Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 16751, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033215

ABSTRACT

Tin dioxide is regarded as an alternative anode material rather than graphite due to its high theoretical specific capacity. Modification with carbon is a typical strategy to mitigate the volume expansion effect of SnO2 during the charge process. Strengthening the interface bonding is crucial for improving the electrochemical performance of SnO2/C composites. Here, SnO2-embedded reduced graphene oxide (rGO) composite with a low graphene content of approximately 5 wt.% was in situ synthesized via a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method. The structural integrity of the SnO2/rGO composite is significantly improved by optimizing the Sn-O-C electronic structure with CTAB, resulting a reversible capacity of 598 mAh g-1 after 200 cycles at a current density of 1 A g-1. CTAB-assisted synthesis enhances the rate performance and cyclic stability of tin dioxide/graphene composites, and boosts their application as the anode materials for the next-generation lithium-ion batteries.

2.
Ecol Evol ; 14(3): e11123, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444723

ABSTRACT

Heterospecific pollen (HP) deposition varies widely among species in communities, which has been explicated by two adaptation strategies: HP avoidance and HP tolerance. Studies of the plant-pollinator network have uncovered that oceanic island communities are highly generalized and strongly connected. It remains unclear, however, which strategy prevails in such communities. We examined stigma pollen deposition on 29 plant species, and assessed patterns of HP load size and diversity in the Yongxing Island community. We assessed the effects of phenotypic specialization and species-level network structural properties of plant species on pollen deposition among species. The hypothesis of three accrual patterns of HP within species was tested by illustrating the relationship between conspecific pollen (CP) and HP receipt. Extensive variation occurred among species in HP receipt, while 75.9% of species received less than 10% HP and one species received more than 40% HP throughout the community. Flower size strongly drives the variation of HP receipt, while network structural properties had no effect on the pollen receipt. Nineteen species showed no relationship between the number of HP and CP loads, and they received smaller HP load sizes and lower HP proportions. Most plant species evolved HP avoidance strategy, and HP receipt was an occasional event for most plant species in the generalized community. HP and CP receipts are independent of each other in plant species with the HP avoidance mechanism. Our results highlight that plants in the generalized pollination system may preferentially select to minimize the HP load on stigmas.

3.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 816-838, 2024 May.
Article in English | MEDLINE | ID: mdl-38324000

ABSTRACT

Eucommia ulmoides has been used as a food and medicine homologue for a long time in China. We hypothesize that Eucommia ulmoides achieves its health-promoting effects via altering gut microbiota. Here, we investigated the effects of water extract of Eucommia ulmoides bark on caecal microbiota and growth performance, antioxidant activity, and immunity in white-feathered broilers treated for 42 days. A total of 108 one-day-old Cobb white-feathered broilers were randomly assigned to three treatment groups: control diet, 0.75% Eucommia ulmoides diet (EU Ⅰ) and 1.5% Eucommia ulmoides diet (EU Ⅱ). The results showed that EU Ⅱ treatment improved average body weight (ABW), thigh muscle quality and total length of intestines, and decreased the serum total triglycerides and total cholesterol (TC) (p < 0.05). Eucommia ulmoides supplementation increased serum superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant activities and content of immunoglobulins, and reduced levels of malondialdehyde and tumour necrosis factor-α (TNF-α) (p < 0.05). Moreover, the supplementation increased the diversity of caecal microbiota and reduced the pathogenic genera Escherichia Shigella and Helicobacter. The genera Ochrobactrum, Odoribater, Klebsiella, Enterobacter, Georgenia and Bifidobacterium were positively associated with the ABW, total intestinal length, serum levels of GSH-Px, SOD and immunoglobulins (p < 0.001) and negatively associated with the TC and TNF-α (p < 0.01), suggesting an association of the changes of gut microbiota and improvement of broiler health. Meanwhile, Eucommia ulmoides supplementation enriched the Kyoto Encyclopedia of Genes and Genomes pathway of exocrine secretion from the pancreas, circadian entrainment and inhibited lipopolysaccharide biosynthesis. In conclusion, Eucommia ulmoides water extract can be used as a feed additive to improve poultry industry production.


