Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 947: 174506, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971251

ABSTRACT

Long-term coal mining activities in abandoned coal mining areas have resulted in the migration of large quantities of heavy metals into the surrounding soil environment, posing a threat to the regional ecological environment. This study focuses on the surface soil collected from a typical abandoned coal mining area. Methods such as the pollution index (PI) and potential ecological risk index (RI) were used to comprehensively evaluate the pollution levels and ecological risks of soil heavy metals. Geostatistical analysis and the APCS-MLR model were used to quantify the sources of soil heavy metals, and Nemerow integrated ecological risk (NIRI) model was coupled to apportion the ecological risks from different pollution sources. The results indicate that the average concentrations of Cd, As, and Zn are 4.58, 2.44, and 1.67 times the soil background values, respectively, while the concentrations of other heavy metals are below the soil background values. The soil of study area is strongly polluted by heavy metals, with the pollution level and ecological risk of Cd being significantly higher than those of other heavy metals. The NIRI calculation results show that the overall comprehensive ecological risk level is considerable, with sample points classified as relatively considerable, moderate, and low at 60.53 %, 36.84 %, and 2.63 %, respectively. The sources of soil heavy metals can be categorized into four types: traffic activities, natural sources, coal gangue accumulation, and a combined source of coal mining and agricultural activities, with contribution rates of 35.3 %, 36.1 %, 19.5 %, and 9.1 %, respectively. The specific source ecological risk assessment results indicate that coal gangue accumulation contributes the most to ecological risk (36.4 %) and should be prioritized for pollution control, with Cd being the priority control element for ecological risk. The findings provide theoretical support for the refined management of soil heavy metal pollution in abandoned coal mining areas.

2.
Ecotoxicol Environ Saf ; 280: 116546, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38843747

ABSTRACT

In China, fence net aquaculture practices have been established in some subsidence waters that have been formed in coal mining subsidence areas. Within this dynamic ecological context, diverse fish species grow continuously until being harvested at the culmination of their production cycle. The purpose of this study was to investigate diverse factors influencing the bioavailability and distribution of mercury (Hg) and methylmercury (MeHg), which have high physiological toxicity in fish, in the Guqiao coal mining subsidence area in Huainan, China. Mercury and MeHg were analyzed in 38 fish samples of eight species using direct mercury analysis (DMA-80) and gas chromatography-cold vapor atomic fluorescence spectrometry (GC-CVAFAS). The analysis results show that the ranges of Hg and MeHg content and methylation rate in the fish were 7.84-85.18 ng/g, 0.52-3.52 ng/g, and 0.81-42.68 %, respectively. Meanwhile, conclusions are also summarized as following: (1) Monophagous herbivorous fish that were fed continuously in fence net aquaculture areas had higher MeHg levels and mercury methylation rates than carnivorous fish. Hg and MeHg contents were affected by different feeding habits of fish. (2) Bottom-dwelling fish show higher MeHg levels, and habitat selection in terms of water depth also partially affected the MeHg content of fish. (3) The effect of fence net aquaculture on methylation of fish in subsidence water is mainly from feed and mercury-containing bottom sediments. However, a time-lag is observed in the physiological response of benthic fishes to the release of Hg from sediments. Our findings provides baseline reference data for the ecological impact of fence net aquaculture in waters affected by soil subsidence induced by coal mining in China. Prevalent environmental contaminants within coal mining locales, notably Hg, may infiltrate rain-induced subsidence waters through various pathways.


Subject(s)
Aquaculture , Coal Mining , Environmental Monitoring , Fishes , Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Methylmercury Compounds/analysis , Animals , Mercury/analysis , Water Pollutants, Chemical/analysis , Fishes/metabolism , China , Environmental Monitoring/methods
3.
Water Sci Technol ; 89(4): 887-903, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38423607

ABSTRACT

The actual DOM in Chaohu Lake was used to feed cyanobacterial to explore the changes of microbial communities, fluorescence spectral characteristics and molecular composition of DOM during the degradation of cyanobacteria. It is found that cyanobacterial grow periodically depending on the concentration of nutrients with the decreasing concentration of nutrient salts. Both Bacteroidetes and Actinobacteria have strong correlation with algae growth. Bacteroidetes has a positive correlation with algae growth, relationship on the contrary, Actinobacteria has a negative relationship. The humus-like components in the four groups are similar, but the protein-like component (C3) shows periodic changes with the life process of cyanobacteria. The average molecular weight of each sample detected by Orbitrap high-resolution mass spectrometer increases slightly and the DOM increase aromaticity in the end. In this study, the molecule of Carboxyl-Rich Alicyclic Molecules (CRAM) is difficult to be done by photodegradation and biodegradation in the early periods, but some molecules of CRAM are selectively degraded by microorganisms in the final period. The growth of cyanobacterial lead to increasing the concentration of protein-like and carbohydrate-like molecule of DOM in the water. In the final stage, the molecule group of CHO disappear significantly and the molecule group of heteroatomic group increase.


