Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Biofilms Microbiomes ; 10(1): 6, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245564

ABSTRACT

Probiotics hold promise as a potential therapy for colorectal cancer (CRC), but encounter obstacles related to tumor specificity, drug penetration, and dosage adjustability. In this study, genetic circuits based on the E. coli Nissle 1917 (EcN) chassis were developed to sense indicators of tumor microenvironment and control the expression of therapeutic payloads. Integration of XOR gate amplify gene switch into EcN biosensors resulted in a 1.8-2.3-fold increase in signal output, as confirmed by mathematical model fitting. Co-culturing programmable EcNs with CRC cells demonstrated a significant reduction in cellular viability ranging from 30% to 50%. This approach was further validated in a mouse subcutaneous tumor model, revealing 47%-52% inhibition of tumor growth upon administration of therapeutic strains. Additionally, in a mouse tumorigenesis model induced by AOM and DSS, the use of synthetic bacterial consortium (SynCon) equipped with multiple sensing modules led to approximately 1.2-fold increased colon length and 2.4-fold decreased polyp count. Gut microbiota analysis suggested that SynCon maintained the abundance of butyrate-producing bacteria Lactobacillaceae NK4A136, whereas reducing the level of gut inflammation-related bacteria Bacteroides. Taken together, engineered EcNs confer the advantage of specific recognition of CRC, while SynCon serves to augment the synergistic effect of this approach.


Subject(s)
Colitis , Colorectal Neoplasms , Gastrointestinal Microbiome , Animals , Mice , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/microbiology , Colitis/chemically induced , Escherichia coli/genetics , Inflammation , Tumor Microenvironment
2.
Adv Exp Med Biol ; 1414: 1-26, 2023.
Article in English | MEDLINE | ID: mdl-35708844

ABSTRACT

Three human nucleases, SNM1A, SNM1B/Apollo, and SNM1C/Artemis, belong to the SNM1 gene family. These nucleases are involved in various cellular functions, including homologous recombination, nonhomologous end-joining, cell cycle regulation, and telomere maintenance. These three proteins share a similar catalytic domain, which is characterized as a fused metallo-ß-lactamase and a CPSF-Artemis-SNM1-PSO2 domain. SNM1A and SNM1B/Apollo are exonucleases, whereas SNM1C/Artemis is an endonuclease. This review contains a summary of recent research on SNM1's cellular and biochemical functions, as well as structural biology studies. In addition, protein structure prediction by the artificial intelligence program AlphaFold provides a different view of the proteins' non-catalytic domain features, which may be used in combination with current results from X-ray crystallography and cryo-EM to understand their mechanism more clearly.


Subject(s)
DNA Repair Enzymes , DNA Repair , Humans , Artificial Intelligence , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Endonucleases/genetics , Endonucleases/metabolism , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Nuclear Proteins/metabolism , Cell Cycle Proteins/metabolism
3.
Protein Sci ; 31(7): e4376, 2022 07.
Article in English | MEDLINE | ID: mdl-35762722

ABSTRACT

The allosteric regulation of ADP-glucose pyrophosphorylase is critical for the biosynthesis of glycogen in bacteria and starch in plants. The enzyme from Agrobacterium tumefaciens is activated by fructose 6-phosphate (Fru6P) and pyruvate (Pyr). The Pyr site has been recently found, but the site where Fru6P binds has remained unknown. We hypothesize that a sulfate ion previously found in the crystal structure reveals a part of the regulatory site mimicking the presence of the phosphoryl moiety of the activator Fru6P. Ser72 interacts with this sulfate ion and, if the hypothesis is correct, Ser72 would affect the interaction with Fru6P and activation of the enzyme. Here, we report structural, binding, and kinetic analysis of Ser72 mutants of the A. tumefaciens ADP-glucose pyrophosphorylase. By X-ray crystallography, we found that when Ser72 was replaced by Asp or Glu side chain carboxylates protruded into the sulfate-binding pocket. They would present a strong steric and electrostatic hindrance to the phosphoryl moiety of Fru6P, while being remote from the Pyr site. In agreement, we found that Fru6P could not activate or bind to S72E or S72D mutants, whereas Pyr was still an effective activator. These mutants also blocked the binding of the inhibitor AMP. This could potentially have biotechnological importance in obtaining enzyme forms insensitive to inhibition. Other mutations in this position (Ala, Cys, and Trp) confirmed the importance of Ser72 in regulation. We propose that the ADP-glucose pyrophosphorylase from A. tumefaciens have two distinct sites for Fru6P and Pyr working in tandem to regulate glycogen biosynthesis.


