effect, where the total nitrogen, total phosphorus, and chemical oxygen demand removal rates were increased by 2.95%, 2.16%, and 9.76%, respectively. From the microbial analysis, it was indicated that Fe ion affected the abundance and functions of the microbial communities in the CWs. The significant enrichment of Proteobacteria promoted the removal of multiple contaminants under saline stress and fixed carbon, and affected the whole microbe distribution and diversity in CWs. The implementation of such an environmentally friendly and economical approach arises as a promising candidate for the efficient removal of multiple contaminants from aquacultural wastewater in coastal zones.


Subject(s)
Iron , Wastewater , Wetlands , Wastewater/chemistry , Phosphorus , Waste Disposal, Fluid/methods , Nitrogen , Aquaculture , Water Pollutants, Chemical
3.
Chemosphere ; 358: 142194, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692369

ABSTRACT

China's aquatic environment continues to face several difficulties. Ecological constructed wetland systems (CWs) can be used to treat polluted saline water to alleviate water shortages regionally and globally. However, the performance is limited by low temperatures. To expand the use of CWs, we introduced a slag-sponge, a flaky material derived from alkaline waste slag, to create a newly constructed wetland system that can operate at both low and high temperatures. We evaluated its effectiveness by placing it at different heights in our devices. The results showed that the treatment was effective for saline wastewater with multiple contaminants. The efficiency was 20% higher than that of traditional CWs. Slag-sponges were found to carry pore structures and exhibit thermal insulation, which led to the enrichment of functional microbial communities (Chryseobacterium and Exiguerium) at low temperatures according to the microbial species analysis. The enhanced CWs offer another option for the treatment of polluted saline water in the environment and provide promising strategies for the utilization of waste slag.


Subject(s)
Temperature , Waste Disposal, Fluid , Wastewater , Wetlands , Wastewater/chemistry , Wastewater/microbiology , Waste Disposal, Fluid/methods , Bacteria/metabolism , China , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Water Purification/methods , Biodegradation, Environmental
4.
Environ Sci Pollut Res Int ; 30(23): 63592-63602, 2023 May.
Article in English | MEDLINE | ID: mdl-37046164

ABSTRACT

Constructed wetland (CW), an ecological water treatment system, can purify and repair the damaged saline water body in an open watershed, but its repairing function is limited at low temperature under salt stress. In this study, two different plant species with slag-sponge layer were operated to enhance the purification effect of CW on the damaged saline water body. The results showed that the combination of Scirpus mariqueter and slag-sponges in CW had a better purification effect especially under the condition of salinity of 10‰ (S = 10) with a respective removal efficiency of 91.04% of total nitrogen, 80.07% of total phosphorus, and 93.02% of COD in high temperature (25 ~ 35 °C). Furthermore, ecological traits (enzyme activity and amino acids) of plants, the abundance and distribution of functional microorganisms on the surface of slag-sponges, and the microbial state on the substrate surface of the denitrifying zone of CW were analyzed to explain how exactly the combinations worked. It was found that the enrichment of functional microorganisms in slag-sponge and the anaerobic zone of plants have improved the nitrogen and phosphorus removal. Plants maintained high enzyme activities and the ability to synthesize key amino acids under salt stress to ensure the growth and reproduction of plants and achieve the assimilation function. Scirpus mariqueter combined with slag-sponges in CW effectively improved the purification effect of damaged saline water, indicating that it is an ecological and green saline water treatment way.


Subject(s)
Water Purification , Wetlands , Water Pollution , Plants , Water Purification/methods , Nitrogen/analysis , Phosphorus , Amino Acids , Waste Disposal, Fluid
5.
Environ Sci Pollut Res Int ; 30(3): 5861-5872, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35986110