Subject(s)
Actinobacteria , Cyanobacteria , Dissolved Organic Matter , Lakes , China
4.
J Environ Manage ; 354: 120436, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38394872

ABSTRACT

Understanding the nitrogen and sulfur uptake strategies of mine plants, including sources and preferences for nitrogen forms (ammonium nitrogen (NH4+) vs nitrate nitrogen (NO3-)), is critical to improving understanding of the role of plants in participating in the biogeochemical cycles of nitrogen and sulfur in mining areas. In this study, the stable N and S isotopic compositions of two species of aquatic plants (calamus and reed) in Linhuan mining area were analyzed to determine their absorption strategies for different nitrogen and sulfur sources. The results showed that river water was the largest source of nitrogen and sulfur, contributing 54.6% and 53.9% respectively. NO3- is the main form of nitrogen uptake by reed and calamus, followed by NH4+. In order to adapt to the change of nitrogen form in the environment, reed and calamus tend to absorb and utilize NO3- to maintain their absorption of nitrogen. Mine effluents from mining activities provide at least 12.9% and 16.8% sulfate to reed and calamus respectively, and the effect of mine effluents on reed and calamus sulfur has been underestimated. This study reveals the key factors controlling plant isotope composition, and the use of nitrogen and sulfur isotope composition of aquatic plants can help quantify the level of influence of mining activities, and understand the biogeochemical cycle of nitrogen and sulfur in mining areas.


Subject(s)
Nitrogen , Water Pollutants, Chemical , Environmental Monitoring/methods , Water Pollutants, Chemical/chemistry , Mining , Nitrates/analysis , Sulfur , Nitrogen Isotopes/analysis
5.
Sci Total Environ ; 914: 169918, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38190899

ABSTRACT

Di(2-ethylhexyl) phthalate (DEHP) is a widely used plastic additive with persistent characteristics in the environment. This study was designed to investigate the detrimental effects of chronic DEHP exposure at environmental-relevant doses on bone metabolism and the underlying mechanisms. It was found that exposure to 25 µg/kg bw and 50 µg/kg bw DEHP for 29 weeks led to a reduction of whole-body bone mineral density (BMD), femur microstructure damage, decreased femur new bone formation, and increased femur bone marrow adipogenesis in C57BL/6 female mice, which was not observed in mice exposed to 5000 µg/kg bw DEHP. Further in vitro study showed that DEHP treatment robustly promoted adipogenic differentiation and suppressed osteogenic differentiation of the bone marrow mesenchymal stem cells (BMSCs). Mechanistically, DEHP exposure resulted in elevated expressions of DYRK1B, CDK5, PPARγ, and p-PPARγSer273 in both bone tissue and BMSCs. Interestingly, co-IP analysis showed potential interactions among DYRK1B, PPARγ, and CDK5. Lastly, antagonists of DYRK1B and CDK5 effectively alleviated the BMSCs differentiation disturbance induced by DEHP. These results suggest that DEHP may disturb the BMSCs differentiation by upregulating the PPARγ signaling which may be associated with the activation of DYRK1B and CDK5.


Subject(s)
Diethylhexyl Phthalate , Mesenchymal Stem Cells , Osteoporosis , Phthalic Acids , Female , Mice , Animals , Diethylhexyl Phthalate/toxicity , PPAR gamma/metabolism , Osteogenesis , Mice, Inbred C57BL , Osteoporosis/chemically induced , Mesenchymal Stem Cells/metabolism
6.
Ecotoxicol Environ Saf ; 269: 115805, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38070416

