Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(2): eadk6301, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38198552

ABSTRACT

Miniaturized mobile electronic system is an effective candidate for in situ exploration of confined spaces. However, realizing such system still faces challenges in powering issue, untethered mobility, wireless data acquisition, sensing versatility, and integration in small scales. Here, we report a battery-free, wireless, and miniaturized soft electromagnetic swimmer (SES) electronic system that achieves multiple monitoring capability in confined water environments. Through radio frequency powering, the battery-free SES system demonstrates untethered motions in confined spaces with considerable moving speed under resonance. This system adopts soft electronic technologies to integrate thin multifunctional bio/chemical sensors and wireless data acquisition module, and performs real-time water quality and virus contamination detection with demonstrated promising limits of detection and high sensitivity. All sensing data are transmitted synchronously and displayed on a smartphone graphical user interface via near-field communication. Overall, this wireless smart system demonstrates broad potential for confined space exploration, ranging from pathogen detection to pollution investigation.


Subject(s)
Electricity , Water Quality , Communication , Electric Power Supplies , Electronics
2.
Article in English | MEDLINE | ID: mdl-33510809

ABSTRACT

Cardiac hypertrophy is a major pathological process to result in heart failure and sudden death. Rutaecarpine, a pentacyclic indolopyridoquinazolinone alkaloid extracted from Evodia rutaecarpa with multiple pharmacological activities, yet the underlying protective effects and the mechanisms on cardiac hypertrophy remain unclear. This study aimed to evaluate the potential effects of rutaecarpine on pressure overload cardiac hypertrophy. Cardiac hypertrophy in rat was developed by abdominal aortic constriction (AAC) for 4 weeks, which was improved by rutaecarpine supplementation (20 or 40 mg/kg/day, i.g.) for another 4 weeks. The level of angiotensin II was increased; the mRNA expression and the activity of calcineurin in the left ventricular tissue were augmented following cardiac hypertrophy. Rutaecarpine administration decreased angiotensin II content and reduced calcineurin expression and activity. Noteworthily, in angiotensin II-induced cardiomyocytes, rutaecarpine ameliorated the hypertrophic effects in a dose-dependent manner and downregulated the increased mRNA expression and activity of calcineurin. In conclusion, rutaecarpine can improve cardiac hypertrophy in pressure overload rats, which may be related to the inhibition of angiotensin II-calcineurin signal pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...