ABSTRACT

Root exudates are determined by plant species configuration and affect microbial community, which in turn affect purification efficiency of constructed wetlands (CWs). However, it is not well understood how plant configuration affects CW purification efficiency through specific root exudates. Herein, four mixed culture CWs were constructed; CW-G3 with Iris pseudacorus, Iris sibirica, Juncus effusus, and Hydrocotyle vulgaris showed the optimal diversity nutrients removal efficiency (TN: 94.2%, TP: 82.9%, COD: 74.7%). Highly increased antioxidant enzymes (peroxidase and catalase) reduced photosynthesis-negative enzyme (malondialdehyde) activity of plants in CW-G3, which ensured oxygen (O2) and organic carbon (OC) production and successfully released to rhizosphere by well-developed root aeration tissues. Further, CW-G3 enriched higher abundance of genus Saccharimonadales and Flavobacterium, which benefited nitrogen removal. Moreover, as OC, higher contents of maltose in CW-G3 (6.6 ~ 11.1-fold of that in other three CWs), as well as lauramide, choline, triethylamine and urocanic acid contributed to microbial denitrifying. Differently, higher contents of unsaturated fatty acids (linoleic acid and oleic acid) in other three CWs inhibited microbial nitrifying as inhibitors, which also proved by co-occurrent network. Thereby, plant configuration in CW-G3 provided higher O2 and OC contents for bacteria and reduced nitrifying inhibitors, which contributed to higher purifying efficiency. The study promoted the understanding about root exudates' effects on bacteria through plant configurations and improved the purification efficiency of CWs.


Subject(s)
Iris Plant , Waste Disposal, Fluid , Wetlands , Plants , Bacteria , Nitrogen , Exudates and Transudates
6.
World J Microbiol Biotechnol ; 38(12): 239, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36260261

ABSTRACT

Constructed wetland (CW) is an effective ecological technology to treat water pollution and has the significant advantages of high impact resistance, simple construction process, and low maintenance cost. However, under extreme conditions such as low temperature, high salt concentration, and multiple types of pollutants, some bottlenecks exist, including the difficulty in improving operating efficiency and the low pollutant removal rate. Microbial electrochemical technology is an emerging clean energy technology and has the similar structure and pollutant removal mechanism to CW. Microbial electrochemistry combined with CW can improve the overall removal effect of pollutants in wetlands. This review summarizes characterization methods of microbial electrochemistry-enhanced constructed wetland systems, construction methods of different composite systems, mechanisms of single and composite systems, and removal effects of composite systems on different pollutants in water bodies. Based on the shortcomings of existing studies, the potential breakthroughs in microbial electrochemistry-enhanced constructed wetlands are proposed for developing the optimization solution of constructed wetlands.


Subject(s)
Environmental Pollutants , Wetlands , Wastewater/chemistry , Electrochemistry , Water
7.
Microb Ecol ; 83(2): 340-352, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34089088

ABSTRACT

Wastewater recycling can alleviate the shortage of water resources. Saline water is seldom treated with biological processes, and its recycling rate is low. Constructed wetland (CW) is a safe, economical, and ecological water treatment method. However, the saline water treatment performance of CW is not good. Microbial desalination cells (MDC) utilizing a bioelectrochemical approach achieve functions of desalination and power generation. In this study, MDC was used to strengthen CW to form a composite system, MDC-CW. Through optimization of design parameters, MDC-CW was applied in the treatment of salt-containing water. The average total nitrogen removal rate in MDC-CW-P1 reached 87.33% and the average COD removal rate was 92.79%. The average desalination rate of MDC-CW-P1 was 55.78% and the average voltage of MDC-CW-P1 reached 0.40 mV. Planting Canna indica in the MDC-CW was conducive to the functions of desalination and power generation. The above results were also verified by the microbial analysis results of gravels in the substrate, plant rhizosphere, and electrodes. In addition, the decontamination of the device mainly depended on the function of the bacteria commonly used in water treatment, such as Proteobacteria and Bacteroidetes, whereas the generation of power depended on the function of Geobacter. Salt ions moved spontaneously to the cathode and anode under the influence of current generation so that the desalination function was realized under the selective isolation function of exchange membranes. The device design and laboratory applications of MDC-CW experimentally achieved the electrochemical function and broadened the treatment scale of CW.


