Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Am J Respir Crit Care Med ; 207(11): 1486-1497, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36952660

ABSTRACT

Rationale: Type 2 inflammation has been described in people with cystic fibrosis (CF). Whether loss of CFTR (cystic fibrosis transmembrane conductance regulator) function contributes directly to a type 2 inflammatory response has not been fully defined. Objectives: The potent alarmin IL-33 has emerged as a critical regulator of type 2 inflammation. We tested the hypothesis that CFTR deficiency increases IL-33 expression and/or release and deletion of IL-33 reduces allergen-induced inflammation in the CF lung. Methods: Human airway epithelial cells (AECs) grown from non-CF and CF cell lines and Cftr+/+ and Cftr-/- mice were used in this study. Pulmonary inflammation in Cftr+/+ and Cftr-/- mice with and without IL-33 or ST2 (IL-1 receptor-like 1) germline deletion was determined by histological analysis, BAL, and cytokine analysis. Measurements and Main Results: After allergen challenge, both CF human AECs and Cftr-/- mice had increased IL-33 expression compared with control AECs and Cftr+/+ mice, respectively. DUOX1 (dual oxidase 1) expression was increased in CF human AECs and Cftr-/- mouse lungs compared with control AECs and lungs from Cftr+/+ mice and was necessary for the increased IL-33 release in Cftr-/- mice compared with Cftr+/+ mice. IL-33 stimulation of Cftr-/- CD4+ T cells resulted in increased type 2 cytokine production compared with Cftr+/+ CD4+ T cells. Deletion of IL-33 or ST2 decreased both type 2 inflammation and neutrophil recruitment in Cftr-/- mice compared with Cftr+/+ mice. Conclusions: Absence of CFTR reprograms airway epithelial IL-33 release and licenses IL-33-dependent inflammation. Modulation of the IL-33/ST2 axis represents a novel therapeutic target in CF type 2-high and neutrophilic inflammation.


Subject(s)
Cystic Fibrosis , Mice , Animals , Humans , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Interleukin-33/metabolism , Interleukin-1 Receptor-Like 1 Protein/metabolism , Inflammation/metabolism , Cytokines/metabolism , Allergens , Epithelial Cells/metabolism
2.
J Clin Invest ; 131(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33529171

ABSTRACT

Tregs restrain both the innate and adaptive immune systems to maintain homeostasis. Allergic airway inflammation, characterized by a Th2 response that results from a breakdown of tolerance to innocuous environmental antigens, is negatively regulated by Tregs. We previously reported that prostaglandin I2 (PGI2) promoted immune tolerance in models of allergic inflammation; however, the effect of PGI2 on Treg function was not investigated. Tregs from mice deficient in the PGI2 receptor IP (IP KO) had impaired suppressive capabilities during allergic airway inflammatory responses compared with mice in which PGI2 signaling was intact. IP KO Tregs had significantly enhanced expression of immunoglobulin-like transcript 3 (ILT3) compared with WT Tregs, which may contribute to the impairment of the IP KO Treg's ability to suppress Th2 responses. Using fate-mapping mice, we reported that PGI2 signaling prevents Treg reprogramming toward a pathogenic phenotype. PGI2 analogs promoted the differentiation of naive T cells to Tregs in both mice and humans via repression of ß-catenin signaling. Finally, a missense variant in IP in humans was strongly associated with chronic obstructive asthma. Together, these data support that PGI2 signaling licenses Treg suppressive function and that PGI2 is a therapeutic target for enhancing Treg function.


Subject(s)
Asthma/immunology , Cellular Reprogramming/immunology , Epoprostenol/immunology , Immune Tolerance , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Asthma/genetics , Asthma/pathology , Cellular Reprogramming/genetics , Chronic Disease , Epoprostenol/genetics , Humans , Mice , Mice, Inbred BALB C , Mice, Knockout , Receptors, Epoprostenol/genetics , Receptors, Epoprostenol/immunology , Signal Transduction/genetics , T-Lymphocytes, Regulatory/pathology
3.
Allergy ; 76(1): 255-268, 2021 01.
Article in English | MEDLINE | ID: mdl-32648964