Subject(s)
Animal Feed , Cecum , Chickens , Diet , Dietary Supplements , Eucommiaceae , Plant Bark , Plant Extracts , Animals , Eucommiaceae/chemistry , Animal Feed/analysis , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Cecum/microbiology , Diet/veterinary , Plant Bark/chemistry , Animal Nutritional Physiological Phenomena , Gastrointestinal Microbiome/drug effects
4.
Integr Zool ; 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37427545

ABSTRACT

Plant-Lepidoptera interactions are often studied using the pollination or herbivore networks only. Lepidoptera species are involved in two types of plant-insect interactions because they are herbivores as larvae and pollinators as adults. The study of entangled networks is critical, since the interaction of different networks can affect the overall network and community stability. Here, we studied the interaction of plants and Lepidoptera on the Yongxing Island, South China Sea. A plant-lepidopteran pollination network and a plant-lepidopteran herbivore network were built by using data from flower-pollinator and leaf-herbivore interactions. We then combined the two networks into a single network. We measured plant composition similarity within each sub-network and across sub-networks for Lepidoptera species. Our findings indicate that the plant-Lepidoptera pollination network and the herbivory network share significant proportions of Lepidoptera but small proportions of plant assemblages. The pollination network had higher nestedness and connectance than the herbivore network. Agrius convolvuli was the most specialized species, while Zizina otis had the highest species strength in the pollination network. Most Lepidoptera species were highly specialized in the herbivore network and their importance positively correlated across the two networks. Furthermore, there was no dietary composition similarity between the two networks for most Lepidoptera species. Our findings highlight the visible structural difference between the pollination and the herbivore networks. Adult Lepidoptera selects different plants for oviposition and feeding, a strategy that may benefit their reproduction and survival by sustaining adequate resources for their two life stages and the diversity of both plants and insects in oceanic island communities.

5.
Front Plant Sci ; 14: 1116078, 2023.
Article in English | MEDLINE | ID: mdl-37008460

ABSTRACT

Background: The evolution of heterostyly, a genetically controlled floral polymorphism, has been a hotspot of research since the 19th century. In recent years, studies on the molecular mechanism of distyly (the most common form of heterostyly) revealed an evolutionary convergence in genes for brassinosteroids (BR) degradation in different angiosperm groups. This floral polymorphism often exhibits considerable variability that some taxa have significant stylar dimorphism, but anther height differs less. This phenomenon has been termed "anomalous" distyly, which is usually regarded as a transitional stage in evolution. Compared to "typical" distyly, the genetic regulation of "anomalous" distyly is almost unknown, leaving a big gap in our understanding of this special floral adaptation strategy. Methods: Here we performed the first molecular-level study focusing on this floral polymorphism in Guettarda speciosa (Rubiaceae), a tropical tree with "anomalous" distyly. Comprehensive transcriptomic profiling was conducted to examine which genes and metabolic pathways were involved in the genetic control of style dimorphism and if they exhibit similar convergence with "typical" distylous species. Results: "Brassinosteroid homeostasis" and "plant hormone signal transduction" was the most significantly enriched GO term and KEGG pathway in the comparisons between L- and S-morph styles, respectively. Interestingly, homologs of all the reported S-locus genes either showed very similar expressions between L- and S-morph styles or no hits were found in G. speciosa. BKI1, a negative regulator of brassinosteroid signaling directly repressing BRI1 signal transduction, was identified as a potential gene regulating style length, which significantly up-regulated in the styles of S-morph. Discussion: These findings supported the hypothesis that style length in G. speciosa was regulated through a BR-related signaling network in which BKI1 may be one key gene. Our data suggested, in species with "anomalous" distyly, style length was regulated by gene differential expressions, instead of the "hemizygous" S-locus genes in "typical" distylous flowers such as Primula and Gelsemium, representing an "intermediate" stage in the evolution of distyly. Genome-level analysis and functional studies in more species with "typical" and "anomalous" distyly would further decipher this "most complex marriage arrangement" in angiosperms and improve our knowledge of floral evolution.

6.
New Phytol ; 237(2): 601-614, 2023 01.
Article in English | MEDLINE | ID: mdl-36239093

ABSTRACT

Heterostyly, a plant sexual polymorphism controlled by the S-locus supergene, has evolved numerous times among angiosperm lineages and represents a classic example of convergent evolution in form and function. Determining whether underlying molecular convergence occurs could provide insights on constraints to floral evolution. Here, we investigated S-locus genes in distylous Gelsemium (Gelsemiaceae) to determine whether there is evidence of molecular convergence with unrelated distylous species. We used several approaches, including anatomical measurements of sex-organ development and transcriptome and whole-genome sequencing, to identify components of the S-locus supergene. We also performed evolutionary analysis with candidate S-locus genes and compared them with those reported in Primula and Turnera. The candidate S-locus supergene of Gelsemium contained four genes, of which three appear to have originated from gene duplication events within Gelsemiaceae. The style-length genes GeCYP in Gelsemium and CYP734A50 in Primula likely arose from duplication of the same gene, CYP734A1. Three out of four S-locus genes in Gelsemium elegans were hemizygous, as previously reported in Primula and Turnera. We provide genomic evidence on the genetic convergence of the supergene underlying distyly among distantly related angiosperm lineages and help to illuminate the genetic architecture involved in the evolution of heterostyly.


