Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(28): 12509-12519, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38963393

ABSTRACT

Biogas produced from anaerobic digestion usually contains impurities, particularly with a high content of CO2 (15-60%), thus decreasing its caloric value and limiting its application as an energy source. H2-driven biogas upgrading using homoacetogens is a promising approach for upgrading biogas to biomethane and converting CO2 to acetate simultaneously. Herein, we developed a novel membrane biofilm reactor (MBfR) with H2 and biogas separately supplied via bubbleless hollow fiber membranes. The gas-permeable hollow fibers of the MBfR enabled high H2 and CO2 utilization efficiencies (∼98% and ∼97%, respectively) and achieved concurrent biomethane (∼94%) and acetate (∼450 mg/L/d) production. High-throughput 16S rRNA gene amplicon sequencing suggested that enriched microbial communities were dominated by Acetobacterium (38-48% relative abundance). In addition, reverse transcription quantitative PCR of the functional marker gene formyltetrahydrofolate synthetase showed that its expression level increased with increasing H2 and CO2 utilization efficiencies. These results indicate that Acetobacterium plays a key role in CO2 to acetate conversion. These findings are expected to facilitate energy-positive wastewater treatment and contribute to the development of a new solution to biogas upgrading.


Subject(s)
Biofilms , Biofuels , Bioreactors , RNA, Ribosomal, 16S , Carbon Dioxide/metabolism , Acetates/metabolism
2.
Opt Express ; 32(12): 21216-21229, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859481

ABSTRACT

Metasurfaces are emerging as powerful tools for manipulating complex light fields, offering enhanced control in free space and on-chip waveguide applications. Their ability to customize refractive indices and dispersion properties opens up new possibilities in light guiding, yet their efficiency in exciting guided waves, particularly through metallic structures, is not fully explored. Here, we present a new method for exciting terahertz (THz) guided waves using Fabry-Perot (FP) cavity-assisted metasurfaces that enable spin-selective directional coupling and mode selection. Our design uses a substrate-free ridge silicon THz waveguide with air cladding and a supporting slab, incorporating placed metallic metasurfaces to exploit their unique interaction with the guided waves. With the silicon thin layer and air serving as an FP cavity, THz waves enter from the bottom of the device, thereby intensifying the impact of the metasurfaces. The inverse-structured complementary metasurface could enhance excitation performance. We demonstrate selective excitation of TE00 and TE10 modes with directional control, confirmed through simulations and experimental validations using a THz vector network analyzer (VNA) system. This work broadens the potential of metasurfaces for advanced THz waveguide technologies.

3.
Materials (Basel) ; 17(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38793418

ABSTRACT

This study aims to explore the static mechanical characteristics of coral aggregate seawater shotcrete (CASS) using an appropriate mix proportion. The orthogonal experiments consisting of four-factor and three-level were conducted to explore an optimal mix proportion of CASS. On a macro-scale, quasi-static compression and splitting tests of CASS with optimal mix proportion at various curing ages employed a combination of acoustic emission (AE) and digital image correlation (DIC) techniques were carried out using an electro-hydraulic servo-controlled test machine. A comparative analysis of static mechanical properties at different curing ages was conducted between the CASS and ordinary aggregate seawater shotcrete (OASS). On a micro-scale, the numerical specimens based on particle flow code (PFC) were subjected to multi-level microcracks division for quantitive analysis of the failure mechanism of specimens. The results show that the optimal mix proportion of CASS consists of 700 kg/m3 of cementitious materials content, a water-binder ratio of 0.45, a sand ratio of 60%, and a dosage of 8% for the accelerator amount. The tensile failure is the primary failure mechanism under uniaxial compression and Brazilian splitting, and the specimens will be closer to the brittle material with increased curing age. The Brazilian splitting failure caused by the arc-shaped main crack initiates from the loading points and propagates along the loading line to the center. Compared with OASS, the CASS has an approximately equal early and low later strength mainly because of the minerals' filling or unfilling effect on coral pores. The rate of increase in CASS is swifter during the initial strength phase and decelerates during the subsequent stages of strength development. The failure in CASS is experienced primarily within the cement mortar and bonding surface between the cement mortar and aggregate.

4.
Nat Commun ; 15(1): 3645, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684690

ABSTRACT

The proliferation of computation-intensive technologies has led to a significant rise in the number of datacenters, posing challenges for high-speed and power-efficient datacenter interconnects (DCIs). Although inter-DCIs based on intensity modulation and direct detection (IM-DD) along with wavelength-division multiplexing technologies exhibit power-efficient and large-capacity properties, the requirement of multiple laser sources leads to high costs and limited scalability, and the chromatic dispersion (CD) restricts the transmission length of optical signals. Here we propose a scalable on-chip parallel IM-DD data transmission system enabled by a single-soliton Kerr microcomb and a reconfigurable microring resonator-based CD compensator. We experimentally demonstrate an aggregate line rate of 1.68 Tbit/s over a 20-km-long SMF. The extrapolated energy consumption for CD compensation of 40-km-SMFs is ~0.3 pJ/bit, which is calculated as being around 6 times less than that of the commercial 400G-ZR coherent transceivers. Our approach holds significant promise for achieving data rates exceeding 10 terabits.

5.
Opt Express ; 32(5): 7848-7864, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439455

ABSTRACT

On-chip switchable optical true-time delay lines (OTTDLs) feature a large group delay tuning range but suffer from a discrete tuning step. OTTDLs with a large delay tuning range and a continuous tuning capability are highly desired. In this paper, we propose and experimentally demonstrate a silicon-based broadband continuously tunable OTTDL comprising a 7-bit delay line and a switch-based continuously tunable delay line. The group delay of the entire OTTDL can be continuously tuned from 0 to 1020.16 ps. A delay error within -1.27 ps to 1.75 ps, and a delay fluctuation of less than 2.69 ps in the frequency range of 2∼25 GHz are obtained. We analyze the causes of the delay fluctuation and its influence on beamforming. Moreover, we also propose a simplified non-invasive calibration method that can significantly reduce the complexity of the delay state calibration and can be easily extended to delay lines with more stages of optical switches. The high performance of our OTTDL chip and the calibration method drive practical applications of integrated OTTDLs.

6.
Opt Lett ; 48(18): 4861-4864, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37707922

ABSTRACT

We develop and demonstrate a non-duplicate polarization-diversity tunable bandpass optical filter by leveraging the bi-directional transmission of add-drop dual-coupled microring resonators (MRRs) on a multi-layer Si3N4-on-silicon-on-insulator (SOI) platform. By using Euler-bends, we implement compact and low-loss Si3N4 MRRs with an equivalent bending radius of ∼38 µm. Fiber-to-fiber (on-chip) insertion loss of 4.3 dB (1.7 dB) with a low polarization-dependent loss of <0.5 dB and low differential group delay of <2.5 ps is achieved. The extinction ratio is more than 30 dB. The thermo-optic tuning efficiency of the Si3N4 MRRs is improved with a suspended micro-heater design. As a result, a wavelength tuning range of ∼2 nm and a 3-dB bandwidth tuning range of 20 GHz are experimentally demonstrated. The tuning efficiency is 33 pm/mW, which is ∼7.5 times higher than the previous design. This reconfigurable polarization-insensitive filter, with low loss, low cross talk, and high power efficiency, is highly promising for practical applications in optical communication and signal processing.

7.
Opt Express ; 31(19): 30160-30170, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37710564

ABSTRACT

A group-delay-unit-based integrated silicon photonic integrated circuit (PIC) is employed as a reconfigurable analog radio frequency decoder, which provides a real-time temporal and spectral analysis of any arbitrary multi-tone signal in the micro- and mm-wave range. The circuit is based on cascaded Mach-Zehnder interferometer embedded silicon microring resonators as variable delay units. The temporal decoding of the multi-tone input signal is demonstrated by tuning the signal with respect to the ring resonator delay and resonance. A one-to-one conformal time-to-frequency mapping provides real-time spectral decoding of the signal under test without additional digital signal processing. The idea is validated by several experimental results with single-tone and two-tone input signals in a compact, low-power, silicon PIC. The proposed real-time temporal analog frequency decoder may be very intriguing for high-speed, low-latency wireless applications, such as autonomous driving and 6G.

8.
Opt Lett ; 48(14): 3729-3732, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37450736

ABSTRACT

Due to the resonant nature and silicon's strong optical nonlinearity, the system's performance of silicon micro-ring modulators can be seriously affected by the input optical power. In this Letter, we proposed and experimentally demonstrated a multi-mode silicon micro-ring modulator to mitigate its optical nonlinear effects by operating in the TE1 mode. The TE1 mode features a high nonlinear threshold compared with the TE0 mode because of its larger waveguide loss and larger mode effective area. Under the condition of 10 mW optical input power, the resonance spectrum maintains a good symmetric Lorentz shape. The resonant wavelength shifts less than one resonance linewidth, showing an improved robustness to optical nonlinearity compared with regular silicon micro-ring modulators.


Subject(s)
Silicon
9.
Dis Markers ; 2023: 3631193, 2023.
Article in English | MEDLINE | ID: mdl-36776922

ABSTRACT

Objective: To evaluate the effect of wrist dorsiflexion/palmar flexion on median nerve excursion and cross-sectional area in patients with carpal tunnel syndrome. Methods: From November 2019 to December 2021, 85 patients (110 affected wrists) who presented to our department and were diagnosed with carpal tunnel syndrome were collected and classified by severity as mild to moderate. Twenty-five healthy controls were selected during the same period, with a total of 50 healthy wrists. All patients and healthy volunteers underwent high-frequency ultrasonography to measure the vertical deviation between the median nerve and the transverse carpal ligament during wrist dorsiflexion/palmar flexion and the changes in the cross-sectional area of the median nerve in the pisiform plane. All patients with carpal tunnel syndrome underwent neurophysiological testing to measure median nerve sensory conduction velocity, sensory latency time, and sensorimotor point fluctuation amplitude. Results: The mean age of the patients was 50 ± 8 years, the proportion of males was 18%, and the disease course was 2.3 ± 1.2 years. In terms of severity grading, 38 patients (34.5%) had mild carpal tunnel syndrome, 30 patients (27.3%) had moderate carpal tunnel syndrome, and 42 patients (38.2%) had severe carpal tunnel syndrome. Compared with the control group, the distance between the proximal median nerve and the transverse carpal ligament, the distance between the distal median nerve and the transverse carpal ligament, and the cross-sectional area were decreased in the carpal tunnel syndrome group compared with those during wrist dorsiflexion, and the differences were statistically significant (P < 0.05). Compared with the control group, there were significant differences in the vertical distance and cross-sectional area between the median nerve and the transverse carpal ligament at the proximal and distal ends in the mild, moderate, and severe groups (P < 0.05). The proximal vertical distance of the median nerve was positively correlated with sensory latency (P < 0.05) and negatively correlated with sensory conduction velocity (P < 0.05). The vertical distance of the distal end of the median nerve was also significantly positively correlated with sensory latency (P < 0.05) and significantly negatively correlated with sensory conduction velocity (P < 0.05). Conclusion: Wrist dorsiflexion/palmar flexion can affect median nerve deviation and cross-sectional area in patients with carpal tunnel syndrome. High-frequency ultrasound is helpful to detect such an effect and can also help determine the severity of carpal tunnel syndrome, which is worthy of clinical promotion.


Subject(s)
Carpal Tunnel Syndrome , Median Nerve , Male , Humans , Adult , Middle Aged , Median Nerve/diagnostic imaging , Carpal Tunnel Syndrome/diagnostic imaging , Wrist/diagnostic imaging , Ultrasonography , Healthy Volunteers
10.
Micromachines (Basel) ; 13(12)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36557484

ABSTRACT

Metasurfaces are useful subwavelength structures that can be engineered to achieve useful functionality. While most metasurfaces are passive devices, Phase Change Materials can be utilized to make active metasurfaces that can have numerous applications. One such application is on-chip beam steering which is of vital utility for numerous applications that can potentially lead to analog computations and non-Von Neumann computational architectures. This paper presents through numerical simulations, a novel metasurface that can realize beam steering through active phase switching of in-planted arrays of phase change material, Sb2S3. For the purpose of numerical demonstration of the principle, beam focusing has been realized, on-chip, through active switching of the Sb2S3 unit cell between the amorphous and crystalline phases. The presented architecture can realize on-chip transformation optics, mathematical operations, and information processing, thus opening the gates for future technologies.

11.
Opt Express ; 30(14): 25672-25684, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-36237092

ABSTRACT

Due to the difficulty of controlling the waveguide loss in the doping region, high-speed silicon micro-ring modulators usually have limited extinction ratio. In this work, we present a mode-division-multiplexing (MDM) resonance-enhanced silicon micro-ring modulator with an ultrahigh extinction ratio. We used a two-mode micro-ring resonator and a mode conversion circular structure to trap the light twice within a single micro-ring resonator. Proof-of-concept high extinction ratio up to 55 dB was obtained. 30 Gb/s PAM-8 and 50 Gb/s PAM-4 signaling with a bit error rate below the hard-decision forward error correction (HD-FEC) threshold were demonstrated with the fabricated modulator, indicating great potential for high-order pulse amplitude modulation (PAM).