ABSTRACT

Rapid urbanization and mining activities are exacerbating sulfate (SO42-) pollution in surface water, and the information on its sources and transformations is crucial for understanding the sulphur cycle in mining areas. In this study, the SO42- in the surface water of Huaibei mining area were monitored and the main sources of pollution and biogeochemical processes were identified using stable isotopes (δD, δ18O-H2O, δ34S-SO42- and δ18O-SO42-) and water chemistry. The results demonstrated the SO42- content in the Huihe River and Linhuan subsidence water area (SWA) is higher than that in other rivers and SWAs, which exceeded the environmental quality standard of surface water. The SO42- content of different rivers and SWAs showed seasonal differences, and the dry season was higher than the wet season. In addition, the SO42- in Tuohe River and Suihe River is primarily caused by urban sewage and agriculture activities, while in Zhonghu and Shuoxihu SWA is mainly contributed by natural evaporate dissolution. Notably, the input of SO42- in the Huihe River and Linhuan SWA caused by mining activities cannot be disregarded. The aerobic environment and isotopic fractionation of surface water indicate that sulfide oxidation is not the major cause of SO42- formation. This work has revealed the multiple sources and transformation mechanisms of SO42-, and provided a reference for the development of comprehensive management and effective remediation strategies of SO42- contamination in surface water around mining areas.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Environmental Monitoring/methods , Water , Sulfates/analysis , Isotopes , Mining , Rivers/chemistry , Water Pollutants, Chemical/analysis , China , Nitrogen Isotopes/analysis
7.
Sci Total Environ ; 912: 169123, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38070569

ABSTRACT

The accumulation of nitrate (NO3-) in surface waters resulting from mining activities and rapid urbanization has raised widespread concerns. Therefore, it is crucial to develop a nitrate transformation information system to elucidate the nitrogen cycle and ensure sustainable water quality management. In this study, we focused on the main river and subsidence area of the Huaibei mining region to monitor the temporal and spatial variations in the NO3- content. Multiple isotopes (δD, δ18O-H2O, δ15N-NO3-, δ18O-NO3-, and δ15N-NH4+) along with water chemistry indicators were employed to identify the key mechanisms responsible for nitrate accumulation (e.g., nitrification and denitrification). The NO3- concentrations in surface water ranged from 0.28 to 7.50 mg/L, with NO3- being the predominant form of nitrogen pollution. Moreover, the average NO3- levels were higher during the dry season than during the wet season. Nitrification was identified as the primary process driving NO3- accumulation in rivers and subsidence areas, which was further supported by the linear relationship between δ15N-NO3- and δ15N-NH4+. The redox conditions and the relationship between δ15N-NO3- and δ18O-NO3-, and lower isotope enrichment factor of denitrification indicated that denitrification was weakened. Phytoplankton preferentially utilized available NH4+ sources while inhibiting NO3- assimilation because of their abundance. These findings provide direct evidence regarding the mechanism underlying nitrate accumulation in mining areas, while aiding in formulating improved measures for effectively managing water environments to prevent further deterioration.

8.
J Environ Manage ; 347: 119127, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37797510

ABSTRACT

This study prepared and characterized bamboo-derived biochar loaded with different ratios of iron and manganese; evaluated its remediation performance in arsenic-contaminated soil by studying the changes in various environmental factors, arsenic speciation, and arsenic leaching amount in the soil after adding different materials; proposed the optimal ratio and mechanism of iron-manganese removal of arsenic; and explained the multivariate relationship between enzyme activity and soil environmental factors based on biological information. Treatment with Fe-Mn-modified biochar increased the organic matter, cation exchange capacity, and N, P, K, and other nutrient contents. During the remediation process, O-containing functional groups such as Mn-O/As and Fe-O/As were formed on the surface of the biochar, promoting the transformation of As from the mobile fraction to the residual fraction and reducing the phytotoxicity of As, and the remediation ability for As was superior to that of Fe-modified biochar. Mn is indispensable in the FeMn-BC synergistic remediation of As, as it can increase the adsorption sites and the number of functional groups for trace metals on the surface of biochar. In addition to electrostatic attraction, the synergistic mechanism of ferromanganese-modified biochar for arsenic mainly involves redox and complexation. Mn oxidizes As(Ⅲ) to more inert As(V). In this reaction process, Mn(Ⅳ) is reduced to Mn(Ⅲ) and Mn(II), promoting the formation of Fe(Ⅲ) and the conversion of As into Fe-As complexes, while As is fixed due to the formation of ternary surface complexes. Moreover, the effect of adding Fe-Mn-modified biochar on soil enzyme activity was correlated with changes in soil environmental factors; catalase was correlated with soil pH; neutral phosphatase was correlated with soil organic matter; urease was correlated with ammonia nitrogen, and sucrase activity was not significant. This study highlights the potential value of FM1:3-BC as a remediation agent in arsenic-contaminated neutral soils.