Subject(s)
Bioelectric Energy Sources , Water Purification , Bioelectric Energy Sources/microbiology , Electrodes , Wastewater , Water Purification/methods , Wetlands
8.
Sci Total Environ ; 703: 134789, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31715467

ABSTRACT

In this study, different dosages of nanoscale zero-valent iron (nZVI) were used to improve the nitrogen removal efficiency in CWs under different C/N ratios and dye stress conditions. The addition of nZVI enhanced the dye and nitrogen removal efficiencies in constructed wetlands (CWs) through chemical reduction and biological denitrification processes. However, total nitrogen (TN) and dye removal efficiencies firstly increased and then decreased with the increases of the nZVI dosage and influent COD/N (C/N) ratio. Under the influent C/N ratio of 5, the higher TN removal efficiencies (80.2%, 55.1%, and 69.14% under 25 mg/L, 50 mg/L, and 75 mg/L dye concentration, respectively) and higher COD removal efficiencies (48.3%, 74.95%, and 30.76% under 25 mg/L, 50 mg/L, and 75 mg/L dye concentration, respectively) were obtained in CWs by adding the optimal nZVI dosage (0.1 g/L). The dye removal efficiencies in CWs with nZVI at C/N = 1 (75%-91%) and at C/N = 5 (81%-97%) were all significantly higher than that in CWs without nZVI (60%-82%). Moreover, the functional bacteria for nitrogen removal in denitrification and the dye degradation (Zoogloea and Acinetobacter) were enriched in CWs with 0.1 g/L nZVI.


Subject(s)
Wetlands , Bacteria , Denitrification , Iron , Nitrogen , Waste Disposal, Fluid
9.
Bioresour Technol ; 294: 122189, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31569043

ABSTRACT

In this study, various modified agricultural wastes (modified canna leaves (MCL), modified rice straw (MRS) and modified peanut shells (MPS)) as solid carbon sources (SCSs) were used to remove nitrate in constructed wetlands (CWs). Then, modified SCSs combined with nZVI (SCSN) as co-electrons further enhanced both heterotrophic denitrification (HD) and autotrophic denitrification (AD) performance of CWs. The results showed that NO3--N removal efficiencies in CWs with SCSNs (75.3-91.1%) and in CWs with SCSs (63.3-65.5%) were significantly higher than that in CK-CW (47.0%). The presence of SCSs reduced the accumulation of NO2--N in CWs. Compared to the addition of SCSs, the addition of SCSNs decreased the effluent COD concentration in CWs, avoiding secondary pollution. In addition, the solid-phase denitrifiers Silanimonas and Thauera were enriched in MPS-CW. Thermomonas, an autotrophic denitrifying bacteria (ADB), and Azospira, a nitrate-reducing Fe (II) oxidation bacteria (NRFOB), exhibited high relative abundance in MPN-CW.


Subject(s)
Denitrification , Wetlands , Adsorption , Carbon , Nitrates , Nitrogen
10.
Microb Ecol ; 78(4): 792-803, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31025062

ABSTRACT

The effects of various combinations of iron compounds on the contaminant removal performance in constructed wetlands (CWs) were explored under various initial iron concentrations, contaminant concentrations, different hydraulic retention time (HRT), and different temperatures. The Combo 6 (nanoscale zero-valent iron combined with Fe3+) in CW treatments showed the highest pollutant removal performance under the conditions of C2 initial iron dosage concentration (total iron 0.2 mM) and I2 initial contaminant concentration (COD:TN:TP = 60 mg/L:60 mg/L:1 mg/L) in influent after 72-h HRT. These results were directly verified by two different microbial tests (Biolog test and high-throughput pyrosequencing) and microbial community analysis (principal component analysis of community-level physiological profile, biodiversity index, cluster tree, relative abundance at order of taxonomy level). Specific bacteria related to significant improvements in contaminant removal were domesticated by various combinations of iron compounds. Iron dosage was advised as a green, new, and effective option for wastewater treatment. Graphical Abstract .