Subject(s)
Magnoliopsida , Primula , Genomics , Primula/genetics , Plants , Gene Duplication , Flowers/genetics
7.
Front Pharmacol ; 13: 1033026, 2022.
Article in English | MEDLINE | ID: mdl-36278155

ABSTRACT

Background: Studies have shown the association of vitamin D status with the development of metabolic syndrome (MetS), which has attracted an extensive research interest with inconsistent results. Therefore, we hypothesized that vitamin D supplementation (VDS) will benefit adults with MetS. Aims: To test our hypothesis, we performed a meta-analysis to evaluate the effect of VDS on MetS in adults using relevant biomarkers such as anthropometric parameters, blood pressure, blood lipid profile, glycemia, oxidative stress and vitamin D toxicity (VDT). Methods: Randomized controlled trials published in PubMed, Web of Science, embase and the Cochrane Library between 2012 and 2022 on the effect of VDS on MetS in adults were searched. The language was limited to English. A meta-analysis performed using RevMan 5.4 and Stata 14.0 software, sensitivity analysis, and evaluation of the risk of bias and general quality of the resulting evidence were conducted. Results: Eventually, 13 articles were included in this meta-analysis. Overall, VDS significantly increased the endline serum 25-hydroxyvitamin D levels as compared to the control [MD:17.41, 95% CI (14.09, 20.73), p < 0.00001]. VDS did not affect waist circumference, body mass index, body fat percentage and VDT biomarkers, but decreased waist-to-hip ratio and blood pressure (p < 0.01). VDS significantly decreased fasting plasma glucose (FPG) [MD: 3.78; 95% CI (-6.52, -1.03), p = 0.007], but did not affect the levels of blood high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglyceride (TG). Pooled estimate of nine papers indicated a significant reduction of fasting insulin (FI) (p = 0.006), and homeostasis model assessment of insulin resistance (p = 0.0001). The quantitative insulin check index levels were moderately increased (p = 0.007) without any impact on the glycosylated hemoglobin type A1C (HbA1c). For the oxidative stress parameters, VDS significantly lowered the levels of malondialdehyde and hypersensitive C-reactive protein (p < 0.05). Conclusion: Results of this meta-analysis demonstrate that VDS only reduces insulin resistance and hypertension but not the blood lipid profile and HbA1c. It appears that the evidence for the benefit of VDS in adults with MetS is inconclusive. Further clinical studies are still needed.

8.
Int J Biol Macromol ; 222(Pt B): 2977-2986, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36240890

ABSTRACT

Residual protein in chitosan-based biomaterials may cause inflammation, allergy, and immune rejection after surgery, impeding their clinical application. Facile production of chitosan with ultra-low protein content (residual protein <0.2 %) is yet to be addressed. Herein, we proposed a one-step method for preparing chitosan with residue protein content <0.2 % by using hydrogen peroxide and sodium dodecyl sulfate, which is simple, time-saving, cost-effective, and acid/alkali-free. Notably, the molecular weight of chitosan can be reduced simultaneously. The effects of experimental parameters (i.e. hydrogen peroxide concentration (0.01 %-1 %), SDS concentration (5 %-20 %), and reaction temperature (50 °C-70 °C)) on the protein removal and molecular weight decrease were systematically analyzed by response surface methodology. The results show that temperature and H2O2 concentration are the main parameters affecting the deproteinization of chitosan. Further characterizations on the resulting ultra-low protein residue chitosan revealed unchanged chemical structure, enhanced crystallinity, and reduced thermal stability. The proposed one-step deproteination method may have great potential for industrial mass production of ultra-low protein residue chitosan.


