Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
1.
J Cell Mol Med ; 28(17): e70018, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39223962

ABSTRACT

Ferroptosis, an iron-dependent form of cell death, plays a crucial role in the progression of liver injury in Wilson's disease (WD). Gandouling (GDL) has emerged as a potential therapeutic agent for preventing and treating liver injury in WD. However, the precise mechanisms by which GDL mitigates ferroptosis in WD liver injury remain unclear. In this study, we discovered that treating Toxic Milk (TX) mice with GDL effectively decreased liver copper content, corrected iron homeostasis imbalances, and lowered lipid peroxidation levels, thereby preventing ferroptosis and improving liver injury. Bioinformatics analysis and machine learning algorithms identified Hspb1 as a pivotal regulator of ferroptosis. GDL treatment significantly upregulated the expression of HSPB1 and its upstream regulatory factor HSF1, thereby activating the HSF1/HSPB1 pathway. Importantly, inhibition of this pathway by NXP800 reversed the protective effects of GDL on ferroptosis in the liver of TX mice. In conclusion, GDL shows promise in alleviating liver injury in WD by inhibiting ferroptosis through modulation of the HSF1/HSPB1 pathway, suggesting its potential as a novel therapeutic agent for treating liver ferroptosis in WD.


Subject(s)
Ferroptosis , Heat Shock Transcription Factors , Hepatolenticular Degeneration , Liver , Molecular Chaperones , Signal Transduction , Ferroptosis/drug effects , Animals , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Mice , Hepatolenticular Degeneration/drug therapy , Hepatolenticular Degeneration/metabolism , Hepatolenticular Degeneration/pathology , Molecular Chaperones/metabolism , Liver/metabolism , Liver/drug effects , Liver/pathology , Signal Transduction/drug effects , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Disease Models, Animal , Male , Iron/metabolism , Copper/metabolism , Mice, Inbred C57BL , Humans
2.
Int Immunopharmacol ; 140: 112796, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39096871

ABSTRACT

OBJECTIVE: To compare the differential impact of recombinant protein A immunoadsorption (PAIA) or therapeutic plasma exchange (TPE) on neurological functional improvement and quality of life in patients afflicted with severe acute neuroimmune diseases, including Guillain-Barré syndrome (GBS), myasthenia gravis (MG), neuromyelitis optica spectrum disorder (NMOSD), and anti-NMDA receptor encephalitis (NMDARE). METHODS: The retrospective study included 29 patients with moderate to severe disability (modified Rankin scale, mRS≥3) due to acute neuroimmune diseases at the second Xiangya hospital from January 2021 to January 2023. The clinical efficacy of PAIA and TPE in improving neurological function (ΔmRS≥1) and the difference in favorable functional outcomes (mRS 0-2) at three months were evaluated. The impact of both treatments on patients' health-related quality of life (HRQoL) was assessed using a visual analog scale (EQ-VAS) score ranging from 0 to 100. RESULTS: The findings revealed that the PAIA group exhibited a significantly higher rate of improvement in modified Rankin scale (mRS) scores (ΔmRS≥1) at the three-month follow-up compared to the TPE group (94.4 % vs. 54.5 %, p = 0.018). However, no statistically significant difference was observed between the two treatment modalities in terms of favorable neurological functional outcomes at the three-month mark. Furthermore, the PAIA group demonstrated a significantly higher EQ-VAS score at 14 days post-treatment compared to the TPE group (60.0 vs. 47.7, p = 0.017). CONCLUSION: In the short-term management of severe acute neuroimmune diseases, PAIA may present a greater probability of improving neurological function and facilitating an earlier enhancement of quality of life compared to TPE.


Subject(s)
Plasma Exchange , Quality of Life , Humans , Plasma Exchange/methods , Female , Male , Middle Aged , Retrospective Studies , Adult , Immunosorbent Techniques , Recovery of Function , Treatment Outcome , Guillain-Barre Syndrome/therapy , Guillain-Barre Syndrome/immunology , Aged , Myasthenia Gravis/therapy , Myasthenia Gravis/immunology , Young Adult
3.
Gut Microbes ; 16(1): 2390176, 2024.
Article in English | MEDLINE | ID: mdl-39205654