Subject(s)
Bacteria/metabolism , Carbon/metabolism , Microbiota , Nitrogen/metabolism , Phosphorus/metabolism , Waste Disposal, Fluid , Bacteria/classification , Biodegradation, Environmental , Iron Compounds , Water Pollutants, Chemical/metabolism , Water Pollution, Chemical/analysis , Wetlands
11.
Environ Sci Pollut Res Int ; 26(12): 11988-11997, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30827018

ABSTRACT

Constructed wetlands (CWs) are widely used in wastewater treatment. Wastewater generally contains multiple contaminants. In this study, CWs were applied to treat wastewater with a low COD/TN ratio and containing heavy metals. Iron-based material was added in CWs to enhance the treatment efficiency. The contaminant removal efficiency was positively correlated with the dosage of iron-based material. Considering the operation cost, we added 1 g of iron-based material in CW and realized the multi-contaminant removal efficiency after 4-day treatment at low temperature: 99.51% of Cu(II), 87.22% of Cr(VI), 65.62% of TN, and 60.23% of COD. Microbial community analysis and kinetic analysis predicted that the removal mechanism involved ion exchange and microbial denitrification. Specific bacteria were found in CWs with iron-based material, such as Thiobacillus spp. and Thauera spp., indicating that the nitrate removal in the denitrification process was triggered by carbon sources and that Fe2+ worked as both the electron donor and the adjuster of the abundances of specific bacteria. The addition of iron-based material into CWs was a green option to improve the pollutant removal performance.


Subject(s)
Cold Temperature , Waste Disposal, Fluid/methods , Wetlands , Bacteria , Carbon/analysis , Denitrification , Iron/chemistry , Kinetics , Nitrates , Nitrogen/analysis , Temperature , Wastewater/chemistry
12.
Bioresour Technol ; 267: 608-617, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30056371

ABSTRACT

Lacking of electron donor generally causes the low denitrification performance of constructed wetlands (CWs). Montmorillonite supported nanoscale zero-valent iron immobilized in sodium alginate (SA/Mt-NZVI) as novel electron donor-acceptor compounds were added in the denitrification zone of vertical flow constructed wetlands (VFCWs) to enhance the nitrogen removal. The key factors of the SA/Mt-NZVI dosage, the hydraulic retention time (HRT) of VFCWs, and the C/N ratios of influent were explored. SA/Mt-NZVI significantly improved the nitrogen (NO3--N) removal efficiency in VFCWs. When the optimal dosage of SA/Mt-NZVI was set as 2 g and the C/N was set as 6, the highest NO3--N removal efficiency was improved by 32.5 ±â€¯1.0%. The microbial community analysis of by 16S rRNA had revealed that Proteobacteria and Bacteroidetes at phylum level and Betaproteobacteria, Gammaproteobacteria, and Alphaproteobacteria at class level played an important role in nitrogen removal.


Subject(s)
Bentonite/chemistry , Denitrification , Wetlands , Alginates , Glucuronic Acid , Hexuronic Acids , Iron , Nitrogen , RNA, Ribosomal, 16S
13.
Chemosphere ; 189: 10-20, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28922630

ABSTRACT

In the paper, we explored the influences of different dosages of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in algal ponds combined with constructed wetlands. After 1-year operation of treatment systems, based on the high-throughput pyrosequencing analysis of microbial communities, the optimal operating conditions were obtained as follows: the ACW10 system with Fe3+ (5.6 mg L-1), iron powder (2.8 mg L-1), and CaCO3 powder (0.2 mg L-1) in influent as the adjusting agents, initial phosphorus source (PO43-) in influent, the ratio of nitrogen to phosphorus (N/P) of 30 in influent, and hydraulic retention time (HRT) of 1 day. Total nitrogen (TN) removal efficiency and total phosphorus (TP) removal efficiency were improved significantly. The hydrolysis of CaCO3 promoted the physicochemical precipitation in contaminant removal. Meanwhile, Fe3+ and iron powder produced Fe2+, which improved contaminant removal. Iron ion improved the diversity, distribution, and metabolic functions of microbial communities in integrated treatment systems. In the treatment ACW10, the dominant phylum in the microbial community was PLANCTOMYCETES, which positively promoted nitrogen removal. After 5 consecutive treatments in ACW10, contaminant removal efficiencies for TN and TP respectively reached 80.6% and 57.3% and total iron concentration in effluent was 0.042 mg L-1.


