Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
1.
Transpl Immunol ; 86: 102083, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996984

ABSTRACT

BACKGROUND: Facet joint osteoarthritis (FJOA) is a common lumbar osteoarthritis characterized by degeneration of small joint cartilage. Bushen Huoxue decotion (BSHXD) has good therapeutic effects on OA. Our work aimed to further probe the pharmacological effects of BSHXD-containing serum (BSHXD-CS) on FJOA and define underlying the mechanisms invovled. METHODS: To establish a FJOA cell model, primary rat chondrocytes were treated with LPS. The mRNA and protein expressions were assessed using qRT-PCR and western blot, respectively. The secretion levels of pro-inflammatory cytokines were measured by ELISA. Cell viability was determined by CCK8 assay. The global m6A level was detected by the kit, and NLRP3 mRNA m6A level was determined by Me-RIP assay. The molecular interactions were analyzed by RIP and RNA pull-down assays. RESULTS: BSHXD-CS treatment relieved LPS-induced cell injury, inflammation, NLRP3 inflammasome and pyroptosis in chondrocytes (all p < 0.05). LPS-induced NLRP3 upregulation in chondrocytes was related to its high m6A modification level (p < 0.05). It was also observed that BSHXD-CS reduced LPS-induced m6A modification in chondrocytes via repressing STAT3 (all p < 0.05), suggesting BSHXD-CS could repress NLRP3 expression via m6A-dependent manner. Moreover, DAA, a m6A specific inhibitor, was proved to strengthen the protectively roles of BSHXD-CS on LPS-challenged pytoptosis (all p < 0.05). CONCLUSION: BSHXD-CS inhibited NLRP3 inflammasome activation and pyroptosis in chondrocytes to repress OA progression by reducing RNA m6A modification.

2.
Diabetol Metab Syndr ; 16(1): 180, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075584

ABSTRACT

BACKGROUND: Obesity is known as a risk factor for cardiovascular disease (CVD). However, there is an absence of preoperative cardiac risk assessment in bariatric surgery candidates and the incidence of CVD among these high-risk patients is still unknown. METHODS: A consecutive series of bariatric surgery candidates at two Chinese tertiary hospitals received coronary CT angiography or coronary angiography from 2017 to 2023. Patients were categorized as metabolically unhealthy obesity (MUO) and metabolically healthy obesity (MHO) based on the presence or absence of MetS. CVD was diagnosed based on the maximum intraluminal stenosis > 1% in any of the segments of the major epicardial coronary arteries. Obstructive CVD was defined as coronary stenosis ≥ 50%. Binary multivariable logistic regression was performed to analyze the association between CVD and metabolic status. The number of principal MetS components was categorized into zero (without glycemic, lipid, and BP components), one (with one of the components), two (with any two components), and three (with all components) to explore their association with CVD. RESULTS: A total of 1446 patients were included in the study. The incidence of CVD and obstructive CVD were 31.7% and 9.6%. Compared with MHO patients, MUO patients had a significantly higher incidence of mild (13.7% vs. 6.1%, P < 0.05), moderate (7.4% vs. 0.8%, P < 0.05), and severe CVD (3.1% vs. 0%, P < 0.05). Following complete adjustment, compared with zero or one component, two principal MetS components was found to be associated with a notable increase in the risk of CVD (OR 2.05, 95% CI 1.18-3.58, P < 0.05); three principal MetS components were observed to have a higher risk of CVD and obstructive CVD (OR 2.68, 95% CI 1.56-4.62, P < 0.001; OR 3.93, 95% CI 1.19-12.93, P < 0.05). Each increase in the number of principal MetS components correlated with a 1.47-fold (95% CI 1.20-1.81, P < 0.001) and 1.78-fold (95% CI 1.24-2.55, P < 0.05) higher risk of CVD and obstructive CVD, respectively. CONCLUSION: This study reported the incidence of CVD based on multicenter bariatric surgery cohorts. CVD is highly prevalent in patients with obesity, especially in MUO patients. Increased number of principal MetS components will significantly elevate the risk of CVD.