Subject(s)
Agrobacterium tumefaciens , Serine , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Fructose , Glucose-1-Phosphate Adenylyltransferase/chemistry , Glucose-1-Phosphate Adenylyltransferase/genetics , Glucose-1-Phosphate Adenylyltransferase/metabolism , Glycogen/metabolism , Kinetics , Mutagenesis, Site-Directed , Phosphates , Serine/genetics , Sulfates
4.
Plant Cell Physiol ; 63(5): 658-670, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35243499

ABSTRACT

Sugar alcohols are major photosynthetic products in plant species from the Apiaceae and Plantaginaceae families. Mannose-6-phosphate reductase (Man6PRase) and aldose-6-phosphate reductase (Ald6PRase) are key enzymes for synthesizing mannitol and glucitol in celery (Apium graveolens) and peach (Prunus persica), respectively. In this work, we report the first crystal structures of dimeric plant aldo/keto reductases (AKRs), celery Man6PRase (solved in the presence of mannonic acid and NADP+) and peach Ald6PRase (obtained in the apo form). Both structures displayed the typical TIM barrel folding commonly observed in proteins from the AKR superfamily. Analysis of the Man6PRase holo form showed that residues putatively involved in the catalytic mechanism are located close to the nicotinamide ring of NADP+, where the hydride transfer to the sugar phosphate should take place. Additionally, we found that Lys48 is important for the binding of the sugar phosphate. Interestingly, the Man6PRase K48A mutant had a lower catalytic efficiency with mannose-6-phosphate but a higher catalytic efficiency with mannose than the wild type. Overall, our work sheds light on the structure-function relationships of important enzymes to synthesize sugar alcohols in plants.


Subject(s)
Phosphates , Sugar Alcohols , Alcohol Oxidoreductases/metabolism , Aldehyde Reductase/metabolism , Amino Acid Sequence , Humans , Mannosephosphates , NADP/metabolism , Plants/metabolism , Sugars
5.
Crit Rev Biotechnol ; 41(8): 1279-1296, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34107840

ABSTRACT

Biofiltration (BF) facilitates the removal of organic and inorganic compounds through microbial reactions. Water is one of the most important elements in biotrickling filters that provides moisture and nutrients to microbial biofilms. The maintenance of proper trickle watering is very critical in biotrickling filtration because the flow rate of the trickling water significantly influences contaminant removal, and its optimal control is associated with various physicochemical and biological mechanisms. The lack of water leads to the drying of the media, creating several issues, including the restricted absorption of hydrophilic contaminants and the inhibition of microbial activities, which ultimately deteriorates the overall contaminant removal efficiency (RE). Conversely, an excess of water limits the mass transfer of oxygen or hydrophobic gases. In-depth analysis is required to elucidate the role of trickle water in the overall performance of biotrickling filters. The processes involved in the treatment of various polluted gases under specific water conditions have been summarized in this study. Recent microscopic studies on biofilms were reviewed to explain the process by which water stress influences the biological mechanisms involved in the treatment of hydrophobic contaminated gases. In order to maintain an effective mass transfer, hydrodynamic and biofilm conditions, a coherent understanding of water stress and the development of extracellular polymeric substances (EPS) in biofilms is necessary. Future studies on the realistic local distribution of hydrodynamic patterns (trickle flow, water film thickness, and wet efficiency), integrated with biofilm distributions, should be conducted with respect to EPS development.


Subject(s)
Bioreactors , Gases , Biodegradation, Environmental , Biofilms , Filtration , Hydrophobic and Hydrophilic Interactions
6.
Environ Microbiol ; 23(1): 415-430, 2021 01.
Article in English | MEDLINE | ID: mdl-33201569

ABSTRACT

Cu(II)-enhanced microbial Cr(VI) reduction is common in the environment, yet its mechanism is unknown. The specific activity of chromate reductase, NfoR, from Staphylococcus aureus sp. LZ-01 was augmented 1.5-fold by Cu(II). Isothermal titration calorimetry and spectral data show that Cu(II) binds to NfoR nonspecifically. Further, Cu(II) stimulates the nitrobenzene reduction of NfoR, indicating that Cu(II) promotes electron transfer. The crystal structure of NfoR in complex with CuSO4 (1.46 Å) was determined. The overall structure of NfoR-Cu(II) complex is a dimer that covalently binds with FMN and Cu(II)-binding pocket is located at the interface of the NfoR dimer. Structural superposition revealed that NfoR resembles the structure of class II chromate reductase. Site-directed mutagenesis revealed that Leu46 and Phe123 were involved in NADH binding, whereas Trp70 and Ser45 were the key residues for nitrobenzene binding. Furthermore, His100 and Asp171 were preferential affinity sites for Cu(II) and that Cys163 is an active site for FMN binding. Attenuation reductase activity in C163S can be partially restored to 54% wild type by increasing Cu(II) concentration. Partial restoration indicates dual-channel electron transfer of NfoR via Cu(II) and FMN. We propose a catalytic mechanism for Cu(II)-enhanced NfoR activity in which Cu(I) is formed transiently. Together, the current results provide an insight on Cu (II)-induced enhancement and benefit of Cr(VI) bioremediation.


Subject(s)
Bacterial Proteins/metabolism , Chromium/metabolism , Copper/metabolism , Oxidoreductases/metabolism , Staphylococcus aureus/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Biodegradation, Environmental , Oxidation-Reduction , Oxidoreductases/chemistry , Oxidoreductases/genetics , Staphylococcus aureus/chemistry , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism
7.
Bioresour Technol ; 318: 124253, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33129070

ABSTRACT

Microalgal biohydrogen (bioH2) has attracted global interest owing to its potential carbon-free source of sustainable renewable energy. Most of previous reviews which focused on microalgal bioH2, have shown unclear differentiation among the metabolic pathways. In this review, investigation of all different metabolic pathways for microalgal bioH2 production along with discussion on the recent research work of last 5-years have been considered. The major factors (such as light, vital nutrients, microalgal cell density, and substrate bioavailability) are highlighted. Moreover, effect of various pretreatment approaches on the constituent's bioaccessibility is reported. Microbial electrolysis cells as a new strategy for bioH2 production is stated. Comparison between the operation conditions of various bioreactors and economic feasibility is also emphasized. Genetic, metabolic engineering, and synthetic biology as recent technologies improved the microalgal bioH2 production through inactivation of uptake hydrogenase (H2ase), inhibition of the competing pathways in polysaccharide synthesis, and improving the O2 tolerant H2ase.


Subject(s)
Microalgae , Biofuels , Bioreactors , Fermentation , Hydrogen/analysis , Metabolic Networks and Pathways
8.
Appl Environ Microbiol ; 86(22)2020 10 28.
Article in English | MEDLINE | ID: mdl-32887719

ABSTRACT

Soil bacteria can detoxify Cr(VI) ions by reduction. Within the last 2 decades, numerous reports of chromate reductase enzymes have been published. These reports describe catalytic reduction of chromate ions by specific enzymes. These enzymes each have sequence similarity to known redox-active flavoproteins. We investigated the enzyme NfoR from Staphylococcus aureus, which was reported to be upregulated in chromate-rich soils and to have chromate reductase activity (H. Han, Z. Ling, T. Zhou, R. Xu, et al., Sci Rep 7:15481, 2017, https://doi.org/10.1038/s41598-017-15588-y). We show that NfoR has structural similarity to known flavin mononucleotide (FMN) reductases and reduces FMN as a substrate. NfoR binds FMN with a dissociation constant of 0.4 µM. The enzyme then binds NADPH with a dissociation constant of 140 µM and reduces the flavin at a rate of 1,350 s-1 Turnover of the enzyme is apparently limited by the rate of product release that occurs, with a net rate constant of 0.45 s-1 The rate of product release limits the rate of observed chromate reduction, so the net rate of chromate reduction by NfoR is orders of magnitude lower than when this process occurs in solution. We propose that NfoR is an FMN reductase and that the criterion required to define chromate reduction as enzymatic has not been met. That NfoR expression is increased in the presence of chromate suggests that the survival adaption was to increase the net rate of chromate reduction by facile, adventitious redox processes.IMPORTANCE Chromate is a toxic by-product of multiple industrial processes. Chromate reduction is an important biological activity that ameliorates Cr(VI) toxicity. Numerous researchers have identified chromate reductase activity by observing chromate reduction. However, all identified chromate reductase enzymes have flavin as a cofactor or use a flavin as a substrate. We show here that NfoR, an enzyme claimed to be a chromate reductase, is in fact an FMN reductase. In addition, we show that reduction of a flavin is a viable way to transfer electrons to chromate but that it is unlikely to be the native function of enzymes. We propose that upregulation of a redox-active flavoprotein is a viable means to detoxify chromate that relies on adventitious reduction that is not catalyzed.


Subject(s)
Bacterial Proteins/genetics , FMN Reductase/genetics , Gene Expression Regulation, Bacterial , Oxidoreductases/genetics , Staphylococcus aureus/genetics , Bacterial Proteins/metabolism , FMN Reductase/metabolism , Oxidoreductases/metabolism , Staphylococcus aureus/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...