Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 359: 124694, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39127333

ABSTRACT

Micro-LiNiCoMnO2 (MNCM), a cathode material with highest market share, has increasing demand with the growth of lithium battery industry. However, whether MNCM exposure brings adverse effects to workers remains unclear. This study aimed to explore the association between MNCM exposure with systemic inflammation and cardiac function. A cross-sectional study of 347 workers was undertaken from the MNCM production industry in Guangdong province, China in 2020. Metals in urine were measured using ICP-MS. The associations between metals, systemic inflammation, and cardiac function were appraised using a linear or logistic regression model. Bayesian kernel machine regression (BKMR) and generalized weighted quantile sum (gWQS) models were used to explore mixed metal exposures. The analysis of interaction and mediation was adopted to assess the role of inflammation in the relation between urinary metals and cardiac function. We observed that the levels of lithium (Li) and cobalt (Co) were positively associated with systemic inflammation and heart rate. The amount of Co contributed the highest weight on the increased systemic immune-inflammation index (SII) (59.8%), the system inflammation response index (SIRI) (44.3%), and heart rate (65.0%). Based on the mediation analysis, we estimated that SII mediated 32.3% and 20.9% of the associations between Li and Co with heart rate, and SIRI mediated 44.6% and 22.2% of the associations between Li and Co with heart rate, respectively. This study demonstrated for the first time that MNCM exposure increased the risk of workers' systemic inflammation and elevated heart rate, which were contributed by the excessive Li and Co exposure. Additionally, it indicates that systemic inflammation was a major mediator of the associations of Li and Co with cardiac function in MNCM production workers.

2.
Front Public Health ; 12: 1363362, 2024.
Article in English | MEDLINE | ID: mdl-38827609

ABSTRACT

Background: Heavy metal exposure is an important cause of reduced bone mineral density (BMD). Epidemiological studies focusing on the effects of mixed heavy metal exposure on BMD in middle-aged and older people are scarce. In single-metal studies, men and women have shown distinct responses of BMD to environmental metal exposure. This study therefore aimed to elucidate the association between mixed heavy metal exposure and BMD and to investigate whether it is sex-specific. Methods: Data from the 2017-2020 National Health and Nutrition Examination Survey were selected for this cross-sectional study. The study used three statistical methods, i.e., linear regression, Bayesian kernel machine regression (BKMR) modeling, and weighted quartiles (WQS) regression, to explore the association between the urinary concentrations of 11 metals (barium, cadmium, cobalt, cesium, manganese, molybdenum, lead, antimony, tin, thallium, and Tungsten), either individually or as a mixture, and total femoral BMD. Results: A total of 1,031 participants were included in this study. Femoral BMD was found to be higher in men than women. A significant negative correlation between the urinary concentrations of the 10 metals and femoral BMD was found in the overall cohort. Further gender sub-stratified analyses showed that in men, urinary metal concentrations were negatively correlated with femoral BMD, with cobalt and barium playing a significant and non-linear role in this effect. In women, although urinary metal concentrations negatively modulated femoral BMD, none of the correlations was statistically significant. Antimony showed sex-specific differences in its effect. Conclusion: The urinary concentrations of 10 mixed heavy metals were negatively correlated with femoral BMD in middle-aged and older participants, and this effect showed gender differences. These findings emphasize the differing role of mixed metal exposure in the process of BMD reduction between the sexes but require further validation by prospective studies.


Subject(s)
Bone Density , Femur , Metals, Heavy , Nutrition Surveys , Humans , Female , Male , Cross-Sectional Studies , Aged , Metals, Heavy/urine , Middle Aged , Sex Factors , Environmental Exposure , Bayes Theorem , Aged, 80 and over
SELECTION OF CITATIONS
SEARCH DETAIL