Subject(s)
Arsenic , Soil Pollutants , Manganese/chemistry , Arsenic/chemistry , Ferric Compounds , Soil Pollutants/chemistry , Charcoal/chemistry , Iron/chemistry , Soil/chemistry
9.
Environ Pollut ; 335: 122378, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37586683

ABSTRACT

The Hg released from coal mining activities can endanger soil ecosystems and pose a risk to human health. Understanding the accumulation characteristics of mercury (Hg) in coal mining soil is important for effectively controlling Hg emissions and developing measures for the prevention and control of Hg contamination. To identify the potential sources of Hg in soils, the Hg concentration and isotopic composition characteristics of raw coal and different topsoil types from the areas surrounding a coal mine were determined in this study. The results showed that Hg in coal mainly exists mainly in the form of inorganic Hg, and Hg has experienced Hg2+ photoreduction prior to incorporating into coal. In addition, the composition of Hg isotopes differed significantly among different topsoil types, and the δ202Hg value of the farmland soil exhibited large negative excursions compared to the coal mining soil. The ternary mixed model further revealed the presence of substantial differences in potential Hg sources among the two regions, with the coal mining soil being greatly disturbed by anthropogenic activity, and the relative contributions of Hg from raw coal, coal gangue, and background soil to coal mining soil being 33.42%, 34.4%, and 32.19%, respectively. However, Hg from raw coal, coal gangue and background soil contributed 17.04%, 21.46%, and 61.51% of the Hg in the farmland soil, indicating that the accumulation of Hg in farmland soil was derived primarily from the background soil. Our study demonstrated that secondary pollution in soil caused by immense accumulation of solid waste (gangue) by mining activities offers a significant challenge to ecological security. These findings provide new insights into controlling soil Hg in mining areas and further highlight the urgency of strict protective measures for contaminated sites.


Subject(s)
Coal Mining , Mercury , Soil Pollutants , Humans , Ecosystem , Environmental Monitoring/methods , Mercury/analysis , Mining , Soil , Isotopes , Coal/analysis , Soil Pollutants/analysis , China
10.
Environ Geochem Health ; 45(10): 7065-7080, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37572235

ABSTRACT

East China is a highly aggregated coal-grain composite area where coal mining and agricultural production activities are both flourishing. At present, the geochemical characteristics of dissolved inorganic carbon (DIC) in groundwater in coal mining areas are still unclear. This study combined hydrochemical and carbon isotope methods to explore the sources and factors influencing DIC in the groundwater of different active areas in coal mining areas. Moreover, the 13C isotope method was used to calculate the contribution rates of various sources to DIC in groundwater. The results showed that the hydrochemical types of groundwater were HCO3-Ca·Na and HCO3-Na. The main water‒rock interactions were silicate and carbonate rock weathering. Agricultural areas were mainly affected by the participation of HNO3 produced by chemical fertilizer in the weathering of carbonate rocks. Soil CO2 and carbonate rock weathering were the major sources of DIC in the groundwater. Groundwater in residential areas was primarily affected by CO2 from the degradation of organic matter from anthropogenic inputs. Sulfate produced by gypsum dissolution, coal gangue accumulation leaching and mine drainage participated in carbonate weathering under acidic conditions, which was an important factor controlling the DIC and isotopic composition of groundwater in coal production areas. The contribution rates of groundwater carbonate weathering to groundwater DIC in agricultural areas and coal production areas ranged from 57.46 to 66.18% and from 54.29 to 62.16%, respectively. In residential areas, the contribution rates of soil CO2 to groundwater DIC ranged from 51.48 to 61.84%. The results will help clarify the sources and circulation of DIC in groundwater under the influence of anthropogenic activities and provide a theoretical reference for water resource management.


Subject(s)
Coal Mining , Groundwater , Water Pollutants, Chemical , Environmental Monitoring , Carbon Dioxide/analysis , Carbon Isotopes/analysis , Carbonates/analysis , Groundwater/chemistry , China , Soil , Coal/analysis , Water Pollutants, Chemical/analysis
11.
Environ Sci Pollut Res Int ; 30(25): 66598-66609, 2023 May.
Article in English | MEDLINE | ID: mdl-37186180