12.
Opt Lett ; 47(14): 3592-3595, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35838738

ABSTRACT

Mode-division multiplexing (MDM), which could further increase the capacity and flexibility of the communication systems, has attracted much attention. In this Letter, we demonstrate a proof-of-principle silicon mode-insensitive modulator based on the balanced Mach-Zehnder interferometer that could realize modulation of both TE0 and TE1 modes using a horizontal PN junction. The PN junction is offset from the center of the waveguide to the n-type doped region to modulate both TE0 and TE1 modes effectively. An adiabatic directional coupler is used as a mode-insensitive 3-dB power splitter for both modes. A mode-insensitive thermal phase shifter is used to change the operation point of the modulator. On-off keying modulation at 32 Gb/s is successfully demonstrated for both TE0 and TE1 modes. This modulator can be potentially used in MDM-assisted optical sampling systems.

13.
Lasers Med Sci ; 37(6): 2605-2614, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35152345

ABSTRACT

Laser lipolysis is a promising body contouring technology. However, the skin tissue could be thermally damaged owing to the laser energy absorption by water, which limits the lipolysis efficiency. To protect skin tissue and improve the lipolysis effect, cryogen spray cooling is introduced and synergized with the pulsed laser irradiation aiming to propose a new therapy protocol. By simulating heat conduction in the skin after spray cooling assisted laser lipolysis, the temperature distribution in the skin tissue was obtained to analyze the tissue damage by the Arrhenius integral. After parameter optimization according to the damage threshold of skin and adipose tissue, a new protocol with high laser intensity and short time was proposed including 150-ms R134a spray cooling with spray distance of 30 mm, and 100 ms 1064 nm laser irradiation with energy density of 20 J/cm2, with a relaxation for 9.75 s. This cycle of 10 s can be repeated 90 to 150 times for a total of 15 to 25 min. Compared with previous treatment procedure, new protocol can increase the fat dissolution depth from 2 to 4.5 mm beneath the dermis with same order laser fluence.


Subject(s)
Laser Therapy , Lipolysis , Cold Temperature , Laser Therapy/methods , Lasers , Light , Skin/radiation effects , Skin Temperature
14.
Opt Lett ; 47(2): 218-221, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35030571

ABSTRACT

Chip-level spectrometers provide a stable and cost-effective solution for spectral analysis in various applications. Here we present a silicon on-chip digital Fourier transform spectrometer consisting of eight cascaded optical switches connected by delay waveguides. By configuring the states of the optical switches, this chip can realize 127 Mach-Zehnder interferometers with linearly increased optical path differences. A machine-learning regularization method is utilized to reconstruct the spectrum. Experimental results show that our chip can retrieve both sparse and broadband optical spectra with negligible reconstruction errors. The spectral resolution can be further improved by cascading more stages of optical switches. Our method has the advantages of compact size, high scalability, and high signal-to-noise ratio, making it a promising candidate for realizing miniaturized spectrometers.

15.
Opt Express ; 29(24): 39847-39858, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34809340

ABSTRACT

We demonstrate a multi-channel silicon photonic transmitter based on wavelength division multiplexing (WDM) and mode division multiplexing (MDM). The light source is realized by a silicon nitride (Si3N4) Kerr frequency comb and optical modulation is realized by silicon electro-optic modulators. Three wavelengths and two modes are employed to increase the optical transmission capacity. The accumulated data rate reaches 150 Gb/s. The dense integration of WDM and MDM components with a compact optical comb source opens new avenues for the future high-capacity multi-dimensional optical transmission.