ABSTRACT

BACKGROUND: Group 2 innate lymphoid cells (ILC2) are stimulated by IL-33 to increase IL-5 and IL-13 production and airway inflammation. While sex hormones regulate airway inflammation, it remained unclear whether estrogen signaling through estrogen receptor-α (ER-α, Esr1) or ER-ß (Esr2) increased ILC2-mediated airway inflammation. We hypothesize that estrogen signaling increases allergen-induced IL-33 release, ILC2 cytokine production, and airway inflammation. METHODS: Female Esr1-/- , Esr2-/- , wild-type (WT), and IL33fl/fl eGFP mice were challenged with Alternaria extract (Alt Ext) or vehicle for 4 days. In select experiments, mice were administered tamoxifen or vehicle pellets for 21 days prior to challenge. Lung ILC2, IL-5 and IL-13 production, and BAL inflammatory cells were measured on day 5 of Alt Ext challenge model. Bone marrow from WT and Esr1-/- female mice was transferred (1:1 ratio) into WT female recipients for 6 weeks followed by Alt Ext challenge. hBE33 cells and normal human bronchial epithelial cells (NHBE) were pretreated with 17ß-estradiol (E2), propyl-pyrazole-triol (PPT, ER-α agonist), or diarylpropionitrile (DPN, ER-ß agonist) before allergen challenge to determine IL-33 gene expression and release, extracellular ATP release, DUOX-1 production, and necrosis. RESULTS: Alt Ext challenged Esr1-/- , but not Esr2-/- , mice had decreased IL-5 and IL-13 production, BAL eosinophils, and IL-33 release compared to WT mice. Tamoxifen decreased IL-5 and IL-13 production and BAL eosinophils. IL-33eGFP + epithelial cells were decreased in Alt Ext challenged Esr1-/- mice compared to WT mice. 17ß-E2 or PPT, but not DPN, increased IL-33 gene expression, release, and DUOX-1 production in hBE33 or NHBE cells. CONCLUSION: Estrogen receptor -α signaling increased IL-33 release and ILC2-mediated airway inflammation.


Subject(s)
Allergens , Estrogen Receptor alpha , Interleukin-33 , Animals , Female , Immunity, Innate , Inflammation , Lymphocytes , Mice
4.
J Immunol ; 205(4): 1157-1166, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32690653

ABSTRACT

The cyclooxygenase (COX) metabolic pathway regulates immune responses and inflammation. The effect of the COX pathway on innate pulmonary inflammation induced by protease-containing fungal allergens, such as Alternaria alternata, is not fully defined. In this study, we tested the hypothesis that COX inhibition augments Alternaria-induced pulmonary group 2 innate lymphoid cell (ILC2) responses and IL-33 release. Mice were treated with the COX inhibitors indomethacin, flurbiprofen, or vehicle and challenged intranasally with Alternaria extract for four consecutive days to induce innate lung inflammation. We found that indomethacin and flurbiprofen significantly increased the numbers of ILC2 and IL-5 and IL-13 expression by ILC2 in the lung. Indomethacin also increased ILC2 proliferation, the percentages of eosinophils, and mucus production in the lung. Both indomethacin and flurbiprofen augmented the release of IL-33 in bronchoalveolar lavage fluid after Alternaria challenge, suggesting that more IL-33 was available for ILC2 activation and that a COX product(s) inhibited IL-33 release. This is supported by the in vitro finding that the COX product PGE2 and the PGI2 analogs cicaprost decreased Alternaria extract-induced IL-33 release by human bronchial epithelial cells. Although contrasting effects of PGD2, PGE2, and PGI2 on ILC2 responses have been previously reported, the overall effect of the COX pathway on ILC2 function is inhibitory in Alternaria-induced innate airway inflammation.


Subject(s)
Alternaria/immunology , Cyclooxygenase Inhibitors/pharmacology , Immunity, Innate/drug effects , Interleukin-33/immunology , Lymphocytes/drug effects , Allergens/immunology , Alternariosis/immunology , Alternariosis/metabolism , Alternariosis/microbiology , Animals , Bronchoalveolar Lavage Fluid/immunology , Cell Proliferation/drug effects , Eosinophils/drug effects , Eosinophils/immunology , Eosinophils/microbiology , Epithelial Cells/drug effects , Epithelial Cells/immunology , Epithelial Cells/microbiology , Female , Flurbiprofen/immunology , Humans , Immunity, Innate/immunology , Indomethacin/pharmacology , Interleukin-13/immunology , Interleukin-5/immunology , Lung/drug effects , Lung/immunology , Lung/microbiology , Lymphocytes/immunology , Lymphocytes/microbiology , Mice , Mice, Inbred BALB C , Mice, Knockout , Pneumonia/metabolism , Pneumonia/microbiology
5.
Sci Prog ; 103(2): 36850420921682, 2020.
Article in English | MEDLINE | ID: mdl-32421394

ABSTRACT

In order to take advantage of different forms of heat pumps and to mitigate thermal imbalance underground caused by long-term operation of ground source heat pumps, hybrid ground source heat pump systems have received an increasing attention. In this research, based on the fact that abundant groundwater resources are commonly available in karst regions, a new strategy is introduced for selecting and determining hybrid ground source heat pump capacity. Five scenarios of hybrid ground source heat pump system coupling groundwater source heat pumps with other supplementary heat pumps are proposed in this article to provide appropriate options to eliminate heat buildup under different hydrogeologic conditions. Methodologies for sizing and selection are established. Then, a case study of techno-economic analysis was performed for a project in the karst region in South China. The results showed that these scenarios can effectively mitigate heat buildup, and under the hydrogeologic condition in the case study. Compared to the solo ground-coupled heat pump solution, the optimal solution (Solution 4 in this study) can reduce the annual costs by 16.10% and reduce the capital investment by 60%. Methodologies developed in this study are beneficial for selecting appropriate approaches to mitigate heat buildup and enhance competitiveness of ground source heat pumps.