ABSTRACT

Coal mining has produced a large amount of coal gangue. It makes the soil around the mining area seriously polluted by heavy metals, affects the growth of crops, and endangers human health. Therefore, there is an urgent need to develop new materials for remediation of Cd in soil. In this study, mercaptosilane-modified sepiolite (Q-Sep) was used as a basic passivator, and it was pretreated with acid (H-Q-Sep) and high temperature (R-Q-Sep) respectively. By analyzing the forms of Cd and pH values in soil after adding modified sepiolite, we compared the remediation effects of two modified methods on Cd in soil. The enrichment of spinach (Spinacia oleracea L) to Cd and changes in physiological and biochemical indexes of spinach were determined, and the effect of modified sepiolite on the growth of spinach was judged. The experimental results showed that the addition of modified sepiolite could significantly increase the soil pH values (p < 0.05); the content of exchangeable Cd in soil decreased by 60.4%; and the maximum increase of residual state was 32.9%. The absorption of Cd in soil by spinach decreased, and root length, plant height, and biomass of spinach all increased. It was proved that the addition of modified sepiolite can improve the productivity of soil, reduce toxicity of heavy metals in soil, and promote growth of plants. As a result, the addition of H-Q-Sep and R-Q-Sep can effectively repair Cd in gangue filled soil, which provides a certain theoretical basis for the passivation remediation of Cd in soil.


Subject(s)
Coal Mining , Soil Pollutants , Humans , Cadmium/analysis , Spinacia oleracea , Soil Pollutants/analysis , Soil/chemistry
12.
Ecotoxicol Environ Saf ; 253: 114688, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36842277

ABSTRACT

The soil contamination caused by the discharge of cadmium (Cd) from coal mining activities has aroused continuous attention due to the detrimental effects on the human health. This study aimed to investigate the characteristics on distribution of Cd in soils and its accumulation in wheat grains under wheat-cultivation system, and further assess the human health risks to adults and children. 58 soils and wheat samples in pairs from Linhuan coal mining area, Anhui Province were collected and analyzed. Results showed that the concentrations of Cd in 17.24% of soil samples exceeded the limit value established by the Ministry of Ecology and Environment. The ordinary kriging interpolation displayed that the spatial variability of Cd concentrations in soils was mainly influenced by coal mining activities. The transfer capacity of Cd from soils to wheat roots was greater than that from the wheat roots to grains. Multiple linear regression model clarified that soil pH and exchangeable Cd fraction in soils were the critical factors affecting the Cd accumulation in wheat grains. The carcinogenic risk of Cd levels in our studied wheat grains was a concern but still within the acceptable range, while their non-carcinogenic hazard was negligible for adults and children. The calculation results were in accord with the uncertainty analysis conclusion based on Monte Carlo simulation. The study was expected to promote the source management and control strategy of reducing tailing discharge, and providing scientific references for current soil remediation and land degradation prevention.


Subject(s)
Coal Mining , Metals, Heavy , Soil Pollutants , Adult , Child , Humans , Cadmium/metabolism , Soil , Triticum/metabolism , Environmental Monitoring , Soil Pollutants/analysis , China , Risk Assessment , Metals, Heavy/analysis
13.
Article in English | MEDLINE | ID: mdl-36767253

ABSTRACT

Coal, being one of the major energy sources for power generation, contains several critical trace elements. There is a growing scarcity and expense of these critical elements as a result of the increased demand and limitation of mining sources. To explore the geochemical characteristics of the rare-metal, rare-dispersed (scattered), and rare-earth elements (TREs) in coal, 25 coal seam samples of the Shanxi Formation in the Huainan coalfield were collected. The major element oxides, minerals, and TREs were analyzed by X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), and inductively coupled plasma-mass spectrometry (ICP-MS). The results revealed that the coal of the Shanxi Formation had ultra-low moisture and low ash yield and was medium-high-volatility with low sulfur content and high calorific value. Concerning minerals, the coal was mainly composed of kaolinite, illite, quartz, calcite, dolomite, and pyrite. Compared with Chinese coal and world hard coal, rare-metal element Li and rare-dispersed element Se were enriched, whereas Ga and Ta were only slightly enriched. The average content of REYs was 51.34 µg/g, which is lower than the average content of REYs in Chinese coal. It has the enrichment characteristics of light REYs. In the vertical direction, the content of most TREs was higher in the roof and floor of the coal seam and the parting, indicating that the sedimentary microenvironment plays an important role in controlling the migration and enrichment of elements. The experimental results of sequential chemical extraction and correlation analysis showed that the TREs in the Shanxi Formation coal mainly exist in a residual and carbonate bound state, and occur in clay minerals and carbonate minerals. The enrichment of Se may be due to its high organic form ratio. The C-value, B content, w(Sr)/w(Ba), and REY geochemical parameters indicated that the Shanxi Formation Coal seam was developed in a transitional, semi-saline, deltaic sedimentary environment. With their development affected by seawater, REYs in coal are greatly supplied by terrigenous clastics. The complex sedimentary environment is an important reason for the varying occurrence states of TREs in the Shanxi Formation coals.

14.
Environ Sci Pollut Res Int ; 30(15): 43152-43167, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36648714

ABSTRACT

Many subsidence lakes have formed in eastern China as a result of underground coal mining. These coal mining-related subsidence lakes vary in their formation time and connectivity with rivers. These factors may influence the water chemistry and hydrogen and oxygen stable isotope characteristics of the lake water. This study collected and tested subsidence lake water, atmospheric precipitation, river water, and shallow groundwater in the study area. The results showed that the water chemical types of the subsidence lake water and river water are Cl-Na and HCO3·Cl-Na and that the water chemical types of the shallow groundwater are mainly HCO3·Cl-Na and HCO3·Cl-Ca. There are no significant differences in the water chemical characteristics of subsidence lakes with different subsidence ages and types. The major ions in each water body mainly come from evaporite dissolution and silicate weathering, and ion exchange occurs. Reverse ion exchange occurs in some shallow groundwater samples. The stable isotopes of hydrogen and oxygen in the subsidence lake water, river water, and shallow groundwater are distributed along a straight line with a slope less than that of the LMWL, indicating that these water bodies have a common source, namely, precipitation. With increases in the formation time of the subsidence lakes, the heavy isotopes in the lake water gradually become depleted, and the d value gradually increases, mainly driven by precipitation dilution, weakening evaporation, river recharge, and groundwater recharge. The isotopic values of different types of lakes with the same subsidence time differ little. The research results may provide scientific guidance for the rational development and utilization of water resources in coal mining subsidence areas, enrich the study of the hydrological cycle in the area, and are of great significance for the protection of the local water balance and water environment.


Subject(s)
Coal Mining , Groundwater , Water Pollutants, Chemical , Lakes , Environmental Monitoring/methods , Water , Water Pollutants, Chemical/analysis , Oxygen Isotopes , Rivers , China
15.
J Environ Manage ; 325(Pt A): 116551, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36283198

ABSTRACT

The rapid increase in urbanization and intensive coal mining activities have accelerated the deterioration of surface water quality. Environmental problems caused by the accumulation of nitrate and sulfate from natural, urban, and agricultural sources have attracted extensive attention. Information on nitrate and sulfate sources and their transformations is crucial for understanding the nitrogen and sulfur cycles in surface water. In this study, we monitored nitrate and sulfate in three representative rivers in mining cities in northern China. The main pollution sources and biogeochemical processes were identified by using stable isotopes (δD, δ18OH2O, δ15N, δ18ONO3, δ34S and δ18OSO4) and hydrochemistry. The contribution of natural and anthropogenic sources was quantitatively estimated based on a Bayesian mixed model. The results indicated a large variation in sulfate and nitrate sources between the different rivers. Nitrate in the Tuohe River mainly derived from manure/sewage (57.9%) and soil N (26.9%), while sulfate mainly derived from manure/sewage (41.7%) and evaporite dissolution (26.8%). For the Suihe River, nitrate was primarily sourced from chemical fertilizer (37.9%) and soil nitrogen (34.8%), while sulfate was mainly sourced from manure/sewage (33.1%) and chemical fertilizer (21.4%). For the Huihe River, nitrate mainly derived from mine drainage (56.6%) and manure/sewage (30.6%), while sulfate predominantly originated from mine drainage (58.3%) and evaporite dissolution (12.9%). Microbial nitrification was the major pathway for the migration and transformation of nitrate in the surface water. However, denitrification and bacterial sulfate reduction (BSR) did not play a significant role as aerobic conditions prevailed. In this study, we elucidated the sources and transformation mechanisms of nitrate and sulfate. Additionally, we provided a reference for formulating a comprehensive strategy for effective management and remediation of surface water contaminated with nitrate and sulfate in mining cities.


Subject(s)
Nitrates , Water Pollutants, Chemical , Nitrates/analysis , Fertilizers/analysis , Sulfates , Sewage , Manure/analysis , Environmental Monitoring/methods , Bayes Theorem , Water Pollutants, Chemical/analysis , Nitrogen Isotopes/analysis , Oxygen Isotopes/analysis , Rivers , Nitrogen/analysis , Soil , Nitrogen Oxides , China
16.
Environ Sci Pollut Res Int ; 30(10): 26889-26900, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36372858

ABSTRACT

A ZnCl2-modified biochar-supported nanoscale iron sulfide composite (FeS-ZnBC) was successfully prepared to address the easy oxidization of FeS and enhance Cr(VI) removal from water. The material was characterized by SEM, XRD, FTIR, and XPS. The effects of FeS:ZnBC mass ratio, FeS-ZnBC dosage, solution pH, initial Cr(VI) concentration, and reaction time on the adsorption performance were investigated. The results revealed that the optimum adsorption capacity of FeS-ZnBC (FeS:ZnBC = 1:2) for Cr(VI) was 264.03 mg/g at 298 K (pH = 2). A Box-Behnken design (BBD) was applied to optimize the input variables that affected the adsorption of Cr(VI) solution. The results revealed that the highest removal (99.52%) of Cr(VI) solution was achieved with a Cr(VI) initial concentration of 150.59 mg/L, FeS-ZnBC adsorbent dosage of 2 g/L, and solution pH of 2. The sorption kinetics could be interpreted using a pseudo-second-order kinetic model. The isotherms were simulated using the Redlich-Peterson isotherm model, indicating that Cr(VI) removal by the FeS-ZnBC composites was a hybrid chemical reaction-sorption process. The main mechanisms of Cr(VI) removal by FeS-ZnBC were adsorption, chemical reduction, and complexation. This study demonstrated that FeS-ZnBC has potential application prospects in Cr(VI) removal.


Subject(s)
Saccharum , Water Pollutants, Chemical , Cellulose , Iron/chemistry , Water Pollutants, Chemical/analysis , Chromium/chemistry , Charcoal/chemistry , Adsorption , Kinetics
17.
Environ Geochem Health ; 45(5): 2241-2262, 2023 May.
Article in English | MEDLINE | ID: mdl-35918576

ABSTRACT

Chromium (Cr), one of the prime hazardous trace elements in coals, may engender adverse effects on eco-environment and threaten human health during utilization of coal. Based on the samples obtained in our laboratory and published literature, the abundance and modes of occurrence of Cr in Chinese coals, and the environmental impacts associated with coal-fired power plants (CFPPs) were elucidated in this study. With a total of 1397 sets of data, the mean concentration of Cr in Chinese coals was calculated as 21.33 µg/g by the "reserve-concentration" weighted calculation method. Spatially, the average Cr contents increased gradually from North China to South China. Temporally, coals from T3, E-N and P2 were relatively enriched in Cr compared to the other geological time. The Cr concentration in coal varied with different coal ranks. The geological factors accounted for Cr enrichment in coals could be divided into the primary, secondary and epigenetic processes. Higher percentages of organically Cr occurred in low-rank coals, while inorganically associated Cr was mainly found in clay minerals. After coal combustion, most of Cr was enriched in solid wastes (e.g., fly ash and bottom ash). The leaching of Cr from solid wastes in the rainy season (especially acid rain) needs to be a concern for CFPPs. It was estimated that the atmospheric emission of Cr from CFPPs increased annually from 2015 to 2019 and reached approximately 159 tons in 2019.


Subject(s)
Chromium , Coal , China , Chromium/toxicity , Coal/analysis , Coal Ash/analysis , Power Plants , Solid Waste
18.
Article in English | MEDLINE | ID: mdl-36361314

ABSTRACT

Mining activities cause surface sulfate enrichment, which has negative impacts on human health and ecosystems. These high concentrations of sulfate may enter groundwater through the unsaturated zone (UZ), threatening groundwater quality. Therefore, we combined hydrochemical and dual isotopic analyses of sulfate in surface water, soil water and groundwater with evaluations of the UZ to identify the groundwater sulfate source and transformation in the coal mining area. Soil profile samples were collected near gangue heaps (UZ-1, UZ-2) and the mean sulfate concentrations of the UZ-1 profile and UZ-2 profile were 35.4 mg/L and 69.63 mg/L, respectively. The shallow groundwater sulfate was mainly from dissolution of evaporite, sulfide oxidation and sewage. Different sulfate contaminated areas showed different characteristics of sulfate sources. The sulfate source to groundwater near the coal gangue heaps was sulfide oxidation. The groundwater sulfate near the gangue heaps and industrial park compound contamination area was mainly derived from industrial and domestic sewage and sulfide oxidation. In addition, the role of bacterial sulfate reduction (BSR) in the groundwater was not obvious. This research result is of great significance for promoting the safe mining of coal resources and sustainable utilization of groundwater in the Huaibei coal mining area and other coal mining areas in China.