Subject(s)
Chitosan , Chitosan/chemistry , Sodium Dodecyl Sulfate/chemistry , Hydrogen Peroxide , Hydrogen-Ion Concentration , Molecular Weight
9.
Materials (Basel) ; 14(18)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34576577

ABSTRACT

The strength and plasticity balance of F/B dual-phase X80 pipeline steels strongly depends on deformation compatibility between the soft phase of ferrite and the hard phase of bainite; thus, the tensile strength of ferrite and bainite, as non-negligible factors affecting the deformation compatibility, should be considered first. In this purely theoretical paper, an abstract representative volume elements (RVE) model was developed, based on the mesostructure of an F/B dual-phase X80 pipeline steel. The effect of the yield strength difference between bainite and ferrite on tensile properties and the strain hardening behaviors of the mesostructure was studied. The results show that deformation first occurs in ferrite, and strain and stress localize in ferrite prior to bainite. In the modified Crussard-Jaoul (C-J) analysis, as the yield strength ratio of bainite to ferrite (σy,B/σy,F) increases, the transition strain associated with the deformation transformation from ferrite soft phase deformation to uniform deformation of ferrite and bainite increases. Meanwhile, as the uncoordinated deformation of ferrite and bainite is enhanced, the strain localization factor (SLF) increases, especially the local strain concentration. Consequently, the yield, tensile strength, and yield ratio (yield strength/tensile strength) increase with the increase in σy,B/σy,F. Inversely, the strain hardening exponent and uniform elongation decrease.

10.
ISME J ; 15(6): 1614-1627, 2021 06.
Article in English | MEDLINE | ID: mdl-33408367

ABSTRACT

Mycoheterotrophic plants (MHPs) growing on arbuscular mycorrhizal fungi (AMF) usually maintain specialized mycorrhizal associations. The level of specificity varies between MHPs, although it remains largely unknown whether interactions with mycorrhizal fungi differ by plant lineage, species, and/or by population. Here, we investigate the mycorrhizal interactions among Burmannia species (Burmanniaceae) with different trophic modes using high-throughput DNA sequencing. We characterized the inter- and intraspecific dynamics of the fungal communities by assessing the composition and diversity of fungi among sites. We found that fully mycoheterotrophic species are more specialized in their fungal associations than chlorophyllous species, and that this specialization possibly results from the gradual loss of some fungal groups. In particular, although many fungal species were shared by different Burmannia species, fully MHP species typically host species-specific fungal assemblages, suggesting that they have a preference for the selected fungi. Although no apparent cophylogenetic relationship was detected between fungi and plants, we observe that evolutionarily closely related plants tend to have a greater proportion of shared or closely related fungal partners. Our findings suggest a host preference and specialization toward fungal assemblages in Burmannia, improving understanding of interactions between MHPs and fungi.


Subject(s)
Mycorrhizae , Mycorrhizae/genetics , Plants , Species Specificity
11.
J Spinal Cord Med ; 44(3): 340-349, 2021 05.
Article in English | MEDLINE | ID: mdl-31809249

ABSTRACT

Study Design: Systematic review and meta-analysis.Objective: To compare the effectiveness and safety between anterior and posterior approach, and determine the best surgical methods for the treatment of ossification of the posterior longitudinal ligament (OPLL) in the cervical spine.Methods: We searched the Cochrane Library, PubMed, CNKI and Wanfang Med Data databases from January 2007 to March 2018. Japanese Orthopaedic Association (JOA) scores, cervical lordosis, functional recovery rates, excellent and good outcomes of the surgical approaches, and complication and reoperation rates were analyzed. RevMan 5.3 was utilized for data analysis.Results: Eleven studies were included in the meta-analysis. By comparing the anterior and posterior approaches for the treatment of OPLL in the cervical spine, statistically significant differences were found in the preoperative initial JOA, the postoperative final JOA scores, functional recovery rates, complication rates, excellent and good outcomes of the surgical approaches and reoperation rates. However, no statistically significant difference in the occurrence of the preoperative and postoperative cervical lordosis was noted.Conclusion: The anterior approach is superior to the posterior approach in terms of the postoperative final JOA score, functional recovery rate, and clinical outcomes. Although the complication and reoperation rates of the anterior approach are higher than those of the posterior approach. We recommend the anterior approach for the treatment of OPLL when patients with occupying ratio ≥ 60%. In addition, high-quality studies with long-term follow-up and large sample size are also needed.


Subject(s)
Laminoplasty , Ossification of Posterior Longitudinal Ligament , Spinal Cord Injuries , Spinal Fusion , Cervical Vertebrae/surgery , Decompression, Surgical , Humans , Longitudinal Ligaments/surgery , Ossification of Posterior Longitudinal Ligament/surgery , Osteogenesis , Retrospective Studies , Spinal Fusion/adverse effects , Treatment Outcome
13.
PeerJ ; 7: e7787, 2019.
Article in English | MEDLINE | ID: mdl-31608171

ABSTRACT

Plastomes of heterotrophs went through varying degrees of degradation along with the transition from autotrophic to heterotrophic lifestyle. Here, we identified the plastome of mycoheterotrophic species Burmannia itoana and compared it with those of its reported relatives including three autotrophs and one heterotroph (Thismia tentaculata) in Dioscoreales. B. itoana yields a rampantly degraded plastome reduced in size and gene numbers at the advanced stages of degradation. Its length is 44,463 bp with a quadripartite structure. B. itoana plastome contains 33 tentatively functional genes and six tentative pseudogenes, including several unusually retained genes. These unusual retention suggest that the inverted repeats (IRs) regions and possibility of being compensated may prolong retention of genes in plastome at the advanced stage of degradation. Otherwise, six rearrangements including four inversions (Inv1/Inv2/Inv3/Inv4) and two translocations (Trans1/Trans2) were detected in B. itoana plastome vs. its autotrophic relative B. disticha. We speculate that Inv1 may be mediated by recombination of distinct tRNA genes, while Inv2 is likely consequence of extreme gene losses due to the shift to heterotrophic lifestyle. The other four rearrangements involved in IRs and small single copy region may attribute to multiple waves of IRs and overlapping inversions. Our study fills the gap of knowledge about plastomes of heterotroph in Burmannia and provides a new evidence for the convergent degradation patterns of plastomes en route to heterotrophic lifestyle.

14.
Heredity (Edinb) ; 123(6): 784-794, 2019 12.
Article in English | MEDLINE | ID: mdl-31308492

ABSTRACT

Distyly is a genetically controlled flower polymorphism that has intrigued both botanists and evolutionary biologists ever since Darwin's time. Despite extensive reports on the pollination and evolution of distylous systems, the genetic basis and mechanism of molecular regulation remain unclear. In the present study, comparative transcriptome profiling was conducted in primrose (Primula oreodoxa), the prime research model for heterostyly. Thirty-six transcriptomes were sequenced for styles at different stages and corolla tube in the three morphs of P. oreodoxa. Large numbers of differentially expressed genes (DEGs) were detected in the transcriptomes of styles across different morphs. Several transcription factors (TFs) and phytohormone metabolism-related genes were highlighted in S-morphs. A growing number of genes showed differential expression patterns along with the development of styles, suggesting that the genetic control of distyly may be more complicated than ever expected. Analysis of co-expression networks and module-trait relationships identified modules significantly associated with style development. CYP734A50, a key S-locus gene whose products degrade brassinosteroids, was co-expressed with many genes in the module and showed significant negative association with style length. In addition, crucial TFs involved in phytohormone signaling pathways were found to be connected with CYP734A50 in the co-expression module. Our global transcriptomic analysis has identified DEGs that are potentially involved in regulation of style length in P. oreodoxa, and may shed light on the evolution and broad biological processes of heterostyly.


Subject(s)
Primula/genetics , Selection, Genetic , Transcriptome/genetics , Brassinosteroids/biosynthesis , Brassinosteroids/metabolism , Cytochrome P-450 Enzyme System/genetics , Flowers/genetics , Flowers/growth & development , Gene Expression Regulation, Plant/genetics , Phenotype , Pollination/genetics , Primula/growth & development
15.
Ann Bot ; 124(2): 331-342, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31189014

ABSTRACT

BACKGROUND AND AIMS: Mycorrhizal associations in mycoheterotrophic plants are generally more specialized than in autotrophs. Mycoheterotrophs typically bear small, inconspicuous flowers that often self-pollinate to maximize seed set, although some have structurally complex flowers indicative of xenogamy. A trade-off has previously been proposed between specialization in these above- and below-ground symbioses, although empirical data are lacking. METHODS: We used next-generation DNA sequencing to compare the mycorrhizal communities from the roots of a mycoheterotrophic species, Thismia tentaculata (Thismiaceae), and its neighbouring autotrophs. We furthermore conducted detailed assessments of floral phenology and pollination ecology, and performed artificial pollination experiments to determine the breeding system. KEY RESULTS: Thismia tentaculata maintains a symbiotic association with a single arbuscular mycorrhizal Rhizophagus species. The flowers are pollinated by a single species of fungus gnats (Corynoptera, Sciaridae), which are attracted by the yellow pigments and are temporarily restrained within the perianth chamber before departing via apertures between the anthers. The plants are self-compatible but predominantly xenogamous. CONCLUSIONS: Our findings demonstrate that T. tentaculata maintains highly specialized associations with pollinators and mycorrhizal fungi, both of which are widely distributed. We suggest that specialization in multiple symbiotic interactions is possible in mycoheterotrophs if redundant selective pressures are not exerted to further restrict an already constrained suite of life-history traits.


Subject(s)
Mycorrhizae , Pollination , Flowers , Seeds , Symbiosis
16.
Mol Phylogenet Evol ; 132: 81-89, 2019 03.
Article in English | MEDLINE | ID: mdl-30508631

ABSTRACT

Cycloidea-like (CYC-like) genes are the key regulatory factors in the development of flower symmetry. Duplication and/or reduction of CYC-like genes have occurred several times in various angiosperm groups and are hypothesized to be correlated with the evolution of flower symmetry, which in turn has contributed to the evolutionary success of these groups. However, less is known about the evolutionary scenario of CYC-like genes in the whole Fabales, which contains four families with either symmetric or actinomorphic flowers. Here we investigated the evolution of CYC-like genes in all the four families of Fabales and recovered one to nine CYC-like genes (CYC1, CYC2, and CYC3) depending on which lineages, but the CYC3 genes were most likely lost in the ancestor of Leguminosae. Phylogenetic analysis suggested that the CYC-like genes could have undergone multiple duplications and losses in different plant lineages and formed distinct paralogous/orthologous clades. The ancestor of the Papilionoideae and Caesalpinioideae may possess two paralogs of CYC1 genes but one of them was subsequently lost in Papilionoideae and was retained only in several species of Caesalpinioideae. CYC2 genes were more frequently duplicated in Papilionoideae than in other legumes. We propose that the diversification patterns of both CYC1 and CYC2 genes are not related to the floral symmetry in non-papilionoid Fabales groups, however, gene duplication and functional divergence of CYC2 are essential for the floral zygomorphy of Papilionoideae. This is the first systematic analysis of the CYC-like genes in Fabales and could form the basis for further study of molecular mechanisms controlling floral symmetry in non-model plants of Fabales.


Subject(s)
Evolution, Molecular , Fabaceae/genetics , Flowers/anatomy & histology , Flowers/genetics , Gene Duplication , Genes, Plant , Phylogeny , Likelihood Functions , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Domains
17.
Mol Phylogenet Evol ; 123: 113-122, 2018 06.
Article in English | MEDLINE | ID: mdl-29454889

ABSTRACT

Dioecy is a rare sexual system that is thought to represent an "evolutionary dead end". While many studies have addressed the evolution of dioecy and/or its relationship with the evolution of the woody habit, few have explored the relationship between dioecy and climbing habit, and their effects on diversification rates. Here, we study the evolution of sexual systems and growth habit in Mussaenda (Rubiaceae) using a robust phylogeny of the genus based on eight plastid regions and a broad sampling of taxa (92 of the 132 species were sampled). A time-calibrated tree was constructed to estimate diversification rates in different clades and its correlates with focal characters. More specifically, we assess evolutionary correlations between dioecy and climbing habit and their respective influences on diversification rates. Ancestral character state reconstructions revealed that distyly is the most likely ancestral state in Mussaenda. Distyly has subsequently given rise to dioecy, short-styled floral monomorphism, and long-styled floral monomorphism. Dioecy has evolved independently at least four times from distyly, and has reversed to homostylous hermaphroditism at least twice, which does not support the "evolutionary dead end" hypothesis. A significant correlation between the evolution of dioecy and climbing growth form was found in Mussaenda. It is possible that a strong association between high net diversification rates and dioecy may exist in Mussaenda, but no association was found with climbing habit.