3.
World J Gastrointest Oncol ; 16(7): 3284-3298, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39072149

ABSTRACT

BACKGROUND: Colon adenocarcinoma (COAD) is a malignant tumor of the digestive system. The mechanisms underlying COAD development and progression are still largely unknown. AIM: To identify the role of canopy FGF signaling regulator 3 (CNPY3) in the development and progression of COAD by using bioinformatic tools and functional experiments. METHODS: Bioinformatic data were downloaded from public databases. The associations of clinicopathological features, survival, and immune function with the expression of CNPY3 were analyzed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses and Gene Set Enrichment Analysis were used to explore the related pathways. Then, quantitative real-time PCR and immunohistochemistry were used for validation of CNPY3 expression in clinical samples and tumor cell lines. Cell lines with CNPY3 knockdown were constructed to further analyze gene functions. The functional experiments included proliferation, invasion, migration and apoptosis assays. RESULTS: In both the TCGA cohort and the merged dataset, elevated CNPY3 expression was observed in tumor tissues. High CNPY3 expression correlated with adverse survival and compromised immune functions. Functional enrichment analysis suggested that the pro-oncogenic properties of CNPY3 might be linked to the PI3K-AKT signaling pathway. CNPY3 expression was validated at both the RNA and protein levels. Functional assays indicated that cell proliferation, invasion, and migration were inhibited and cell apoptosis was promoted after CNPY3 knockdown. Additionally, Western blot results revealed the downregulation of key proteins in the PI3K/AKT pathway following CNPY3 knockdown. PI3K/AKT pathway activator reversed the decrease in proliferation, invasion, and migration and the increase in apoptosis. Notably, CNPY3 knockdown still affected the cells when the pathway was inhibited. CONCLUSION: This study showed that CNPY3 is upregulated in COAD and might regulate COAD development and progression by the PI3K/AKT pathway. Thus, CNPY3 might be a promising therapeutic target.

4.
Ecol Evol ; 14(6): e11570, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898930

ABSTRACT

The geographical variation and domestication of tree species are an important part of the theory of forest introduction, and the tracing of the germplasm is the theoretical basis for the establishment of high-quality plantations. Chinese pine (Pinus tabuliformis Carr.) is an important native timber tree species widely distributed in northern China, but it is unclear exactly where germplasm of the main Chinese pine plantation populations originated. Here, using two mtDNA markers, we analyzed 796 individuals representing 35 populations (matR marker), and 873 individuals representing 38 populations (nad5-1 marker) of the major natural and artificial populations in northern China, respectively (Shanxi, Hebei and Liaoning provinces). The results confirmed that the core position of natural SX* populations ("*" means natural population) in the Chinese pine populations of northern China, the genetic diversity of HB and LN plantations was higher than that of natural SX* populations, and there was a large difference in genetic background within the groups of SX* and LN, HB showed the opposite. More importantly, we completed the "point by point" tracing of the HB and LN plantings. The results indicated that almost all HB populations originated from SX* (GDS*, ZTS*, GCS*, and THS*), which resulted in homogeneity of the genetic background of HB populations. Most of germplasm of the LN plantations originated from LN* (ZJS* and WF*), and the other part originated from GDS* (SX*), resulting in the large differences in the genetic background within the LN group. Our results provided a reliable theoretical basis for the scientific allocation, management, and utilization of Chinese pine populations in northern China, and for promoting the high-quality establishment of Chinese pine plantations.

5.
Front Med (Lausanne) ; 11: 1409534, 2024.
Article in English | MEDLINE | ID: mdl-38841589

ABSTRACT

Purpose: Osteoporosis represents a profound challenge to public health, underscoring the critical need to dissect its complex etiology and identify viable targets for intervention. Within this context, the gut microbiota has emerged as a focal point of research due to its profound influence on bone metabolism. Despite this growing interest, the literature has yet to see a bibliometric study addressing the gut microbiota's contribution to both the development and management of osteoporosis. This study aims to fill this gap through an exhaustive bibliometric analysis. Our objective is to uncover current research hotspots, delineate key themes, and identify future research trends. In doing so, we hope to provide direction for future studies and the development of innovative treatment methods. Methods: Relevant publications in this field were retrieved from the Web of Science Core Collection database. We used VOSviewer, CiteSpace, an online analysis platform and the R package "Bibliometrix" for bibliometric analysis. Results: A total of 529 publications (including 351 articles and 178 reviews) from 61 countries, 881 institutions, were included in this study. China leads in publication volume and boast the highest cumulative citation. Shanghai Jiao Tong University and Southern Medical University are the leading research institutions in this field. Nutrients contributed the largest number of articles, and J Bone Miner Res is the most co-cited journal. Of the 3,166 scholars who participated in the study, Ohlsson C had the largest number of articles. Li YJ is the most co-cited author. "Probiotics" and "inflammation" are the keywords in the research. Conclusion: This is the first bibliometric analysis of gut microbiota in osteoporosis. We explored current research status in recent years and identified frontiers and hot spots in this research field. We investigate the impact of gut microbiome dysregulation and its associated inflammation on OP progression, a topic that has garnered international research interest in recent years. Additionally, our study delves into the potential of fecal microbiota transplantation or specific dietary interventions as promising avenues for future research, which can provide reference for the researchers who focus on this research filed.

6.
Head Neck ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850095

ABSTRACT

OBJECTIVE: This study evaluated the effectiveness of a submental island flap in closing advanced mandibular medication-related osteonecrosis of the jaw (MRONJ) wounds in patients with malignant tumors. SUBJECTS AND METHODS: A total of 85 patients with stage II and III MRONJ of mandible with malignant tumor as their primary disease were retrospectively analyzed. All patients underwent surgical treatment, and the soft tissue wound closure was performed either with a submental island flap (SIF) or mucoperiosteal flap (MF). Univariate and multifactorial models were applied to analyze the factors influencing patients' prognosis. RESULTS: Univariate analysis (p = 0.004, OR 0.075-0.575, 95% CI) and binary logistic regression (p = 0.017, OR 0.032-0.713, 95% CI) suggested that the surgical prognosis of SIF wound closure was significantly better than that of MF. CONCLUSION: Closure of wound after resection of mandibular MRONJ lesions in patients with malignant tumors using SIF had a better clinical prognosis compared with MF.

7.
Mar Drugs ; 22(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38921550

ABSTRACT

Although lipophilic shellfish toxins (LSTs) pose a significant threat to the health of seafood consumers, their systematic investigation and risk assessment remain scarce. The goals of this study were as follows: (1) analyze LST levels in commercially available shellfish in Zhejiang province, China, and determine factors influencing LST distribution; (2) assess the acute dietary risk of exposure to LSTs for local consumers during the red tide period; (3) explore potential health risks of LSTs in humans; and (4) study the acute risks of simultaneous dietary exposure to LSTs and paralytic shellfish toxins (PSTs). A total of 546 shellfish samples were collected. LSTs were detected in 89 samples (16.3%) at concentrations below the regulatory limits. Mussels were the main shellfish species contaminated with LSTs. Spatial variations were observed in the yessotoxin group. Acute exposure to LSTs based on multiple scenarios was low. The minimum tolerable exposure durations for LSTs calculated using the mean and the 95th percentile of consumption data were 19.7 and 4.9 years, respectively. Our findings showed that Zhejiang province residents are at a low risk of combined exposure to LSTs and PSTs; however, the risk may be higher for children under 6 years of age in the extreme scenario.