Subject(s)
Coal Mining , Water Pollutants, Chemical , Humans , Sulfates/analysis , Environmental Monitoring , Sewage/analysis , Ecosystem , Water Pollutants, Chemical/analysis , Coal/analysis , Mining , China , Sulfur Oxides , Sulfides/analysis , Soil
19.
Ecotoxicol Environ Saf ; 248: 114286, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36371885

ABSTRACT

Coal mining cities are universally confronted with the degradation of groundwater quality, and the sulfate pollution of groundwater has become a widely studied environmental problem. In this study, we combined multi-isotope (δ34S, δ18O-SO42- and 87Sr/86Sr) approach with hydrochemical technique and a Bayesian mixed model to clarify sources and transformations and to quantitatively assess the contribution of sulfate from potential sources. The concentrations of SO42- in groundwater ranged from 7.7 mg/L to 172.9 mg/L, and the high-value areas were located in coal mining area and residential area. The total values of δ34S and δ18O-SO42- varied from 10.6‰ to 26.9‰ and 6.9‰ to 14.1‰, respectively, in the groundwater. Analyses of SO42- and Sr isotopes and water chemistry indicated that SO42- in groundwater originated from various sources, such as atmospheric precipitation, sulfide mineral oxidation, evaporite dissolution, sewage and mine drainage. The oxidation of pyrite and bacterial sulfate reduction (BSR) had no significant impact on the stable isotopes of groundwater. At the same time, the calculation results of the Bayesian mixed model showed that the sources of SO42- in groundwater mainly include evaporite dissolution in aquifer and mine drainage in the mixture of shallow and deep groundwater, with high contribution proportions of 39.8 ± 10.9% and 31.9 ± 5.7%, respectively, while the contributions of sewage (13.9 ± 8.5%), atmospheric precipitation (9.6 ± 8.6%) and the oxidation of sulfide (4.7 ± 3.3%) to SO42- were lower. The research results revealed the source of SO42- pollution in shallow groundwater in the coal mine area and provided an important scientific basis for the effective management and protection of groundwater resources.


Subject(s)
Coal Mining , Groundwater , Water Pollutants, Chemical , Sulfates/analysis , Environmental Monitoring/methods , Sewage/analysis , Bayes Theorem , Water Pollutants, Chemical/analysis , Sulfides/analysis , Isotopes/analysis , China
20.
Environ Pollut ; 313: 120153, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36113641

ABSTRACT

As tracers, rare earth elements (REEs) can reflect the influence of human activities on the environmental changes in aquatic systems. To reveal the geochemical behavior of REEs in a water-sediment system influenced by human activities, the contents of REEs in the surface water and sediment in the Chaohu Lake Basin were measured by inductively coupled plasma mass spectrometry (ICP-MS). The results show that the ΣREE contents in the surface water are 0.10-0.850 µg L-1, the ΣREE contents in the sediments are 71.14-210.01 µg g-1, and the average contents are 0.24 µg L-1 and 126.72 µg g-1, respectively. Almost all water and sediment samples have obvious light REE (LREE) enrichment, which is the result of the input of LREE-rich substances released by natural processes and human activities (industrial and agricultural production). Under the alkaline water quality conditions of Chaohu Lake, REEs (especially LREEs) are easily removed from water by adsorption/coprecipitation reactions with suspended colloidal particles, which leads to the enrichment of LREEs in sediments. The Ce anomaly of the water-sediment system is related to the oxidation environment, while the Eu anomaly is related to the plagioclase crystallization. Significant Gd anomalies was observed in the downstream of rivers flowing through urban areas, which was related to the anthropogenic Gd wastewater discharged by hospitals. The ∑REE-δEu and provenance index (PI) discrimination results are consistent, indicating that the sediments in Chaohu Lake mainly come from rivers flowing through the southwest farmland. Furthermore, the spatial distribution of REEs shows that these tributaries are significantly affected by agricultural activities. The distribution and accumulation of REEs in Chaohu Lake are the result of the interaction of natural and human processes. The results can provide a scientific reference for the distribution and environmental behavior of REEs in aquatic environments disturbed by human beings.


Subject(s)
Geologic Sediments , Lakes , Metals, Rare Earth , Water Pollutants, Chemical , Environmental Monitoring , Geologic Sediments/chemistry , Human Activities , Humans , Lakes/chemistry , Metals, Rare Earth/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...