Subject(s)
Biota/drug effects , Calcium Carbonate/pharmacology , Iron/pharmacology , Wastewater/analysis , Water Purification/methods , Bacteria/metabolism , Nitrogen/analysis , Phosphorus/analysis , Ponds/analysis , Ponds/microbiology , Wetlands
14.
Bioresour Technol ; 227: 7-14, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28012375

ABSTRACT

The constructed wetland coupled with biofilm-electrode reactor (CW-BER) is a novel technology to treat wastewater with a relatively high level of total inorganic nitrogen (TIN) concentration. The main objective of this study is to investigate the effects of C/Ns, TIN concentrations, current intensities, and pH on the removal of nitrogen in CW-BER; a control system (CW) was also constructed and operated with similar influent conditions. Results indicated that the current, inorganic carbon source and hydrogen generated by the micro-electric field could significantly improve the inorganic nitrogen removal with in CW-BER, and the enhancement of average removal rate on NH3-N, NO3-N, and TIN was approximately maintained at 5-28%, 5-26%, and 3-24%, respectively. The appropriate operation conditions were I=10mA and pH=7.5 in CW-BER. In addition, high-throughput sequencing analysis implied that the CW-BER reactor has been improved with the relative abundance of autotrophic denitrifying bacteria (Thiobacillus sp.).


Subject(s)
Biofilms , Bioreactors/microbiology , Denitrification , Water Purification/methods , Wetlands , Autotrophic Processes , Bacteria , Electrodes , Nitrogen/analysis , Nitrogen/chemistry , Wastewater/chemistry
15.
Bioresour Technol ; 216: 1-11, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27214163

ABSTRACT

The influences of iron and calcium carbonate (CaCO3) addition in wastewater treatments reactors performance were investigated. Adding different concentrations of Fe(3+) (5, 10, 30 and 50mmol/m(3)), iron and CaCO3 powder led to changes in algal characteristics and physico-chemical and microbiological properties. According to the investigation results, nutrient removal efficiency in algae based reactors was obviously increased by the addition of 10mmol/m(3) Fe(3+), iron (5mmol/m(3)) and CaCO3 powder (0.2gm(-3)) and the removal efficiencies of BOD5, TN, and TP in Stage 2 were respectively increased by 28%, 8.9%, and 22%. The improvements in physico-chemical performances were verified by microbial community tests (bacteria quantity, activity and community measured in most probable number, extracellular enzymes activity, and Biolog Eco Plates). Microbial variations indicated the coexistence of Fe ions and carbonate-bicarbonate, which triggered the synergistic effect of physico-chemical action and microbial factors in algae based reactors.


Subject(s)
Bacteria , Bioreactors/microbiology , Calcium Carbonate/chemistry , Iron/chemistry , Wastewater/chemistry , Water Purification/methods
16.
Environ Sci Pollut Res Int ; 23(9): 9012-8, 2016 May.
Article in English | MEDLINE | ID: mdl-26822218

ABSTRACT

Microcosm horizontal subsurface flow constructed wetlands (HSSFCWs) were used to examine the impacts of vegetation on nitrogen dynamics treating different influent COD/N ratios (1:1, 4:1, and 8:1). An increase in the COD/N ratio led to increased reductions in NO3 and total inorganic nitrogen (TIN) in planted and unplanted wetlands, but diminished removal of NH4. The HSSFCW planted with Canna indica L. exhibited a significant reduction in NH4 compared to the unplanted system, particularly in the active root zone where NH4 removal performance increased by up to 26 % at the COD/N ratio of 8:1. There was no significant difference in NO3 removal between the planted and unplanted wetlands. TIN removal efficiency in the planted wetland increased with COD/N ratios, which was likely influenced by plant uptake. NH4 reductions were greater in planted wetland at the 20- and 40-cm depths while NO3 reductions were uniformly greater with depth in all cases, but no statistical difference was impacted by depth on TIN removal. These findings show that planting a HSSFCW can provide some benefit in reducing nitrogen loads in effluents, but only when a sufficient carbon source is present.


Subject(s)
Environmental Restoration and Remediation/methods , Nitrogen Cycle , Nitrogen , Wetlands , Biological Oxygen Demand Analysis , Carbon , Denitrification , Plants
SELECTION OF CITATIONS
SEARCH DETAIL