ABSTRACT

Gut microbiota dysbiosis is involved in cholestatic liver diseases. However, the mechanisms remain to be elucidated. The purpose of this study was to examine the effects and mechanisms of Lactobacillus acidophilus (L. acidophilus) on cholestatic liver injury in both animals and humans. Bile duct ligation (BDL) was performed to mimic cholestatic liver injury in mice and serum liver function was tested. Gut microbiota were analyzed by 16S rRNA sequencing. Fecal bacteria transplantation (FMT) was used to evaluate the role of gut microbiota in cholestasis. Bile acids (BAs) profiles were analyzed by targeted metabolomics. Effects of L. acidophilus in cholestatic patients were evaluated by a randomized controlled clinical trial (NO: ChiCTR2200063330). BDL induced different severity of liver injury, which was associated with gut microbiota. 16S rRNA sequencing of feces confirmed the gut flora differences between groups, of which L. acidophilus was the most distinguished genus. Administration of L. acidophilus after BDL significantly attenuated hepatic injury in mice, decreased liver total BAs and increased fecal total BAs. Furthermore, after L. acidophilus treatment, inhibition of hepatic Cholesterol 7α-hydroxylase (CYP7α1), restored ileum Fibroblast growth factor 15 (FGF15) and Small heterodimer partner (SHP) accounted for BAs synthesis decrease, whereas enhanced BAs excretion was attributed to the increase of unconjugated BAs by enriched bile salt hydrolase (BSH) enzymes in feces. Similarly, in cholestasis patients, supplementation of L. acidophilus promoted the recovery of liver function and negatively correlated with liver function indicators, possibly in relationship with the changes in BAs profiles and gut microbiota composition. L. acidophilus treatment ameliorates cholestatic liver injury through inhibited hepatic BAs synthesis and enhances fecal BAs excretion.


Subject(s)
Bile Acids and Salts , Cholestasis , Gastrointestinal Microbiome , Lactobacillus acidophilus , Liver , Mice, Inbred C57BL , Probiotics , Bile Acids and Salts/metabolism , Animals , Cholestasis/metabolism , Cholestasis/microbiology , Mice , Humans , Male , Probiotics/pharmacology , Probiotics/administration & dosage , Liver/metabolism , Feces/microbiology , Cholesterol 7-alpha-Hydroxylase/metabolism , Cholesterol 7-alpha-Hydroxylase/genetics , Female , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Fecal Microbiota Transplantation , Dysbiosis/microbiology , Dysbiosis/therapy , RNA, Ribosomal, 16S/genetics , Middle Aged , Adult , Disease Models, Animal , Ileum/microbiology , Ileum/metabolism
4.
BMC Musculoskelet Disord ; 25(1): 551, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014378

ABSTRACT

BACKGROUND: The high prevalence of diabetic kidney disease (DKD) in the United States necessitates further investigation into its impact on complications associated with total hip arthroplasty (THA). This study utilizes a large nationwide database to explore risk factors in DKD cases undergoing THA. METHODS: This research utilized a case-control design, leveraging data from the national inpatient sample for the years 2016 to 2019. Employing propensity score matching (PSM), patients diagnosed with DKD were paired on a 1:1 basis with individuals free of DKD, ensuring equivalent age, sex, race, Elixhauser Comorbidity Index (ECI), and insurance coverage. Subsequently, comparisons were drawn between these PSM-matched cohorts, examining their characteristics and the incidence of post-THA complications. Multivariate logistic regression analysis was then employed to evaluate the risk of early complications after surgery. RESULTS: DKD's prevalence in the THA cohort was 2.38%. A 7-year age gap separated DKD and non-DKD patients (74 vs. 67 years, P < 0.0001). Additionally, individuals aged above 75 exhibited a substantial 22.58% increase in DKD risk (49.16% vs. 26.58%, P < 0.0001). Notably, linear regression analysis yielded a significant association between DKD and postoperative acute kidney injury (AKI), with DKD patients demonstrating 2.274-fold greater odds of AKI in contrast with non-DKD individuals (95% CI: 2.091-2.473). CONCLUSIONS: This study demonstrates that DKD is a significant risk factor for AKI in patients undergoing total hip arthroplasty. Optimizing preoperative kidney function through appropriate interventions might decrease the risk of poor prognosis in this population. More prospective research is warranted to investigate the potential of targeted kidney function improvement strategies in reducing AKI rates after THA. The findings of this study hold promise for enhancing preoperative counseling by surgeons, enabling them to provide DKD patients undergoing THA with more precise information regarding the risks associated with their condition.