Subject(s)
Dietary Exposure , Marine Toxins , Shellfish , China , Humans , Shellfish/analysis , Marine Toxins/analysis , Marine Toxins/toxicity , Animals , Risk Assessment , Dietary Exposure/analysis , Shellfish Poisoning/prevention & control , Shellfish Poisoning/etiology , Food Contamination/analysis , Adult , Child , Middle Aged , Seafood/analysis , Child, Preschool , Bivalvia/chemistry , Female , Young Adult
9.
Angew Chem Int Ed Engl ; 63(31): e202406046, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38771293

ABSTRACT

The electrochemical nitrate reduction reaction (NO3RR) is able to convert nitrate (NO3 -) into reusable ammonia (NH3), offering a green treatment and resource utilization strategy of nitrate wastewater and ammonia synthesis. The conversion of NO3 - to NH3 undergoes water dissociation to generate active hydrogen atoms and nitrogen-containing intermediates hydrogenation tandemly. The two relay processes compete for the same active sites, especially under pH-neutral condition, resulting in the suboptimal efficiency and selectivity in the electrosynthesis of NH3 from NO3 -. Herein, we constructed a Cu1-Fe dual-site catalyst by anchoring Cu single atoms on amorphous iron oxide shell of nanoscale zero-valent iron (nZVI) for the electrochemical NO3RR, achieving an impressive NO3 - removal efficiency of 94.8 % and NH3 selectivity of 99.2 % under neutral pH and nitrate concentration of 50 mg L-1 NO3 --N conditions, greatly surpassing the performance of nZVI counterpart. This superior performance can be attributed to the synergistic effect of enhanced NO3 - adsorption on Fe sites and strengthened water activation on single-atom Cu sites, decreasing the energy barrier for the rate-determining step of *NO-to-*NOH. This work develops a novel strategy of fabricating dual-site catalysts to enhance the electrosynthesis of NH3 from NO3 -, and presents an environmentally sustainable approach for neutral nitrate wastewater treatment.

10.
Medicine (Baltimore) ; 103(18): e38003, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701295

ABSTRACT

This study aims to investigate the ability of bone marrow imaging using third-generation dual-energy computed tomography (CT) virtual noncalcium (VNCa) to differentiate between multiple myeloma (MM) with diffuse bone marrow infiltration and red bone marrow (RBM). Bone marrow aspiration or follow-up results were used as reference. We retrospectively reviewed 188 regions of interests (ROIs) from 21 patients with confirmed MM and diffuse bone marrow infiltrations who underwent VNCa bone marrow imaging between May 2019 and September 2022. At the same time, we obtained 98 ROIs from 11 subjects with RBM for comparative study, and 189 ROIs from 20 subjects with normal yellow bone marrow for the control group. The ROIs were delineated by 2 radiologists independently, the interobservers reproducibility was evaluated by interclass correlation coefficients. The correlation with MRI grade results was analyzed by Spearman correlation coefficient. Receiver operating characteristic (ROC) curve analysis was used to determine the optimal threshold for differentiating between these groups and to assess diagnostic performance. There were statistically significant differences in VNCa CT values of bone marrow among the MM, RBM, and control groups (all P < .001), with values decreasing sequentially. A strong positive rank correlation was observed between normal bone marrow, subgroup MM with moderately and severe bone marrow infiltration divided by MRI and their corresponding CT values (ρ = 0.897, 95%CI: 0.822 to 0.942, P < .001). When the CT value of VNCa bone marrow was 7.15 HU, the area under the curve (AUC) value for differentiating RBM and MM was 0.723, with a sensitivity of 50.5% and a specificity of 89.8%. When distinguishing severe bone marrow infiltration of MM from RBM, the AUC value was 0.80 with a sensitivity 70.9% and a specificity 78.9%. The AUC values for MM, RBM, and the combined group compared to the control group were all >0.99, with all diagnostic sensitivity and specificity exceeding 95%. VNCa bone marrow imaging using third-generation dual-energy CT accurately differentiates MM lesions from normal bone marrow or RBM. It demonstrates superior diagnostic performance in distinguishing RBM from MM with diffuse bone marrow infiltration.


Subject(s)
Bone Marrow , Multiple Myeloma , Tomography, X-Ray Computed , Humans , Multiple Myeloma/diagnostic imaging , Multiple Myeloma/pathology , Multiple Myeloma/diagnosis , Male , Female , Middle Aged , Retrospective Studies , Bone Marrow/diagnostic imaging , Bone Marrow/pathology , Aged , Diagnosis, Differential , Tomography, X-Ray Computed/methods , Adult , ROC Curve , Reproducibility of Results , Sensitivity and Specificity
11.
Obesity (Silver Spring) ; 32(6): 1047-1058, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38577709

ABSTRACT

OBJECTIVE: The objective of this meta-analysis was to quantify the overall effects of gene mutations in the leptin-melanocortin pathway on short- and long-term weight loss after bariatric surgery. METHODS: MEDLINE, PubMed, and Embase were searched, and data were analyzed using ReviewManager (RevMan) version 5.4. The datasets were divided into two subgroups based on postoperative time, and the outcome measure was the percentage of total weight loss. Meta-regression analysis was performed, and the outcome was presented as the weighed mean difference of percentage of total weight loss. RESULTS: The results showed that patients with mutations in the leptin-melanocortin pathway experienced 3.03% lower total weight loss after bariatric surgery (mean difference, -3.03; 95% CI: -3.63 to -2.44), mainly reflected in lower long-term postoperative weight loss (mean difference, -3.43; 95% CI: -4.09 to -2.77), whereas mutation carriers exhibited a magnitude of short-term postoperative weight loss that was similar to patients without such mutations (total difference value, -1.13; 95% CI: -2.57 to 0.31). CONCLUSIONS: Mutations in leptin-melanocortin pathway genes reduce long-term weight loss after bariatric surgery, whereas this effect may not be reflected during the period of rapid weight loss within 12 months. These genetic variants increase the difficulties in maintaining patients' long-term weight loss.


Subject(s)
Bariatric Surgery , Leptin , Mutation , Weight Loss , Humans , Leptin/genetics , Leptin/blood , Weight Loss/genetics , Melanocortins/genetics , Obesity, Morbid/surgery , Obesity, Morbid/genetics , Signal Transduction , Obesity/surgery , Obesity/genetics
12.
Medicine (Baltimore) ; 103(14): e37684, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579032

ABSTRACT

BACKGROUND: Wrist arthroscopy technology is a surgical technology invented in recent years and widely used in clinical treatment of various wrist diseases. This study uses the methods of bibliometrics and visual analysis to understand the global research status, research hotspots, and future development trends of wrist arthroscopy. METHODS: The relevant literature of global publications on wrist arthroscopy from 2013 to 2023 was extracted from the Web of Science Core Collection database, and the annual output, cooperation, hot spots, research status, and development trend of this field were analyzed by using the bibliometric software (VOSviewers, CiteSpace, and the R package "Bibliometrix"). RESULTS: A total of 635 articles were included, from 2013 to 2023, the number of publications related to wrist arthroscopy showed an overall upward trend, the USA, France, and China are the top 3 countries in terms of the number of publications, whereas Mayo Clinic is the institution with the highest number of publications, Ho PC holds a core position in this field, keyword analysis indicates that the research hotspots are the applications of wrist arthroscopy in triangular fibrocartilage complex injuries, scaphoid nonunion, and avascular necrosis of the lunate. CONCLUSION SUBSECTIONS: Wrist arthroscopy has shown tremendous potential in treating various wrist diseases. However, there are still some challenges in its research domain. With continuous deep research, strengthened international collaboration, and ongoing technological advancements, wrist arthroscopy has the potential to become the standard treatment in hand surgery, offering more efficient and safer treatment options for patients worldwide.


Subject(s)
Arthroscopy , Wrist , Humans , Ambulatory Care Facilities , Bibliometrics , China
13.
J Phys Chem Lett ; 15(17): 4640-4646, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38647347

ABSTRACT

Photocatalytic conversions of ethanol to valuable chemicals are significant organic synthesis reactions. Herein, we developed a CuCl2/FeCl3 bimetallic photocatalyst for sustainable dehydration of ethanol to ethylene by recoverable redox cycles. The selectivity of ethylene was 98.3% for CuCl2/FeCl3, which is much higher than that of CuCl2 (34.5%) and FeCl3 (86.5%). Due to the ligand-to-metal charge transfer (LMCT) process involved in generating the liquid products, the CuCl2/FeCl3 catalyst will be reduced to CuCl/FeCl2. Oxygen (O2) is required for the recovery of CuCl2/FeCl3 to avoid exhaustion. The soluble Fe3+/Fe2+ redox species deliver catalyst regeneration properties more efficiently than single metal couples, making a series of redox reactions (Cu2+/Cu+, Fe3+/Fe2+, and O2/ethanol couples) recyclable with synergistic effects. A flow reactor was designed to facilitate the continuous production of ethylene. The understanding of bimetallic synergism and consecutive reactions promotes the industrial application process of photocatalytic organic reactions.

14.
Molecules ; 29(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38675615

ABSTRACT

This study presents a new technique for determining vitamin B12 in milk powder using high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS). We used ultrasonics with potassium ferrocyanide and zinc acetate solutions to extract the samples. 59Co was employed as the analytical target for cyanocobalamin. It was separated using a Phenomenex Luna 5 µm C18 (250 × 4.6 mm) chromatographic column with a mobile phase consisting of 1.6 mmol/L EDTA and 0.4 mmol/L KH2PO4 in a 60% v/v methanol solution (pH = 4.0). The sample has an excellent separating degree for free cobalt and cyanocobalamin, and isocratic elution can be finished within 4.0 min. To eliminate the matrix interference due to the presence of milk powder, we applied collision mode (KED). The linear range of cyanocobalamine ranged from 1.0 µg/L to 20 µg/L, with correlation coefficients (r2) of 0.9994. The limit of detection (LOD) was 0.63 µg/kg, and the limit of quantitation (LOQ) was 2.11 µg/kg. The mean recoveries were in the range of 87.4-103.6%. The accuracy and precision of the developed method are well suited for the fast quantification of the trace vitamin B12 in milk powder.


Subject(s)
Mass Spectrometry , Milk , Vitamin B 12 , Vitamin B 12/analysis , Chromatography, High Pressure Liquid/methods , Milk/chemistry , Animals , Mass Spectrometry/methods , Limit of Detection , Powders/chemistry , Reproducibility of Results
15.
ACS Infect Dis ; 10(4): 1201-1211, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38457660

ABSTRACT

Tuberculosis (TB) is the leading infectious disease caused by Mycobacterium tuberculosis and the second-most contagious killer after COVID-19. The emergence of drug-resistant TB has caused a great need to identify and develop new anti-TB drugs with novel targets. Indole propionic acid (IPA), a structural analog of tryptophan (Trp), is active against M. tuberculosis in vitro and in vivo. It has been verified that IPA exerts its antimicrobial effect by mimicking Trp as an allosteric inhibitor of TrpE, which is the first enzyme in the Trp synthesis pathway of M. tuberculosis. However, other Trp structural analogs, such as indolmycin, also target tryptophanyl-tRNA synthetase (TrpRS), which has two functions in bacteria: synthesis of tryptophanyl-AMP by catalyzing ATP + Trp and producing Trp-tRNATrp by transferring Trp to tRNATrp. So, we speculate that IPA may also target TrpRS. In this study, we found that IPA can dock into the Trp binding pocket of M. tuberculosis TrpRS (TrpRSMtb), which was further confirmed by isothermal titration calorimetry (ITC) assay. The biochemical analysis proved that TrpRS can catalyze the reaction between IPA and ATP to generate pyrophosphate (PPi) without Trp as a substrate. Overexpression of wild-type trpS in M. tuberculosis increased the MIC of IPA to 32-fold, and knock-down trpS in Mycolicibacterium smegmatis made it more sensitive to IPA. The supplementation of Trp in the medium abrogated the inhibition of M. tuberculosis by IPA. We demonstrated that IPA can interfere with the function of TrpRS by mimicking Trp, thereby impeding protein synthesis and exerting its anti-TB effect.


Subject(s)
Mycobacterium tuberculosis , Propionates , Tryptophan-tRNA Ligase , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Tryptophan-tRNA Ligase/genetics , Tryptophan-tRNA Ligase/chemistry , Tryptophan-tRNA Ligase/metabolism , RNA, Transfer, Trp/metabolism , Indoles/pharmacology , Adenosine Triphosphate
16.
Toxics ; 12(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38535902

ABSTRACT

Nickel (Ni) is a silver-white metal with high antioxidative properties, often existing in a bivalent form in the environment. Despite being the fifth most abundant metal on Earth, anthropogenic activities, including industrial processes, have elevated Ni levels in environmental media. This study investigated Ni contamination in various food groups in Zhejiang Province, China, mainly focusing on Ni levels in beans, vegetables, aquatic foods, meat products, cereal products, and fruits. A total of 2628 samples were collected and analyzed. Beans exhibited the highest Ni content in all samples. The overall detection rate of Ni was 86.5%, with variation among food categories. For plant-origin foods, legumes had the highest Ni concentration while for animal-origin foods, shellfish showed the highest median Ni concentration. The results indicate generally acceptable Ni exposure levels among Zhejiang residents, except for children aged 0-6. Beans were identified as the primary contributor to high Ni exposure risk. The paper suggests monitoring Ni contamination in food, especially for vulnerable populations, and provides insights into exposure risks in different age groups.

17.
Nat Microbiol ; 9(4): 1075-1088, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553607

ABSTRACT

Although vaccines are available for SARS-CoV-2, antiviral drugs such as nirmatrelvir are still needed, particularly for individuals in whom vaccines are less effective, such as the immunocompromised, to prevent severe COVID-19. Here we report an α-ketoamide-based peptidomimetic inhibitor of the SARS-CoV-2 main protease (Mpro), designated RAY1216. Enzyme inhibition kinetic analysis shows that RAY1216 has an inhibition constant of 8.4 nM and suggests that it dissociates about 12 times slower from Mpro compared with nirmatrelvir. The crystal structure of the SARS-CoV-2 Mpro:RAY1216 complex shows that RAY1216 covalently binds to the catalytic Cys145 through the α-ketoamide group. In vitro and using human ACE2 transgenic mouse models, RAY1216 shows antiviral activities against SARS-CoV-2 variants comparable to those of nirmatrelvir. It also shows improved pharmacokinetics in mice and rats, suggesting that RAY1216 could be used without ritonavir, which is co-administered with nirmatrelvir. RAY1216 has been approved as a single-component drug named 'leritrelvir' for COVID-19 treatment in China.


Subject(s)
COVID-19 , Vaccines , Humans , Animals , Mice , Rats , SARS-CoV-2 , COVID-19 Drug Treatment , Kinetics , Lactams , Nitriles , Mice, Transgenic
18.
Sci Rep ; 14(1): 5093, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429326

ABSTRACT

With the continuous construction of urban traffic roads, more and more new roads are cut off by existing roads to form "dead end roads". There is an urgent need for a trenchless method suitable for urban ultra-shallow overburden to build the undercrossing tunnel. To solve this problem, this paper proposed the micro pipe jacking and joint assembly structure (MPJ & JAS) method, which has the characteristics of shallow burial depth, low cost, short construction time, flexible cross-section setting and high space utilization. The MPJ & JAS method construct a large cross-section tunnel through assembling small cross-section elements, quite different from traditional methods. Therefore, this paper designed a CT-shaped integrated joint, the mechanical performance of which was verified and clarified by tensile test. The bending test and finite element (FE) analysis proved the reliability of MPJ & JAS tunnel structure, and confirmed the structure performances such as the failure models, crack behaviors, load-deflection response and stress-strain distribution. Moreover, the influences of the steel plate thickness, concrete strength and shear connector spacing were determined by the FE analysis. On the basis of test results and reasonable assumptions, a theoretical design method considering the influence of the CT-shaped integrated joint was proposed, which can effectively predict the bending strength of the MPJ & JAS tunnel structure with an error of less than 10%. Finally, in view of the characteristics of the MPJ & JAS method, the suitable micro pipe jacking machine, soil reinforcement measure, hydraulic traction construction technology, high-precision guidance system and concrete construction quality detection method based on the phased array ultrasonic imaging technology were developed, supporting the accurate and efficient construction of the MPJ & JAS tunnel.

19.
Int J Nanomedicine ; 19: 1145-1161, 2024.
Article in English | MEDLINE | ID: mdl-38344438

ABSTRACT

Introduction: Spatiotemporally controlled release of siRNA for anti-tumor therapy poses significant challenges. Near-infrared (NIR) light, known for its exceptional tissue penetration and minimal tissue invasiveness, holds promise as a viable exogenous stimulus for inducing controlled siRNA release in vivo. However, the majority of light-responsive chemical bonds exhibit absorption wavelengths in the ultraviolet (UV) or short-wavelength visible light range. Methods: To achieve NIR-controlled siRNA release, the study synthesized a UV-sensitive triblock copolymer cRGD-poly(ethylene glycol)-b-poly(aspartic acid ester-5-(2'-(dimethylamino)ethoxy)-2-nitrobenzyl alcohol)-b-polyphenylalanine, abbreviated as cRGD-PEG-PAsp(EDONB)-PPHE. This copolymer is composed of a cRGD-capped PEG block (cRGD-PEG), a poly(aspartate) block modified with cationic moieties through UV-cleavable 2-nitrobenzyl ester bonds [PAsp(EDONB)], and a hydrophobic polyphenylalanine block (PPHE). The cationic amphiphilic polymer cRGD-PEG-PAsp(EDONB)-PPHE can assemble with hydrophobic upconversion nanoparticles (UCNPs) to form a cationic micelle designated as T-UCNP, which subsequently complexes with siRNA to create the final nanopolyplex T-si/UCNP. siRNA-PLK1 was employed to prepare T-PLK1/UCNP nanopolyplex for anti-tumor therapy. Results: T-PLK1/UCNP not only exhibited outstanding tumor cell targeting through cRGD modification but also achieved 980 nm NIR-controlled PLK1 gene silencing. This was achieved by utilizing the encapsulated UCNPs to convert NIR into UV light, facilitating the cleavage of 2-nitrobenzyl ester bonds. As a result, there was a significant suppression of tumor growth. Conclusion: The UCNPs-encapsulated nanopolyplex T-si/UCNP, capable of co-delivering siRNA and UCNPs, enables precise NIR-controlled release of siRNA at the tumor site for cancer RNAi therapy. This nanopolyplex can enhance the controllability and safety of RNAi therapy for tumors, and it also holds the potential to serve as a platform for achieving controlled release and activation of other drugs, such as mRNA and DNA.


Subject(s)
Nanoparticles , Neoplasms , Animals , RNA, Small Interfering/genetics , Delayed-Action Preparations/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Polymers , Models, Animal , Esters
SELECTION OF CITATIONS
SEARCH DETAIL