Subject(s)
Biological Evolution , Rubiaceae/classification , Rubiaceae/growth & development , Biodiversity , Models, Theoretical , Phylogeny , Probability , Time Factors
18.
Sci Rep ; 6: 31600, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27527392

ABSTRACT

Hermaphroditic flowers have evolved primarily under the selection on male function. Evolutionary modification often leads to stamen differentiation within flowers, or "heteranthery", a phenomenon intrigued scientists since the 18(th) century until recently. However, the genetic basis and molecular regulation mechanism has barely been touched. Here we conducted comparative transcriptome profiling in Cassia biscapsularis L., a heterantherous species with representative patterns of stamen differentiation. Numerous differentially expressed genes (DEGs) were detected between the staminodes (the degenerated stamens) and fertile stamens, while much fewer genes differentially expressed among the three sets of fertile stamens. GO term enrichment and KEGG pathway analysis characterized functional properties of DEGs in different stamen types. Transcripts showing close correlation between expression pattern and stamen types were identified. Transcription factors from the bHLH family were suggested to have taken crucial part in the formation of staminodes. This first global transcriptomic analysis focusing on stamen differentiation opens the door toward a more comprehensive understanding on the molecular regulation of floral organ evolution. Especially, the generated unigene resource would be valuable for developing male sterile lines in agronomy.


Subject(s)
Cassia/genetics , Flowers/genetics , Genes, Plant , Transcriptome , Cassia/metabolism , Flowers/metabolism
19.
Front Plant Sci ; 7: 37, 2016.
Article in English | MEDLINE | ID: mdl-26870058

ABSTRACT

Chitin synthases (CHSs) are key enzymes in the biosynthesis of chitin, an important structural component of fungal cell walls that can trigger innate immune responses in host plants and animals. Members of CHS gene family perform various functions in fungal cellular processes. Previous studies focused primarily on classifying diverse CHSs into different classes, regardless of their functional diversification, or on characterizing their functions in individual fungal species. A complete and systematic comparative analysis of CHS genes based on their orthologous relationships will be valuable for elucidating the evolution and functions of different CHS genes in fungi. Here, we identified and compared members of the CHS gene family across the fungal tree of life, including 18 divergent fungal lineages. Phylogenetic analysis revealed that the fungal CHS gene family is comprised of at least 10 ancestral orthologous clades, which have undergone multiple independent duplications and losses in different fungal lineages during evolution. Interestingly, one of these CHS clades (class III) was expanded in plant or animal pathogenic fungi belonging to different fungal lineages. Two clades (classes VIb and VIc) identified for the first time in this study occurred mainly in plant pathogenic fungi from Sordariomycetes and Dothideomycetes. Moreover, members of classes III and VIb were specifically up-regulated during plant infection, suggesting important roles in pathogenesis. In addition, CHS-associated networks conserved among plant pathogenic fungi are involved in various biological processes, including sexual reproduction and plant infection. We also identified specificity-determining sites, many of which are located at or adjacent to important structural and functional sites that are potentially responsible for functional divergence of different CHS classes. Overall, our results provide new insights into the evolution and function of members of CHS gene family in the fungal kingdom. Specificity-determining sites identified here may be attractive targets for further structural and experimental studies.

20.
Sci Rep ; 4: 6746, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25339375

ABSTRACT

Microtubules are essential for various cellular activities and ß-tubulins are the target of benzimidazole fungicides. However, the evolution and molecular mechanisms driving functional diversification in fungal tubulins are not clear. In this study, we systematically identified tubulin genes from 59 representative fungi across the fungal kingdom. Phylogenetic analysis showed that α-/ß-tubulin genes underwent multiple independent duplications and losses in different fungal lineages and formed distinct paralogous/orthologous clades. The last common ancestor of basidiomycetes and ascomycetes likely possessed two paralogs of α-tubulin (α1/α2) and ß-tubulin (ß1/ß2) genes but α2-tubulin genes were lost in basidiomycetes and ß2-tubulin genes were lost in most ascomycetes. Molecular evolutionary analysis indicated that α1, α2, and ß2-tubulins have been under strong divergent selection and adaptive positive selection. Many positively selected sites are at or adjacent to important functional sites and likely contribute to functional diversification. We further experimentally confirmed functional divergence of two ß-tubulins in Fusarium and identified type II variations in FgTub2 responsible for function shifts. In this study, we also identified δ-/ε-/η-tubulins in Chytridiomycetes. Overall, our results illustrated that different evolutionary mechanisms drive functional diversification of α-/ß-tubulin genes in different fungal lineages, and residues under positive selection could provide targets for further experimental study.


Subject(s)
Evolution, Molecular , Fungi/genetics , Multigene Family/genetics , Tubulin/genetics , Genetic Variation , Phylogeny , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL