Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Neurol ; 24(1): 234, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969994

ABSTRACT

BACKGROUND AND OBJECTIVE: Transcranial magnetic stimulation (TMS) is considered as a promising treatment option for post-stroke cognitive impairment (PSCI).Some meta-analyses have indicated that TMS can be effective in treating cognitive decline in stroke patients, but the quality of the studies included and the methodologies employed were less than satisfactory. Thus, this meta-analysis aimed to evaluate the efficacy and safety of TMS for treating post-stroke cognitive impairment. METHODS: We searched online databases like PubMed, Embase, Cochrane Library, and Web of Science to retrieve randomized controlled trials (RCTs) of TMS for the treatment of patients with PSCI. Two independent reviewers identified relevant literature, extracted purpose-specific data, and the Cochrane Risk of Bias Assessment Scale was utilized to assess the potential for bias in the literature included in this study. Stata 17.0 software was used for data analysis. RESULTS: A total of 10 studies involving 414 patients were included. The results of the meta-analysis showed that TMS was significantly superior to the control group for improving the overall cognitive function of stroke patients (SMD = 1.17, 95% CI [0.59, 1.75], I2 = 86.1%, P < 0.001). Subgroup analyses revealed that high-frequency rTMS (HF-rTMS), low-frequency rTMS (LF-rTMS), and intermittent theta burst stimulation (iTBS) all have a beneficial effect on the overall cognitive function of stroke patients. However, another subgroup analysis failed to demonstrate any significant advantage of TMS over the control group in terms of enhancing scores on the Loewenstein Occupational Therapy Cognitive Assessment (LOTCA) and Rivermead Behavioral Memory Test (RBMT) scales. Nonetheless, TMS demonstrated the potential to enhance the recovery of activities of daily living in stroke patients, as indicated by the Modified Barthel Index (MBI) (SMD = 0.76; 95% CI [0.22, 1.30], I2 = 52.6%, P = 0.121). CONCLUSION: This meta-analysis presents evidence supporting the safety and efficacy of TMS as a non-invasive neural modulation tool for improving global cognitive abilities and activities of daily living in stroke patients. However, given the limited number of included studies, further validation of these findings is warranted through large-scale, multi-center, double-blind, high-quality randomized controlled trials. PROSPERO REGISTRATION NUMBER: CRD42022381034.


Subject(s)
Cognitive Dysfunction , Stroke , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Stroke/complications , Stroke/psychology , Stroke/therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/therapy , Cognitive Dysfunction/psychology , Cognition/physiology , Treatment Outcome
2.
Article in English | MEDLINE | ID: mdl-38839034

ABSTRACT

BACKGROUND: Interoception represents perception of the internal bodily state, which is closely associated with social/emotional processing and physical health in humans. Understanding the mechanism that underlies interoceptive processing, particularly its modulation, is therefore of great importance. Given the overlap between oxytocinergic pathways and interoceptive signaling substrates in both peripheral visceral organs and the brain, intranasal oxytocin administration is a promising approach for modulating interoceptive processing. METHODS: Using a double-blind, placebo-controlled, between-participant design, we recruited 72 healthy male participants who performed a cardiac interoceptive task during electroencephalograph and electrocardiograph recording to examine whether intranasal administration of the neuropeptide oxytocin could modulate interoceptive processing. We also collected data in a resting state to examine whether we could replicate previous findings. RESULTS: The results showed that in the interoceptive task, oxytocin increased interoceptive accuracy at the behavioral level, which was paralleled by larger heartbeat-evoked potential amplitudes in frontocentral and central regions on the neural level. However, there were no significant effects of oxytocin on electroencephalograph or electrocardiograph during resting state. CONCLUSIONS: These findings suggest that oxytocin may only have a facilitatory effect on interoceptive processing under task-based conditions. Our findings not only provide new insights into the modulation of interoceptive processing via targeting the oxytocinergic system but also provide proof-of-concept evidence for the therapeutic potential of intranasal oxytocin in mental disorders with dysfunctional interoception.

3.
Adv Sci (Weinh) ; 11(31): e2403334, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38884140

ABSTRACT

Halogenation of Y-series small-molecule acceptors (Y-SMAs) is identified as an effective strategy to optimize photoelectric properties for achieving improved power-conversion-efficiencies (PCEs) in binary organic solar cells (OSCs). However, the effect of different halogenation in the 2D-structured large π-fused core of guest Y-SMAs on ternary OSCs has not yet been systematically studied. Herein, four 2D-conjugated Y-SMAs (X-QTP-4F, including halogen-free H-QTP-4F, chlorinated Cl-QTP-4F, brominated Br-QTP-4F, and iodinated I-QTP-4F) by attaching different halogens into 2D-conjugation extended dibenzo[f,h]quinoxaline core are developed. Among these X-QTP-4F, Cl-QTP-4F has a higher absorption coefficient, optimized molecular crystallinity and packing, suitable cascade energy levels, and complementary absorption with PM6:L8-BO host. Moreover, among ternary PM6:L8-BO:X-QTP-4F blends, PM6:L8-BO:Cl-QTP-4F obtains a more uniform and size-suitable fibrillary network morphology, improved molecular crystallinity and packing, as well as optimized vertical phase distribution, thus boosting charge generation, transport, extraction, and suppressing energy loss of OSCs. Consequently, the PM6:L8-BO:Cl-QTP-4F-based OSCs achieve a 19.0% efficiency, which is among the state-of-the-art OSCs based on 2D-conjugated Y-SMAs and superior to these devices based on PM6:L8-BO host (17.70%) and with guests of H-QTP-4F (18.23%), Br-QTP-4F (18.39%), and I-QTP-4F (17.62%). The work indicates that halogenation in 2D-structured dibenzo[f,h]quinoxaline core of Y-SMAs guests is a promising strategy to gain efficient ternary OSCs.

4.
Anal Chem ; 96(27): 11061-11067, 2024 07 09.
Article in English | MEDLINE | ID: mdl-38922611

ABSTRACT

Amplified nanoprobes based on hybridization chain reaction (HCR) have been widely developed for the detection of intracellular low abundance mRNA. However, the formed chain-like assembly decorated with fluorophore would be degraded rapidly by endogenous enzyme, resulting in failure of the long-term fluorescence imaging. To address this issue, herein, a composite signal-amplifying strategy that integrates HCR into protein-binding signal amplification (HPSA) was communicated for the in situ imaging of mRNA by avoiding signal fluctuation. Different from conventional HCR-based nanoprobes (HCR-nanoprobe), the HCR was used as the signal-triggered mode and the amplifying signal generated from in situ fluorophore-protein binding in cells, which can maintain high stability of the signal for a long time. As a proof-of-principle, a nanobeacon based on HPSA (HPSA-nanobeacon) was constructed to detect TK1 mRNA. Taking advantage of the double signal-amplifying mode, the endogenous TK1 mRNA was sensitively detected and the fluorescence signal was maintained for more than 8 h in HepG2 cells. The attempt in this work provides a new option to the current signal-amplifying strategy for sensing nucleic acid targets with high stability, significantly enhancing the acquisition of intracellular molecular information.


Subject(s)
Nucleic Acid Hybridization , RNA, Messenger , Humans , RNA, Messenger/analysis , RNA, Messenger/metabolism , RNA, Messenger/genetics , Hep G2 Cells , Optical Imaging , Fluorescent Dyes/chemistry , Protein Binding , Nucleic Acid Amplification Techniques/methods , Thymidine Kinase
5.
BMC Geriatr ; 24(1): 458, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789951

ABSTRACT

BACKGROUND: Antibiotic-associated diarrhea (AAD) can prolong hospitalization, increase medical costs, and even lead to higher mortality rates. Therefore, it is essential to predict the incidence of AAD in elderly intensive care unit(ICU) patients. The objective of this study was to create a prediction model that is both interpretable and generalizable for predicting the incidence of AAD in elderly ICU patients. METHODS: We retrospectively analyzed data from the First Medical Center of the People's Liberation Army General Hospital (PLAGH) in China. We utilized the machine learning model Extreme Gradient Boosting (XGBoost) and Shapley's additive interpretation method to predict the incidence of AAD in elderly ICU patients in an interpretable manner. RESULTS: A total of 848 adult ICU patients were eligible for this study. The XGBoost model predicted the incidence of AAD with an area under the receiver operating characteristic curve (ROC) of 0.917, sensitivity of 0.889, specificity of 0.806, accuracy of 0.870, and an F1 score of 0.780. The XGBoost model outperformed the other models, including logistic regression, support vector machine (AUC = 0.809), K-nearest neighbor algorithm (AUC = 0.872), and plain Bayes (AUC = 0.774). CONCLUSIONS: While the XGBoost model may not excel in absolute performance, it demonstrates superior predictive capabilities compared to other models in forecasting the incidence of AAD in elderly ICU patients categorized based on their characteristics.


Subject(s)
Anti-Bacterial Agents , Diarrhea , Intensive Care Units , Machine Learning , Humans , Diarrhea/epidemiology , Diarrhea/chemically induced , Diarrhea/diagnosis , Aged , Male , Female , Retrospective Studies , Incidence , Intensive Care Units/trends , Anti-Bacterial Agents/adverse effects , China/epidemiology , Aged, 80 and over , Middle Aged
6.
ACS Appl Mater Interfaces ; 16(15): 19849-19857, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38572837

ABSTRACT

Two-dimensional (2D) perovskites have been widely adopted for improving the performance and stability of three-dimensional (3D) metal halide perovskite devices. However, rational manipulation of the phase composition of 2D perovskites for suitable energy level alignment in 2D/3D perovskite photodetectors (PDs) has been rarely explored. Herein, we precisely controlled the dimensionality of the 2D perovskite on CsPbI2Br films by tuning the polarity of the n-butylammonium iodide (BAI)-based solvents. In comparison to the pure n = 1 2D perovskite (ACN-BAI) formed by acetonitrile treatment, a mixture of n = 1 and n = 2 phases (IPA-BAI) generated by isopropanol (IPA) treatment guaranteed more robust defect passivation and favorable energy level alignment at the perovskite/hole transport layer interface. Consequently, the IPA-BAI PD exhibited a responsivity of 0.41 A W-1, a detectivity of 1.01 × 1013 Jones, and a linear dynamic range of 120 dB. Furthermore, the mixed-phase 2D layer effectively shielded the 3D perovskite from moisture. The IPA-BAI device retained 76% of its initial responsivity after 500 h of nonencapsulated storage at 10% relative humidity. This research provides valuable insights into the dimensional modulation of 2D perovskites for further enhancing the performance of 2D/3D perovskite PDs.

8.
Biosens Bioelectron ; 253: 116144, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38422812

ABSTRACT

Early diagnosis and treatment of renal fibrosis (RF) significantly affect the clinical outcomes of chronic kidney diseases (CKDs). As the typical fibrotic ailment, RF is characterized by remodeling of the extracellular matrix, and the activation of fibroblast activation protein (FAP) plays a crucial role in the mediation of extracellular matrix protein degradation. Therefore, FAP can serve as a biomarker for RF. However, up to now, no effective tools have been reported to diagnose early-stage RF via detecting FAP. In this work, a polymeric nanobeacon integrating an FAP-sensitive amphiphilic polymer and fluorophores was proposed, which was used to diagnose early RF by sensing FAP. The FAP can be detected in the range of 0 to 200 ng/mL with a detection limit of 0.132 ng/mL. Furthermore, the fluorescence imaging results demonstrate that the polymeric nanobeacon can sensitively image fibrotic kidneys in mice with unilateral ureteral occlusion (UUO), suggesting its potential for early RF diagnosis and guidance of FAP-targeted treatments. Importantly, when employed alongside with non-invasive diagnostic techniques like magnetic resonance imaging (MRI) and serological tests, this nanobeacon exhibits excellent biocompatibility, low biological toxicity, and sustained imaging capabilities, making it a suitable fluorescent tool for diagnosing various FAP-related fibrotic conditions. To our knowledge, this study represents the first attempt to image RF in early stage by detecting FAP, offering a promising fluorescent molecular tool for diagnosing various FAP-associated diseases in the future.


Subject(s)
Biosensing Techniques , Renal Insufficiency, Chronic , Mice , Animals , Fibrosis , Polymers , Fibroblasts , Early Diagnosis
9.
Proc Natl Acad Sci U S A ; 121(3): e2309825120, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38190528

ABSTRACT

The impact of sexual selection on the evolution of birds has been widely acknowledged. Although sexual selection has been hypothesized as a driving force in the occurrences of numerous morphological features across theropod evolution, this hypothesis has yet to be comprehensively tested due to challenges in identifying the sex of fossils and by the limited sample size. Confuciusornis sanctus is arguably the best-known early avialan and is represented by thousands of well-preserved specimens from the Early Cretaceous Jehol lagerstätte, which provides us with a chance to decipher the strength of sexual selection on extinct vertebrates. Herein, we present a morphometric study of C. sanctus based on the largest sample size of this taxon collected up to now. Our results indicate that the characteristic elongated paired rectrices is a sexually dimorphic trait and statistically robust inferences of the sexual dimorphism in size, shape, and allometry that have been established, providing the earliest known sexual dimorphism in avian evolution. Our findings suggest that sexual selection, in conjunction with natural selection, does act upon body size and limb length ratio in early birds, thereby promoting a deeper understanding of the role of sexual selection in large-scale phylogenetic evolution.


Subject(s)
Fossils , Sexual Selection , Animals , Phylogeny , Sex Characteristics , Body Size
SELECTION OF CITATIONS
SEARCH DETAIL