16.
Anim Nutr ; 7(3): 849-858, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34466689

ABSTRACT

The uptake and metabolism of methionine (Met) are critical for epigenetic regulation, redox homeostasis, and embryo development. Our previous study showed that appropriate supplementation of dietary Met promoted the birth weight and placental angiogenesis of high-prolific sows. To further explore the metabolic effect of Met on pregnant sows, we have evaluated the influence of dietary Met level on Met metabolism, and the relationship between metabolites of Met and reproductive performance, antioxidant ability, and placental angiogenesis throughout the gestation of high-prolific sows. Sixty sows (the 3rd parity, Large White) were randomly divided into 5 groups that were fed diets with standardized ileal digestible (SID) methionine-to-lysine (Met:Lys) ratios of 0.27 (control), 0.32, 0.37, 0.42, and 0.47 from the mating day (gestational d 0, G0d) until the farrowing day. HPLC-MS/MS analysis was used to simultaneously evaluate the metabolites related to Met, e.g. S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), homocysteine (Hcy), cysteine (Cys), and glutathione (GSH). The concentration of SAM and SAH in plasma had significant fluctuations, especially in late pregnancy. Increasing dietary Met supplementation significantly improved the plasma SAM and methylation potential (SAM-to-SAH ratio) at d 114 of pregnancy (G114d). Moreover, a positive association of the plasma SAM concentration at G114d was observed with the litter weight of born alive (P < 0.05; R 2 = 0.58). Furthermore, Hcy concentration in plasma was at the lowest level for 0.37 ratio group at G114d. However, it significantly increased during late pregnancy. Moreover, there were negative correlations between plasma Hcy concentration at G114d (P < 0.05) and the placental vascular density in the fold and stroma (P < 0.05). Compared with the control group, the expression of vascular endothelial growth factor-A (VEGF-A) in the placenta tissue of 0.37 ratio group increased significantly (P < 0.05). Collectively, these findings indicate that dietary Met:Lys ratio (0.37 to 0.57) in the pregnant diet dose not influence the antioxidant ability of the high-prolific sows; however, the improvement of fetal development and placental angiogenesis of high-prolific sows by supplementation of Met are closely associated to the key Met-related metabolite of SAM and Hcy, respectively.

17.
Opt Lett ; 46(17): 4088-4091, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34469946

ABSTRACT

With a fixed geometric design, homogeneous change of Indium Selenide (In2Se3) switches the focusing length of a silicon photonic metalens between positive and negative values. This unique functionality of the hybrid metasurface is attributed to the fact that the silicon's refractive index is in the middle of the two convertible states in the optical phase change material. The infrared transparency of In2Se3 in both states enables near phase-only metasurface structures. The design is foundry compatible and feasible for implementing nonvolatile adaptive transformation optic systems on-chip.

18.
Opt Lett ; 46(17): 4224-4227, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34469979

ABSTRACT

Recently, large-scale photonic integrated circuits have seen rapid development. Optical switches are the elementary units used to realize optical routers and processors. However, the high static power and large footprint of silicon electro-optic and thermo-optic switches are becoming an obstacle for further scaling and high-density integration. In this Letter, we demonstrate a 2×2 nonvolatile silicon Mach-Zehnder optical switch enabled by low-loss phase change material Sb2S3. Changing the phase state of Sb2S3 can switch the optical transmission between the bar and cross paths. As no static power is required to maintain the phase state, it can find promising applications in optical switch matrices and reconfigurable optical circuits.

19.
Nanomaterials (Basel) ; 11(7)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201551

ABSTRACT

In the last couple of decades, terahertz (THz) technologies, which lie in the frequency gap between the infrared and microwaves, have been greatly enhanced and investigated due to possible opportunities in a plethora of THz applications, such as imaging, security, and wireless communications. Photonics has led the way to the generation, modulation, and detection of THz waves such as the photomixing technique. In tandem with these investigations, researchers have been exploring ways to use silicon photonics technologies for THz applications to leverage the cost-effective large-scale fabrication and integration opportunities that it would enable. Although silicon photonics has enabled the implementation of a large number of optical components for practical use, for THz integrated systems, we still face several challenges associated with high-quality hybrid silicon lasers, conversion efficiency, device integration, and fabrication. This paper provides an overview of recent progress in THz technologies based on silicon photonics or hybrid silicon photonics, including THz generation, detection, phase modulation, intensity modulation, and passive components. As silicon-based electronic and photonic circuits are further approaching THz frequencies, one single chip with electronics, photonics, and THz functions seems inevitable, resulting in the ultimate dream of a THz electronic-photonic integrated circuit.

20.
Opt Lett ; 46(7): 1566-1569, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33793487

ABSTRACT

We design and demonstrate the first, to the best of our knowledge, silicon-based multi-beam optical phased array (MOPA), incorporating a 4×4 Butler matrix beamforming network. The one-dimensional end-fire array consists of 16 emitters at a uniform pitch together with their corresponding phase shifters and is shared among the beams to realize large-scale aliasing-free beam-steering at reduced complexity. Experimental results show that the device is capable of individual beam aliasing-free operation with a field of view up to 46°. The steering envelope shows a plateau where the peak intensities fluctuate within 0.5 dB. The beamforming and beam-steering performance are also evaluated for simultaneous multi-beam operation. Our work validates the feasibility of beamforming-network-based MOPAs, which are promising for applications including light detection and ranging and free-space optical communication.

SELECTION OF CITATIONS
SEARCH DETAIL
...