6.
Allergy ; 75(7): 1606-1617, 2020 07.
Article in English | MEDLINE | ID: mdl-31975538

ABSTRACT

BACKGROUND: The epithelial cell-derived danger signal mediators thymic stromal lymphopoietin (TSLP) and IL-33 are consistently associated with adaptive Th2 immune responses in asthma. In addition, TSLP and IL-33 synergistically promoted group 2 innate lymphoid cell (ILC2) activation to induce innate allergic inflammation. However, the mechanism of this synergistic ILC2 activation is unknown. METHODS: BALB/c WT and TSLP receptor-deficient (TSLPR-/- ) mice were challenged intranasally with Alternaria extract (Alt-Ext) or PBS for 4 consecutive days to evaluate innate airway allergic inflammation. WT mice pre-administered with rTSLP or vehicle, TSLPR-/- mice, and IL-33 receptor-deficient (ST2-/- ) mice were challenged intranasally with Alt-Ext or vehicle once or twice to evaluate IL-33 release and TSLP expression in the lung. TSLPR and ST2 expression on lung ILC2 were measured by flow cytometry after treatment of rTSLP, rIL-33, rTSLP + rIL-33, or vehicle. RESULTS: Thymic stromal lymphopoietin receptor deficient mice had significantly decreased the number of lung ILC2 expressing IL-5 and IL-13 following Alt-Ext-challenge compared to WT mice. Further, eosinophilia, protein level of lung IL-4, IL-5, and IL-13, and airway mucus score were also significantly decreased in TSLPR-/- mice compared to WT mice. Endogenous and exogenous TSLP increased Alt-Ext-induced IL-33 release into BALF, and ST2 deficiency decreased Alt-Ext-induced TSLP expression in the lung. Further, rTSLP and rIL-33 treatment reciprocally increased each other's receptor expression on lung ILC2 in vivo and in vitro. CONCLUSION: Thymic stromal lymphopoietin and IL-33 signaling reciprocally enhanced each other's protein release and expression in the lung following Alt-Ext-challenge and each other's receptor expression on lung ILC2 to enhance ILC2 activation.


Subject(s)
Cytokines/genetics , Inflammation , Interleukin-33 , Lung/physiopathology , Animals , Interleukin-33/genetics , Lymphocytes , Mice , Mice, Inbred BALB C , Mice, Knockout , Thymic Stromal Lymphopoietin
7.
J Immunol ; 201(7): 1936-1945, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30127087

ABSTRACT

IL-33 has pleiotropic functions in immune responses and promotes the development of allergic diseases and asthma. IL-33 induces Th2 differentiation and enhances type 2 cytokine production by CD4+ T cells. However, the regulation of IL-33-driven type 2 cytokine responses is not fully defined. In this study, we investigated the effect of PGI2, a lipid mediator formed in the cyclooxygenase pathway of arachidonic acid metabolism, on naive CD4+ T cell activation, proliferation, and differentiation by IL-33. Using wild-type and PGI2 receptor (IP) knockout mice, we found that the PGI2 analog cicaprost dose-dependently inhibited IL-33-driven IL-4, IL-5, and IL-13 production by CD4+ T cells in an IP-specific manner. In addition, cicaprost inhibited IL-33-driven IL-2 production and CD25 expression by CD4+ T cells. Furthermore, IP knockout mice had increased IL-5 and IL-13 responses of CD4+ T cells to Alternaria sensitization and challenge in mouse lungs. Because IL-33 is critical for Alternaria-induced type 2 responses, these data suggest that PGI2 not only inhibits IL-33-stimulated CD4+ Th2 cell responses in vitro but also suppresses IL-33-induced Th2 responses caused by protease-containing allergens in vivo.


Subject(s)
Alternaria/immunology , Alternariosis/metabolism , Epoprostenol/analogs & derivatives , Lung/immunology , Th2 Cells/immunology , Animals , Cell Differentiation , Cells, Cultured , Epoprostenol/metabolism , Interleukin-2/metabolism , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/metabolism , Interleukin-33/metabolism , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptors, Prostaglandin/genetics
9.
Article in English | MEDLINE | ID: mdl-29660395

ABSTRACT

Endogenous prostaglandin I2 (PGI2) has inhibitory effects on immune responses against pathogens or allergens; however, the immunomodulatory activity of endogenous PGI2 signaling in endotoxin-induced inflammation is unknown. To test the hypothesis that endogenous PGI2 down-regulates endotoxin-induced lung inflammation, C57BL/6 wild type (WT) and PGI2 receptor (IP) KO mice were challenged intranasally with LPS. Urine 6-keto-PGF1α, a stable metabolite of PGI2, was significantly increased following the LPS-challenge, suggesting that endogenous PGI2 signaling modulates the host response to LPS-challenge. IPKO mice had a significant increase in neutrophils in the BAL fluid as well as increased proteins of KC, LIX, and TNF-α in lung homogenates compared with WT mice. In contrast, IL-10 was decreased in LPS-challenged IPKO mice compared with WT mice. The PGI2 analog cicaprost significantly decreased LPS-induced KC, and TNF-α, but increased IL-10 and AREG in bone marrow-derived dendritic cells (BMDCs) and bone marrow-derived macrophages (BMMs) compared with vehicle-treatment. These results indicated that endogenous PGI2 signaling attenuated neutrophilic lung inflammation through the reduced inflammatory cytokine and chemokine and enhanced IL-10.


Subject(s)
Acute Lung Injury/metabolism , Epoprostenol/metabolism , Lipopolysaccharides/toxicity , Neutrophil Infiltration , Neutrophils/metabolism , Signal Transduction , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Animals , Disease Models, Animal , Epoprostenol/genetics , Mice , Mice, Knockout , Neutrophils/pathology
10.
J Allergy Clin Immunol ; 142(5): 1515-1528.e8, 2018 11.
Article in English | MEDLINE | ID: mdl-29331643

ABSTRACT

BACKGROUND: IL-33 is one of the most consistently associated gene candidates for asthma identified by using a genome-wide association study. Studies in mice and in human cells have confirmed the importance of IL-33 in inducing type 2 cytokine production from both group 2 innate lymphoid cells (ILC2s) and TH2 cells. However, there are no pharmacologic agents known to inhibit IL-33 release from airway cells. OBJECTIVE: We sought to determine the effect of glucagon-like peptide 1 receptor (GLP-1R) signaling on aeroallergen-induced airway IL-33 production and release and on innate type 2 airway inflammation. METHODS: BALB/c mice were challenged intranasally with Alternaria extract for 4 consecutive days. GLP-1R agonist or vehicle was administered starting either 2 days before the first Alternaria extract challenge or 1 day after the first Alternaria extract challenge. RESULTS: GLP-1R agonist treatment starting 2 days before the first Alternaria extract challenge decreased IL-33 release in the bronchoalveolar lavage fluid and dual oxidase 1 (Duox1) mRNA expression 1 hour after the first Alternaria extract challenge and IL-33 expression in lung epithelial cells 24 hours after the last Alternaria extract challenge. Furthermore, GLP-1R agonist significantly decreased the number of ILC2s expressing IL-5 and IL-13, lung protein expression of type 2 cytokines and chemokines, the number of perivascular eosinophils, mucus production, and airway responsiveness compared with vehicle treatment. GLP-1R agonist treatment starting 1 day after the first Alternaria extract challenge also significantly decreased eosinophilia and type 2 cytokine and chemokine expression in the airway after 4 days of Alternaria extract challenge. CONCLUSION: These results reveal that GLP-1R signaling might be a therapy to reduce IL-33 release and inhibit the ILC2 response to protease-containing aeroallergens, such as Alternaria.


Subject(s)
Asthma/immunology , Glucagon-Like Peptide 1/immunology , Glucagon-Like Peptide-1 Receptor/immunology , Interleukin-33/immunology , Allergens/immunology , Alternaria/immunology , Animals , Cytokines/immunology , Dermatophagoides pteronyssinus/immunology , Eosinophilia/immunology , Female , Glucagon-Like Peptide-1 Receptor/agonists , Immunity, Innate , Lung/cytology , Lung/immunology , Lymphocytes/immunology , Mice, Inbred BALB C , Mice, Transgenic , Mucus/immunology , Signal Transduction
11.
Cell Rep ; 21(9): 2487-2499, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29186686

ABSTRACT

Sex hormones regulate many autoimmune and inflammatory diseases, including asthma. As adults, asthma prevalence is 2-fold greater in women compared to men. The number of group 2 innate lymphoid cells (ILC2) is increased in patients with asthma, and we investigate how testosterone attenuates ILC2 function. In patients with moderate to severe asthma, we determine that women have an increased number of circulating ILC2 compared to men. ILC2 from adult female mice have increased IL-2-mediated ILC2 proliferation versus ILC2 from adult male mice, as well as pre-pubescent females and males. Further, 5α-dihydrotestosterone, a hormone downstream of testosterone, decreases lung ILC2 numbers and IL-5 and IL-13 expression from ILC2. In vivo, testosterone attenuated Alternaria-extract-induced IL-5+ and IL-13+ ILC2 numbers and lung eosinophils by intrinsically decreasing lung ILC2 numbers, as well as by decreasing expression of IL-33 and thymic stromal lymphopoietin (TSLP), ILC2-stimulating cytokines. Collectively, these findings provide a foundational understanding of sexual dimorphism in ILC2 function.


Subject(s)
Inflammation/drug therapy , Lymphocytes/drug effects , Lymphocytes/metabolism , Testosterone/therapeutic use , Adolescent , Adult , Animals , Asthma/drug therapy , Asthma/immunology , Cell Proliferation/drug effects , Female , Flow Cytometry , Humans , Inflammation/immunology , Interleukin-13/metabolism , Interleukin-2/metabolism , Interleukin-33/metabolism , Lymphocytes/immunology , Male , Mice , Mice, Inbred BALB C , Middle Aged , Phosphorylation/drug effects , STAT5 Transcription Factor/metabolism , Young Adult
12.
J Immunol ; 197(5): 1577-86, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27456482

ABSTRACT

Allergic airway diseases are immune disorders associated with heightened type 2 immune responses and IL-5 and IL-13 production at the site of inflammation. We have previously reported that cyclooxygenase (COX) inhibition by indomethacin augmented allergic airway inflammation in a STAT6-independent manner. However, the key COX product(s) responsible for restraining indomethacin-mediated STAT6-independent allergic inflammation is unknown. In this study, using the mouse model of OVA-induced allergic airway inflammation, we identified that PGI2 receptor (IP) signaling was critical for indomethacin-induced, STAT6-independent proallergic effects. We demonstrated that IP deficiency increased inflammatory cell infiltration, eosinophilia, and IL-5 and IL-13 expression in the lung in a STAT6-independent manner. The augmented STAT6-independent allergic inflammation correlated with enhanced primary immune responses to allergic sensitization and elevated production of multiple inflammatory chemokines (CCL11, CCL17, CCL22, and CXCL12) in the lung after allergen challenge. We also showed that the PGI2 analogue cicaprost inhibited CD4 T cell proliferation and IL-5 and IL-13 expression in vitro, and IP deficiency diminished the stimulatory effect of indomethacin on STAT6-independent IL-5 and IL-13 responses in vivo. The inhibitory effects of PGI2 and the IP signaling pathway on CD4 T cell activation, inflammatory chemokine production, and allergic sensitization and airway inflammation suggest that PGI2 and its analogue iloprost, both Food and Drug Administration-approved drugs, may be useful in treating allergic diseases and asthma. In addition, inhibiting PGI2 signaling by drugs that either block PGI2 production or restrain IP signaling may augment STAT6-independent pathways of allergic inflammation.


Subject(s)
Allergens/immunology , Lung/immunology , Lymphocyte Activation/drug effects , Receptors, Epoprostenol/metabolism , STAT6 Transcription Factor/metabolism , Allergens/administration & dosage , Animals , Antihypertensive Agents/pharmacology , Asthma/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/physiology , Cell Proliferation , Chemokines/biosynthesis , Chemokines/immunology , Epoprostenol/administration & dosage , Epoprostenol/analogs & derivatives , Epoprostenol/pharmacology , Hypersensitivity , Indomethacin , Inflammation , Interleukin-13/genetics , Interleukin-13/immunology , Interleukin-5/genetics , Interleukin-5/immunology , Lung/physiopathology , Mice , Mice, Inbred BALB C , Mice, Knockout , Ovalbumin/immunology , Receptors, Epoprostenol/deficiency , Receptors, Epoprostenol/genetics , STAT6 Transcription Factor/deficiency , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/immunology , Signal Transduction , Th2 Cells/immunology
13.
Thorax ; 71(7): 633-45, 2016 07.
Article in English | MEDLINE | ID: mdl-27071418

ABSTRACT

BACKGROUND: Group 2 innate lymphoid cells (ILC2) are an important source of the type 2 cytokines interleukin (IL)-5 and IL-13 that are critical to the allergic airway phenotype. Previous studies reported that histone deacetylase (HDAC) inhibition by trichostatin A (TSA) downregulated adaptive allergic immune responses; however, the effect of HDAC inhibition on the early innate allergic immune response is unknown. Therefore, we investigated the effect of TSA on innate airway inflammation mediated by ILC2 activation. METHODS: BALB/c mice were challenged intranasally with Alternaria extract, exogenous recombinant mouse IL-33 (rmIL-33) or the respective vehicles for four consecutive days following TSA or vehicle treatment. Bronchoalveolar lavage (BAL) fluids and lungs were harvested 24 h after the last challenge. RESULTS: We found that TSA treatment significantly decreased the number of ILC2 expressing IL-5 and IL-13 in the lungs challenged with Alternaria extract or rmIL-33 compared with vehicle treatment (p<0.05). TSA treatment significantly decreased protein expression of IL-5, IL-13, CCL11 and CCL24 in the lung homogenates from Alternaria extract-challenged mice or rmIL-33-challenged mice compared with vehicle treatment (p<0.05). Further, TSA treatment significantly decreased the number of perivascular eosinophils and mucus production in the large airways that are critical components of the asthma phenotype (p<0.05). TSA did not change early IL-33 release in the BAL fluids; however, TSA decreased lung IL-33 expression from epithelial cells 24 h after last Alternaria extract challenge compared with vehicle treatment (p<0.05). CONCLUSIONS: These results reveal that TSA reduces allergen-induced ILC2 activation and the early innate immune responses to an inhaled protease-containing aeroallergen.


Subject(s)
Asthma/immunology , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Immunity, Innate , Lymphocytes/immunology , Allergens/immunology , Alternaria , Animals , Bronchoalveolar Lavage , Chemokine CCL11/metabolism , Chemokine CCL24/metabolism , Interleukin-13/metabolism , Interleukin-33/pharmacology , Interleukin-5/metabolism , Lung/immunology , Mice , Mice, Inbred BALB C
14.
Am J Respir Crit Care Med ; 193(1): 31-42, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26378386

ABSTRACT

RATIONALE: Group 2 innate lymphoid cells (ILC2s) robustly produce IL-5 and IL-13, cytokines central to the asthma phenotype; however, the effect of prostaglandin (PG) I2 on ILC2 function is unknown. OBJECTIVES: To determine the effect of PGI2 on mouse and human ILC2 cytokine expression in vitro and the effect of endogenous PGI2 and the PGI2 analog cicaprost on lung ILC2s in vivo. METHODS: Flow-sorted bone marrow ILC2s of wild-type (WT) and PGI2 receptor-deficient (IP(-/-)) mice were cultured with IL-33 and treated with the PGI2 analog cicaprost. WT and IP(-/-) mice were challenged intranasally with Alternaria alternata extract for 4 consecutive days to induce ILC2 responses, and these were quantified. Prior to A. alternata extract, challenged WT mice were treated with cicaprost. Human flow-sorted peripheral blood ILC2s were cultured with IL-33 and IL-2 and treated with the PGI2 analog cicaprost. MEASUREMENT AND MAIN RESULTS: We demonstrate that PGI2 inhibits IL-5 and IL-13 protein expression by IL-33-stimulated ILC2s purified from mouse bone marrow in a manner that was dependent on signaling through the PGI2 receptor IP. In a mouse model of 4 consecutive days of airway challenge with an extract of A. alternata, a fungal aeroallergen associated with severe asthma exacerbations, endogenous PGI2 signaling significantly inhibited lung IL-5 and IL-13 protein expression, and reduced the number of lung IL-5- and IL-13-expressing ILC2s, as well as the mean fluorescence intensity of IL-5 and IL-13 staining. In addition, exogenous administration of a PGI2 analog inhibited Alternaria extract-induced lung IL-5 and IL-13 protein expression, and reduced the number of lung IL-5- and IL-13-expressing ILC2s and the mean fluorescence intensity of IL-5 and IL-13 staining. Finally, a PGI2 analog inhibited IL-5 and IL-13 expression by human ILC2s that were stimulated with IL-2 and IL-33. CONCLUSIONS: These results suggest that PGI2 may be a potential therapy to reduce the ILC2 response to protease-containing aeroallergens, such as Alternaria.


Subject(s)
Epoprostenol/physiology , Lymphocytes/physiology , Signal Transduction/physiology , Alternaria/immunology , Animals , Epoprostenol/analogs & derivatives , Epoprostenol/pharmacology , Humans , In Vitro Techniques , Interleukin-13/physiology , Interleukin-33/pharmacology , Interleukin-5/physiology , Lung/cytology , Lung/immunology , Lymphocytes/drug effects , Mice , Mice, Inbred BALB C , Mice, Knockout , Signal Transduction/drug effects
15.
J Allergy Clin Immunol ; 136(4): 1025-34.e11, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26242299

ABSTRACT

BACKGROUND: Women have an increased prevalence of severe asthma compared with men. IL-17A is associated with severe asthma and requires IL-23 receptor (IL-23R) signaling, which is negatively regulated by let-7f microRNA. OBJECTIVE: We sought to Determine the mechanism by which 17ß-estradiol (E2) and progesterone (P4) increase IL-17A production. METHODS: IL-17A production was determined by using flow cytometry in TH17 cells from women (n = 14) and men (n = 15) with severe asthma. Cytokine levels were measured by using ELISA, and IL-23R and let-7f expression was measured by using quantitative PCR in TH17-differentiated cells from healthy women (n = 13) and men (n = 14). In sham-operated or ovariectomized female mice, 17ß-E2, P4, 17ß-E2+P4, or vehicle pellets were administered for 3 weeks before ex vivo TH17 cell differentiation. Airway neutrophil infiltration and CXCL1 (KC) expression were also determined in ovalbumin (OVA)-challenged wild-type female recipient mice with an adoptive transfer of OVA-specific TH17 cells from female and male mice. RESULTS: In patients with severe asthma and healthy control subjects, IL-17A production was increased in TH17 cells from women compared with men. IL-23R expression was increased and let-7f expression was decreased in TH17-differentiated cells from women compared with men. In ovariectomized mice IL-17A and IL-23R expression was increased and Let-7f expression was decreased in TH17 cells from mice administered 17ß-E2+P4 compared with those administered vehicle. Furthermore, transfer of female OVA-specific TH17 cells increased acute neutrophil infiltration in the lungs of OVA-challenged recipient mice compared with transfer of male OVA-specific TH17 cells. CONCLUSIONS: 17ß-E2+P4 increased IL-17A production from TH17 cells, providing a potential mechanism for the increased prevalence of severe asthma in women compared with men.


Subject(s)
Asthma/immunology , Estrogens/immunology , Gene Expression Regulation/immunology , Interleukin-17/immunology , Interleukin-23/immunology , MicroRNAs/immunology , Progesterone/immunology , Receptors, Interleukin/immunology , Signal Transduction/immunology , Th17 Cells/immunology , Adolescent , Adult , Animals , Asthma/pathology , Female , Humans , Male , Mice , Middle Aged , Th17 Cells/pathology
16.
J Allergy Clin Immunol ; 134(3): 698-705.e5, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25042746

ABSTRACT

BACKGROUND: The prevalence of allergic diseases has doubled in developed countries in the past several decades. Cyclooxygenase (COX)-inhibiting drugs augmented allergic diseases in mice by increasing allergic sensitization and memory immune responses. However, whether COX inhibition can promote allergic airway diseases by inhibiting immune tolerance is not known. OBJECTIVE: To determine the role of the COX pathway and prostaglandin I2 (PGI2) signaling through the PGI2 receptor (IP) in aeroallergen-induced immune tolerance. METHODS: Wild-type (WT) BALB/c mice and IP knockout mice were aerosolized with ovalbumin (OVA) to induce immune tolerance prior to immune sensitization with an intraperitoneal injection of OVA/alum. The COX inhibitor indomethacin or vehicle was administered in drinking water to inhibit enzyme activity during the sensitization phase. Two weeks after sensitization, the mice were challenged with OVA aerosols. Mouse bronchoalveolar lavage fluid was harvested for cell counts and TH2 cytokine measurements. RESULTS: WT mice treated with indomethacin had greater numbers of total cells, eosinophils, and lymphocytes, and increased IL-5 and IL-13 protein expression in BAL fluid compared to vehicle-treated mice. Similarly, IP knockout mice had augmented inflammation and TH2 cytokine responses compared to WT mice. In contrast, the PGI2 analog cicaprost attenuated the anti-tolerance effect of COX inhibition. CONCLUSION: COX inhibition abrogated immune tolerance by suppressing PGI2 IP signaling, suggesting that PGI2 signaling promotes immune tolerance and that clinical use of COX-inhibiting drugs may increase the risk of developing allergic diseases.


Subject(s)
Enzyme Inhibitors/administration & dosage , Epoprostenol/metabolism , Hypersensitivity/immunology , Indomethacin/administration & dosage , Receptors, Epoprostenol/metabolism , Air Pollution/adverse effects , Allergens/adverse effects , Allergens/immunology , Animals , Humans , Immune Tolerance , Indomethacin/pharmacology , Mice , Mice, 129 Strain , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Ovalbumin/immunology , Prostaglandin-Endoperoxide Synthases/metabolism , Receptors, Epoprostenol/genetics , Signal Transduction
17.
Infect Immun ; 82(9): 3723-39, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24958709

ABSTRACT

The Th17 cytokines interleukin-17A (IL-17A), IL-17F, and IL-22 are critical for the lung immune response to a variety of bacterial pathogens, including Klebsiella pneumoniae. Th2 cytokine expression in the airways is a characteristic feature of asthma and allergic airway inflammation. The Th2 cytokines IL-4 and IL-13 diminish ex vivo and in vivo IL-17A protein expression by Th17 cells. To determine the effect of IL-4 and IL-13 on IL-17-dependent lung immune responses to acute bacterial infection, we developed a combined model in which allergic airway inflammation and lung IL-4 and IL-13 expression were induced by ovalbumin sensitization and challenge prior to acute lung infection with K. pneumoniae. We hypothesized that preexisting allergic airway inflammation decreases lung IL-17A expression and airway neutrophil recruitment in response to acute K. pneumoniae infection and thereby increases the lung K. pneumoniae burden. As hypothesized, we found that allergic airway inflammation decreased the number of K. pneumoniae-induced airway neutrophils and lung IL-17A, IL-17F, and IL-22 expression. Despite the marked reduction in postinfection airway neutrophilia and lung expression of Th17 cytokines, allergic airway inflammation significantly decreased the lung K. pneumoniae burden and postinfection mortality. We showed that the decreased lung K. pneumoniae burden was independent of IL-4, IL-5, and IL-17A and partially dependent on IL-13 and STAT6. Additionally, we demonstrated that the decreased lung K. pneumoniae burden associated with allergic airway inflammation was both neutrophil and CCL8 dependent. These findings suggest a novel role for CCL8 in lung antibacterial immunity against K. pneumoniae and suggest new mechanisms of orchestrating lung antibacterial immunity.


Subject(s)
Chemokine CCL8/immunology , Hypersensitivity/immunology , Inflammation/immunology , Klebsiella Infections/immunology , Klebsiella pneumoniae/immunology , Lung/immunology , Neutrophils/immunology , Animals , Eosinophils/immunology , Eosinophils/microbiology , Female , Hypersensitivity/microbiology , Inflammation/microbiology , Interleukins/immunology , Klebsiella Infections/microbiology , Lung/microbiology , Mice , Mice, Inbred BALB C , Neutrophils/microbiology , Ovalbumin/immunology , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/microbiology
18.
J Virol ; 88(17): 9655-72, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24920804

ABSTRACT

UNLABELLED: Immune-mediated lung injury is a hallmark of lower respiratory tract illness caused by respiratory syncytial virus (RSV). STAT4 plays a critical role in CD4+ Th1 lineage differentiation and gamma interferon (IFN-γ) protein expression by CD4+ T cells. As CD4+ Th1 differentiation is associated with negative regulation of CD4+ Th2 and Th17 differentiation, we hypothesized that RSV infection of STAT4-/- mice would result in enhanced lung Th2 and Th17 inflammation and impaired lung Th1 inflammation compared to wild-type (WT) mice. We performed primary and secondary RSV challenges in WT and STAT4-/- mice and used STAT1-/- mice as a positive control for the development of RSV-specific lung Th2 and Th17 inflammation during primary challenge. Primary RSV challenge of STAT4-/- mice resulted in decreased T-bet and IFN-γ expression levels in CD4+ T cells compared to those of WT mice. Lung Th2 and Th17 inflammation did not develop in primary RSV-challenged STAT4-/- mice. Decreased IFN-γ expression by NK cells, CD4+ T cells, and CD8+ T cells was associated with attenuated weight loss and enhanced viral clearance with primary challenge in STAT4-/- mice compared to WT mice. Following secondary challenge, WT and STAT4-/- mice also did not develop lung Th2 or Th17 inflammation. In contrast to primary challenge, secondary RSV challenge of STAT4-/- mice resulted in enhanced weight loss, an increased lung IFN-γ expression level, and an increased lung RSV-specific CD8+ T cell response compared to those of WT mice. These data demonstrate that STAT4 regulates the RSV-specific CD8+ T cell response to secondary infection but does not independently regulate lung Th2 or Th17 immune responses to RSV challenge. IMPORTANCE: STAT4 is a protein critical for both innate and adaptive immune responses to viral infection. Our results show that STAT4 regulates the immune response to primary and secondary challenge with RSV but does not restrain RSV-induced lung Th2 or Th17 immune responses. These findings suggest that STAT4 expression may influence lung immunity and severity of illness following primary and secondary RSV infections.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lung/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Viruses/immunology , STAT4 Transcription Factor/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Animals , Disease Models, Animal , Female , Lung/pathology , Mice, Inbred BALB C , Mice, Knockout , STAT4 Transcription Factor/deficiency
19.
Cogn Neurodyn ; 8(1): 47-54, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24465285

ABSTRACT

In this paper, input-to-state stability problems for a class of recurrent neural networks model with multiple time-varying delays are concerned with. By utilizing the Lyapunov-Krasovskii functional method and linear matrix inequalities techniques, some sufficient conditions ensuring the exponential input-to-state stability of delayed network systems are firstly obtained. Two numerical examples and its simulations are given to illustrate the efficiency of the derived results.

20.
J Leukoc Biol ; 94(1): 77-88, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23625201

ABSTRACT

PGI2 signaling through IP inhibits allergen-induced inflammatory responses in mice. We reported previously that PGI2 analogs decreased proinflammatory cytokine and chemokine production by mature BMDCs. However, whether PGI2 modulates the function of immature DCs has not been investigated. We hypothesized that PGI2 negatively regulates immature DC function and investigated the effect of PGI2 analogs on immature BMDC antigen uptake and migration in vitro and in vivo. Immature BMDCs were obtained from WT and IPKO mice, both on a C57BL/6 background. The PGI2 analog cicaprost decreased FITC-OVA uptake by immature BMDCs. In addition, cicaprost increased immature BMDC podosome dissolution, pro-MMP-9 production, cell surface CCR7 expression, and chemotactic migration toward CCL19 and CCL21, as well as chemokinesis, in an IP-specific fashion. These in vitro results suggested that cicaprost promotes migration of immature DCs from mucosal surface to draining LNs. This concept was supported by the finding that migration of immature GFP⁺ BMDCs to draining LNs was enhanced by pretreatment with cicaprost. Further, migration of immature lung DCs labeled with PKH26 was enhanced by intranasal cicaprost administration. Our results suggest PGI2-IP signaling increases immature DC migration to the draining LNs and may represent a novel mechanism by which this eicosanoid inhibits immune responses.


Subject(s)
Cell Movement/drug effects , Dendritic Cells/drug effects , Epoprostenol/pharmacology , Ovalbumin/immunology , Platelet Aggregation Inhibitors/pharmacology , Receptors, Epoprostenol/physiology , Signal Transduction/drug effects , Animals , Bone Marrow Cells/metabolism , Cell Movement/immunology , Chemokine CCL19/metabolism , Chemokine CCL21/metabolism , Chemotaxis , Cytokines/metabolism , Dendritic Cells/immunology , Female , Flow Cytometry , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Ovalbumin/metabolism , Receptors, CCR7/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...