Subject(s)
Arthroplasty, Replacement, Hip , Databases, Factual , Diabetic Nephropathies , Postoperative Complications , Humans , Arthroplasty, Replacement, Hip/adverse effects , Male , Female , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Aged , Middle Aged , Diabetic Nephropathies/epidemiology , Case-Control Studies , United States/epidemiology , Risk Factors , Elective Surgical Procedures/adverse effects , Elective Surgical Procedures/trends , Prevalence , Aged, 80 and over , Incidence
5.
Foods ; 13(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38890862

ABSTRACT

Obesity is a multifactorial chronic metabolic disease with multiple complications. Crataegus pinnatifida (CP) and Wolfiporia extensa (WE) are traditional functional foods with improving metabolic health properties. This study demonstrated the effect of CP and WE combination on ameliorating obesity induced by a high-fat diet (HFD). Moreover, the CP-WE food pair ameliorated HFD-induced metabolic disorders, including glucose intolerance, insulin resistance, hyperlipidemia, and hepatic steatosis. 16S rRNA gene amplicon sequencing and analysis revealed that CP combined with WE reshaped the composition of gut microbiota in HFD-fed mice. Furthermore, correlation analysis revealed a substantial association between the obesity-related parameters and the shifts in predominant bacterial genera influenced by the food pair intervention. In conclusion, this study demonstrated that the CP-WE food pair ameliorated HFD-induced obesity and reshaped gut microbiota composition, providing a promising approach to combat obesity through specific food combinations.

6.
Foods ; 13(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38790887

ABSTRACT

In this study, electronic sensory techniques were employed to comprehensively evaluate the organoleptic quality, chemical composition and content change rules for Polygonatum cyrtonema Hua (PCH) during the steaming process. The results were subjected to hierarchical cluster analysis (HCA), principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). These analyses revealed, from a sensory product perspective, overall differences in colour, odour and taste among the samples of PCH with different numbers of steaming cycles. Using the UPLC-Q-Exactive Orbitrap MS technique, 64 chemical components, including polysaccharides, organic acids, saponins and amino acids were detected in PCH before and after steaming. The sensory traits were then correlated with the chemical composition. From the perspectives of sensory traits, chemical composition, and multi-component index content, it was preliminarily deduced that carrying out five cycles of steaming and sun-drying was optimal, providing evidence for the quality evaluation of PCH during the steaming process.

7.
Org Lett ; 26(20): 4262-4267, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38722897

ABSTRACT

A novel Pd-catalyzed three-component domino reaction for the stereoselective synthesis of highly functionalized allyl cinnamates has been developed. In this protocol, a sequential process of C-C bond activation and intermolecular allylic substitution was well-organized. The key for this transformation is the in situ generated hydrolysis product of cyclopropenone, which triggered a new reaction with vinylethylene carbonates. The reaction mechanism was investigated, demonstrating the high stereoselectivity and excellent atomic economy in this process.

8.
J Pharm Biomed Anal ; 246: 116255, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38795427

ABSTRACT

Wilson disease (WD) is an inherited disorder characterized by abnormal copper metabolism with complex pathological features. Currently, this mechanism of copper overload-induced hepatic injury remains unclear. In this study, male toxic milk (TX) mice were selected as experimental subjects. Copper levels and biochemical indices were measured by atomic absorption spectroscopy (AAS) and kits. Liver tissue ultrastructure was observed by hematoxylin-eosin (H&E), sirius red staining and transmission electron microscopy. Plasma and liver metabolic profiles of TX mice were characterized by untargeted metabolomics. In addition, the expression of enzymes related to arachidonic acid metabolism in liver tissue was detected by Western blotting. The results showed the excessive copper content, concomitant oxidative stress, and hepatic tissue structural damage in TX mice. Seventy-eight metabolites were significantly different in WD, mainly involved in the metabolism of arachidonic acid, glycerophospholipids, sphingolipids, niacin and nicotinamide, and phenylalanine. Furthermore, the arachidonic acid metabolic pathway is an important pathway involved in WD metabolism. The level of arachidonic acid in the liver of TX mice was significantly lower (p < 0.01) compared to the control group. The expression of cytoplasmic phospholipase A2 (cPLA2) and arachidonic acid 12-lipoxygenase (ALOX12), related to the arachidonic acid metabolic pathway, was significantly different in the liver of TX mice (p < 0.01). Modulation of the arachidonic acid metabolic pathway could be a potential therapeutic strategy to alleviate WD symptoms.


Subject(s)
Copper , Disease Models, Animal , Hepatolenticular Degeneration , Liver , Metabolomics , Animals , Hepatolenticular Degeneration/metabolism , Mice , Liver/metabolism , Male , Metabolomics/methods , Copper/metabolism , Arachidonic Acid/metabolism , Oxidative Stress , Milk/metabolism
9.
Parasit Vectors ; 17(1): 207, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720339

ABSTRACT

BACKGROUND: Schistosomiasis is a neglected tropical disease that afflicts millions of people worldwide; it is caused by Schistosoma, the only dioecious flukes with ZW systems. Schistosoma japonicum is endemic to Asia; the Z chromosome of S. japonicum comprises one-quarter of the entire genome. Detection of positive selection using resequencing data to understand adaptive evolution has been applied to a variety of pathogens, including S. japonicum. However, the contribution of the Z chromosome to evolution and adaptation is often neglected. METHODS: We obtained 1,077,526 high-quality SNPs on the Z chromosome in 72 S. japonicum using re-sequencing data publicly. To examine the faster Z effect, we compared the sequence divergence of S. japonicum with two closely related species, Schistosoma haematobium and S. mansoni. Genetic diversity was compared between the Z chromosome and autosomes in S. japonicum by calculating the nucleotide diversity (π) and Dxy values. Population structure was also assessed based on PCA and structure analysis. Besides, we employed multiple methods including Tajima's D, FST, iHS, XP-EHH, and CMS to detect positive selection signals on the Z chromosome. Further RNAi knockdown experiments were performed to investigate the potential biological functions of the candidate genes. RESULTS: Our study found that the Z chromosome of S. japonicum showed faster evolution and more pronounced genetic divergence than autosomes, although the effect may be smaller than the variation among genes. Compared with autosomes, the Z chromosome in S. japonicum had a more pronounced genetic divergence of sub-populations. Notably, we identified a set of candidate genes associated with host-parasite co-evolution. In particular, LCAT exhibited significant selection signals within the Taiwan population. Further RNA interference experiments suggested that LCAT is necessary for S. japonicum survival and propagation in the definitive host. In addition, we identified several genes related to the specificity of the intermediate host in the C-M population, including Rab6 and VCP, which are involved in adaptive immune evasion to the host. CONCLUSIONS: Our study provides valuable insights into the adaptive evolution of the Z chromosome in S. japonicum and further advances our understanding of the co-evolution of this medically important parasite and its hosts.


Subject(s)
Genetic Variation , Host-Parasite Interactions , Schistosoma japonicum , Animals , Schistosoma japonicum/genetics , Host-Parasite Interactions/genetics , Evolution, Molecular , Polymorphism, Single Nucleotide , Sex Chromosomes/genetics , Selection, Genetic , Schistosoma haematobium/genetics , Schistosoma mansoni/genetics , Biological Evolution , Schistosomiasis japonica/parasitology
10.
Front Mol Neurosci ; 17: 1394171, 2024.
Article in English | MEDLINE | ID: mdl-38562165
11.
Phytomedicine ; 128: 155341, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518636

ABSTRACT

BACKGROUND: Atherosclerosis (AS) is a chronic disease characterized by lipid accumulation in the aortic wall and the formation of foam cells overloaded with large lipids inclusions. Currently, Western medicine is primarily used to improve lipid metabolism disorders and reduce inflammatory reactions to delay AS progression, but these medicines come with serious side effects and drug resistance. Gualou-Xiebai (GLXB) is a renowned herb pair that has been proven effective against AS. However, the potential molecular mechanism through which GLXB exerts the anti-atherosclerotic effects of increasing lipophagy in vascular smooth muscle cells (VSMCs) remains unknown. PURPOSE: This study aims to explore the role of lipophagy and the therapeutic mechanism of GLXB in AS. METHODS: UPLC-Q-TOF-MS for the determination of the main components of GLXB-containing serum. An AS mouse model was established by feeding a high-fat diet (HFD) to ApoE-/- mice for 12 weeks. Ultrasonography monitoring was used to confirm the successful establishment of the AS model. Plaque areas and lipid deposition were evaluated using HE staining and aorta imagingafter GLXB treatment. Immunofluorescence staining and Western blotting were utilized to observe the P2RY12 and lipophagy levels in AS mice. VSMCs were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce foam cell formation. The degree of lipophagy and the related molecular mechanisms were assessed after treating the VSMCs with GLXB-containing serum or si-P2RY12 transfection. The active components of GLXB-containing serum that act on P2RY12 were screened and verified by molecular docking and dual-luciferase reporter assays. RESULTS: Seventeen components of GLXB were identified in rat serum by UPLC-Q-TOF-MS. GLXB significantly reduced lipid deposition in HFD-fed ApoE-/- mice and ox-LDL-induced VSMCs. GLXB strikingly increased lipophagy levels by downregulating P2RY12, p62, and plin2, upregulating LC3Ⅱ protein expression, and increasing the number of autophagosomes. Notably, the lipophagy inhibitor CQ and the P2RY12 receptor agonist ADPß abolished the GLXB-induced increase in lipophagy. Last, we confirmed that albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin from GLXB significantly inhibited P2RY12. CONCLUSION: GLXB activates lipophagy and inhibits lipid accumulation-associated VSMC-derived foam cell formation through suppressing P2RY12 activation, resulting in anti-atherosclerotic effects. The GLXB components albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin are the potential active effectors against P2RY12.


Subject(s)
Atherosclerosis , Drugs, Chinese Herbal , Foam Cells , Muscle, Smooth, Vascular , Receptors, Purinergic P2Y12 , Animals , Atherosclerosis/drug therapy , Foam Cells/drug effects , Foam Cells/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Male , Mice , Drugs, Chinese Herbal/pharmacology , Receptors, Purinergic P2Y12/metabolism , Diet, High-Fat , Mice, Inbred C57BL , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Rats , Disease Models, Animal , Autophagy/drug effects , Rats, Sprague-Dawley , Lipid Metabolism/drug effects , Aorta/drug effects , Lipoproteins, LDL/metabolism
12.
Inorg Chem ; 63(10): 4758-4769, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38408314

ABSTRACT

The efficiency of nitrogen mustards (NMs), among the first chemotherapeutic agents against cancer, is limited by their monotonous mechanism of action (MoA). And tumor hypoxia is a significant obstacle in the attenuation of the chemotherapeutic efficacy. To repurpose the drug and combat hypoxia, herein, we constructed an organo-Ir(III) prodrug, IrCpNM, with the composition of a reactive oxygen species (ROS)-inducing moiety (Ir-arene fragment)-a hypoxic responsive moiety (azo linker)-a DNA-alkylating moiety (nitrogen mustard), and realized DNA damage response (DDR)-mediated autophagy for hypoxic lung cancer therapy for the first time. Prodrug IrCpNM could upregulate the level of catalase (CAT) to catalyze the decomposition of excessive H2O2 to O2 and downregulate the expression of the hypoxia-inducible factor (HIF-1α) to relieve hypoxia. Subsequently, IrCpNM initiates the quadruple synergetic actions under hypoxia, as simultaneous ROS promotion and glutathione (GSH) depletion to enhance the redox disbalance and severe oxidative and cross-linking DNA damages to trigger the occurrence of DDR-mediated autophagy via the ATM/Chk2 cascade and the PIK3CA/PI3K-AKT1-mTOR-RPS6KB1 signaling pathway. In vitro and in vivo experiments have confirmed the greatly antiproliferative capacity of IrCpNM against the hypoxic solid tumor. This work demonstrated the effectiveness of the DNA damage-responsive organometallic prodrug strategy with the microenvironment targeting system and the rebirth of traditional chemotherapeutic agents with a new anticancer mechanism.


Subject(s)
Lung Neoplasms , Prodrugs , Humans , Reactive Oxygen Species/metabolism , Prodrugs/pharmacology , Lung Neoplasms/drug therapy , Hydrogen Peroxide , Hypoxia , Autophagy , DNA Damage , DNA , Cell Line, Tumor , Tumor Microenvironment
13.
J Ethnopharmacol ; 326: 117892, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38350505

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Atherosclerosis (AS) is a chronic vascular ailment characterized by inflammatory and lipid deposition in the arterial wall caused by endothelial injury. Ferroptosis is a novel type of cell death, and endothelial ferroptosis is a significant contributor to the progression of AS. Gualou-Xiebai (GLXB) is a renowned Chinese herb pair that serves a crucial function in treating AS. However, whether the underlying mechanism of GLXB plays a role in anti-atherosclerotic effects by inhibiting ferroptosis in endothelial cells has not been determined. AIM OF THE STUDY: To explore the influence of GLXB on endothelial ferroptosis and determine its underlying mechanism of action in AS. MATERIALS AND METHODS: In ApoE-/- mice, ultrasound was performed in mice fed a high-fat diet (HFD) for 12 weeks to assess the success of AS establishment. Then, ApoE-/- mice were treated with GLXB and Simvastatin (positive control) for 4 weeks. The effects of GLXB on AS pathology were assessed through aorta imaging and hematoxylin-eosin (HE) staining. To confirm the presence of ferroptosis, mitochondrial damage was observed using transmission electron microscope (TEM), along with analysis of free iron and lipid peroxidation levels. In vitro: ox-LDL-induced human vascular endothelial cells (HUVECs) injury and treated with GLXB, the ferroptosis inducer Erastin and an Nrf2 inhibitor ML385. Cell viability was evaluated using the CCK-8 assay in all groups. Flow cytometry was employed to detect lipid peroxidation and intracellular ferrous iron levels. Immunofluorescence staining microscopy verified Nrf2 nuclear translocation. Protein expression were measured by Western blot analysis. RESULTS: GLXB improved atherosclerotic aortic lesions and vascular plaques. GLXB inhibited endothelial injury in the aorta by decreasing the levels of inflammatory factors and adhesion factors, and by decreasing the shedding of endothelial cells. GLXB suppressed ferroptosis in ApoE-/- mice by attenuating mitochondrial damage in ECs, increasing the levels of glutathione (GSH) and superoxide dismutase (SOD) in aortic tissues and down-regulating the levels of levels of lipid peroxide (LPO) and malondialdehyde (MDA). Interestingly, Erastin was used to demonstrate in vitro that GLXB inhibition of ferroptosis attenuated ox-LDL-induced injuring effects on HUVECs that were reversed by Erastin. Mechanistically, GLXB activates the Nrf2 signaling pathway to inhibit ferroptosis by increasing downstream anti-ferroptosis target proteins and promoting the interaction between Nrf2 and SLC7A11. More convincingly, ML385 (Nrf2 inhibitor) reversed the anti-ferroptosis effect of GLXB. CONCLUSION: GLXB inhibits ferroptosis-mediated endothelial cell injury via activating the Nrf2 signaling pathway and further alleviates AS pathological damage.


Subject(s)
Atherosclerosis , Ferroptosis , Lipoproteins, LDL , Humans , Animals , Mice , Endothelial Cells , NF-E2-Related Factor 2/metabolism , Diet, High-Fat/adverse effects , Atherosclerosis/metabolism , Apolipoproteins E/genetics , Iron/metabolism
14.
J Agric Food Chem ; 72(8): 4127-4141, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38362879

ABSTRACT

An amyloid-ß (Aß) fibril is a vital pathogenic factor of Alzheimer's disease (AD). Aß fibril disintegrators possess great potential to be developed into novel anti-AD agents. Here, a ligand fishing method was employed to rapidly discover Aß42 fibril disintegrators from Ganoderma lucidum using Aß42 fibril-immobilized magnetic beads, which led to the isolation of six Aß42 fibril disintegrators including ganodermanontriol, ganoderic acid DM, ganoderiol F, ganoderol B, ganodermenonol, and ergosterol. Neuroprotective evaluation in vitro exhibited that these Aß42 fibril disintegrators could significantly mitigate Aß42-induced neurotoxicity. Among these six disintegrators, ergosterol and ganoderic acid DM with stronger protecting activity were further selected to evaluate their neuroprotective effect on AD in vivo. Results showed that ergosterol and ganoderic acid DM could significantly alleviate Aß42-induced cognitive dysfunction and hippocampus neuron loss in vivo. Moreover, ergosterol and ganoderic acid DM could significantly inhibit Aß42-induced neuron apoptosis and Nrf2-mediated neuron oxidative stress in vitro and in vivo.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Reishi , Triterpenes , Alzheimer Disease/drug therapy , Neuroprotective Agents/pharmacology , Ligands , Amyloid beta-Peptides , Amyloid , Ergosterol , Peptide Fragments/therapeutic use
15.
J Org Chem ; 89(3): 1633-1647, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38235569

ABSTRACT

A metal-free and atom-economic route for the synthesis of naphtho[1,2-b]furan-3-ones has been realized via p-TsOH·H2O-catalyzed intramolecular tandem double cyclization of γ-hydroxy acetylenic ketones with alkynes in formic acid. The benzene-linked furanonyl-ynes are the key intermediates obtained by the scission/recombination of C-O double bonds. Further, the structural modifications of the representative product were implemented by reduction, demethylation, substitution, and [5 + 2]-cycloaddition.

16.
Alzheimers Res Ther ; 16(1): 15, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38245771

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a degenerative neurological disorder. Recent studies have indicated that histone deacetylases (HDACs) are among the most prominent epigenetic therapy targets and that HDAC inhibitors have therapeutic effects on AD. Here, we identified sodium valproate (VPA), a pan-HDAC inhibitor, and WT161, a novel HDAC6 selective inhibitor, as potential therapeutic agents for AD. Underlying molecular mechanisms were investigated. METHODS: A cellular model, N2a-APPswe, was established via lentiviral infection, and the APPswe/PSEN1dE9 transgenic mouse model was employed in the study. LC-MS/MS was applied to quantify the concentration of WT161 in the mouse brain. Western blotting, immunohistochemical staining, thioflavin-S staining and ELISA were applied to detect protein expression in cells, tissues, or serum. RNA interference was utilized to knockdown the expression of specific genes in cells. The cognitive function of mice was assessed via the nest-building test, novel object recognition test and Morris water maze test. RESULTS: Previous studies have focused mainly on the impact of HDAC inhibitors on histone deacetylase activity. Our study discovered that VPA and WT161 can downregulate the expression of multiple HDACs, such as HDAC1 and HDAC6, in both AD cell and mouse models. Moreover, they also affect the expression of APP and APP secretases (BACE1, PSEN1, ADAM10). RNA interference and subsequent vitamin C induction further confirmed that the expression of APP and APP secretases is indeed regulated by HDAC1 and HDAC6, with the JNK pathway being the intermediate link in this regulatory process. Through the above pathways, VPA and WT161 effectively reduced Aß deposition in both AD cell and mouse models and significantly improved cognitive function in AD mice. CONCLUSIONS: In general, we have discovered that the HDAC6-JNK-APP secretases cascade is an important pathway for VPA and WT161 to exert their therapeutic effects on AD. Investigations into the safety and efficacy of VPA and WT161 were also conducted, providing essential preclinical evidence for assessing these two epigenetic drugs for the treatment of AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Hydroxamic Acids , Terphenyl Compounds , Mice , Animals , Alzheimer Disease/genetics , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Chromatography, Liquid , Aspartic Acid Endopeptidases/metabolism , Tandem Mass Spectrometry , Mice, Transgenic , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism
17.
J Pharm Biomed Anal ; 241: 115981, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38237543

ABSTRACT

Shenqi-Tiaoshen formula (SQTSF) is a traditional Chinese medicine (TCM) prescription that has been employed in the treatment of chronic obstructive pulmonary disease (COPD). Clinical practice has demonstrated that SQTSF is an effective prescription for stable COPD. However, owing to the complexity of TCM prescription, there is a lack of in-depth understanding of the chemical components of SQTSF and its in vivo metabolism studies. In this study, a comprehensive analytical strategy based on ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was established to identify the chemical components, the absorbed components, and the metabolites of SQTSF given by gavage in rats, and analyze their dynamic changes. As a result, 86 chemical components of SQTSF were characterized, which were mainly categorized into flavonoids, saponins, organic acids, terpenoids, etc. Among them, 13 compounds were confirmed unambiguously by reference standards. Furthermore, 20 prototype components and 46 metabolites were detected in rat plasma at different time points. It was found that one prototype component and thirteen metabolites could be detected during the entire 24 h, indicating that these compounds were slowly eliminated and thus accumulated in vivo over a prolonged duration. Interestingly, the phenomenon that three prototype components and fourteen metabolites reappeared after a period of disappearance from the plasma was found. It was also observed that different prototype components may generate the same metabolite. The metabolic processes of SQTSF in rats mainly included oxidation, reduction, hydration, demethylation, deglycosylation, methylation, acetylation, glucuronidation, glutathionylation, and associated combination reactions. Overall, the present study identified the chemical components of SQTSF and their dynamic metabolic profile in rat plasma, which provided a systematic and applicable strategy for screening and characterization of the prototype components and metabolites of TCM compound preparations.


Subject(s)
Drugs, Chinese Herbal , Pulmonary Disease, Chronic Obstructive , Rats , Animals , Rats, Sprague-Dawley , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Metabolome , Drugs, Chinese Herbal/chemistry
18.
J Transl Med ; 22(1): 98, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38263117

ABSTRACT

BACKGROUND: Interindividual variation characterizes the relief experienced by constipation-predominant irritable bowel syndrome (IBS-C) patients following linaclotide treatment. Complex bidirectional interactions occur between the gut microbiota and various clinical drugs. To date, no established evidence has elucidated the interactions between the gut microbiota and linaclotide. We aimed to explore the impact of linaclotide on the gut microbiota and identify critical bacterial genera that might participate in linaclotide efficacy. METHODS: IBS-C patients were administered a daily linaclotide dose of 290 µg over six weeks, and their symptoms were then recorded during a four-week posttreatment observational period. Pre- and posttreatment fecal samples were collected for 16S rRNA sequencing to assess alterations in the gut microbiota composition. Additionally, targeted metabolomics analysis was performed for the measurement of short-chain fatty acid (SCFA) concentrations. RESULTS: Approximately 43.3% of patients met the FDA responder endpoint after taking linaclotide for 6 weeks, and 85% of patients reported some relief from abdominal pain and constipation. Linaclotide considerably modified the gut microbiome and SCFA metabolism. Notably, the higher efficacy of linaclotide was associated with enrichment of the Blautia genus, and the abundance of Blautia after linaclotide treatment was higher than that in healthy volunteers. Intriguingly, a positive correlation was found for the Blautia abundance and SCFA concentrations with improvements in clinical symptoms among IBS-C patients. CONCLUSION: The gut microbiota, especially the genus Blautia, may serve as a significant predictive microbe for symptom relief in IBS-C patients receiving linaclotide treatment. TRIAL REGISTRATION: This trial was registered with the Chinese Clinical Trial Registry (Chictr.org.cn, ChiCTR1900027934).


Subject(s)
Gastrointestinal Microbiome , Irritable Bowel Syndrome , Peptides , Humans , Prospective Studies , RNA, Ribosomal, 16S , Constipation
19.
J Pharm Biomed Anal ; 239: 115875, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38061172

ABSTRACT

Huachansu (HCS) tablets, classified as well-known traditional Chinese medicine (TCM) preparation, have been proved to be effective in the treatment of hepatocellular carcinoma (HCC) in clinical studies. However, the underlying mechanism of HCS tablets against HCC has not been comprehensively elucidated. In this study, a rat model of HCC was established with diethylnitrosamine (DEN) inducer. The efficacy of HCS tablets against HCC was assessed through liver histopathological examination and evaluation of biochemical indicators. A metabolomics method based on UPLC-Q-TOF/MS combined with multivariate data analysis was established to identify differential metabolites related to the inhibition effect of HCS tablets on HCC, and then the relevant metabolic pathway analysis was performed to investigate the anti-HCC mechanisms of HCS tablets. The results showed that compared to the control group, the HCC model group showed a significant increase in the values of HCC-related biochemical indicators and the number of tumor nodules, indicating the successful establishment of the HCC rat model. Upon treatment with HCS tablets, the values of HCC-related biochemical indicators decreased, liver fibrosis and nuclear deformation were also significantly alleviated. A total of 15 differential metabolites associated with the anti-tumor effect of HCS tablets on HCC were screened and annotated through hepatic tissue metabolomics studies. Analysis of metabolic pathways revealed that the therapeutic effects of HCS tablets on HCC mainly involved the pentose and glucuronate interconversions and arachidonic acid metabolism. Further western blotting corroborated that the alteration in arachidonic acid (AA) level after the intervention of HCS tablets was related to the inhibition of cPLA2α expression in rat liver tissues. In conclusion, HCS tablets exhibit a certain anti-tumor effect on HCC, and the metabolomics method based on UPLC-Q-TOF/MS combined with further verification at the biochemical level is a promising way to reveal its underlying mechanism.


Subject(s)
Carcinoma, Hepatocellular , Drugs, Chinese Herbal , Liver Neoplasms , Rats , Animals , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/drug therapy , Chromatography, High Pressure Liquid/methods , Arachidonic Acid , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Liver Neoplasms/drug therapy , Metabolomics/methods , Tablets , Biomarkers/metabolism
20.
Curr Drug Deliv ; 21(5): 726-733, 2024.
Article in English | MEDLINE | ID: mdl-36658705

ABSTRACT

BACKGROUND: Borneol can enhance the blood-brain barrier (BBB) permeability of some drugs and suppress the efflux transport of P-glycoprotein (P-gp), which will contribute to the brain delivery of salvianic acid A (SAA). OBJECTIVE: The study aimed to develop an approach to improve the brain targeting delivery of SAA with the aid of borneol. MATERIALS AND METHODS: "Borneol" was involved in SAA via esterified prodrug SAA borneol ester (SBE) and combined administration (SAA-borneol, SAA-B). Subsequently, the blood-brain transport of SAA through brain/blood distribution and P-gp regulation via expression and function assay were investigated in rats. RESULTS: The SBE and SAA-B-treated group received a three-fold brain concentration and longer t1/2 and retention period of active SAA than that of SAA alone (20.18/13.82 min vs. 6.48 min; 18.30/17.42 min vs. 11.46 min). In addition, blood to brain transport of active SAA in SBE was altered in comparison to that of SAA-B, ultimately resulting in a better drug targeting index (9.93 vs. 3.63). Further studies revealed that SBE-induced downregulation of P-gp expression occurred at the later stage of administration (60 min, P < 0.01), but SBE always showed a more powerful drug transport activity across BBB represented by Kp value of rhodamine 123 than SAA-B (30, 60 min, P < 0.05). CONCLUSION: The comparative results indicate that SBE exhibits prominent efficiency on SAA's targeting delivery through improved blood/brain metabolic properties and sustained inhibitory effect of "borneol" on P-gp efflux. Therefore, prodrug modification can be applied as a more effective approach for brain delivery of SAA.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Prodrugs , Rats , Animals , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Brain/metabolism , Blood-Brain Barrier/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/pharmacology , Prodrugs/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL