Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 781
Filter
1.
Int J Biol Macromol ; : 136196, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39370067

ABSTRACT

The epididymis and epididymosomes are crucial for regulating sperm motility, a key factor in male fertility. Palmitoylation, a lipid modification involving the attachment of palmitic acid to cysteine residues, is essential for protein function and localization. Additionally, this modification plays a vital role in the sorting of proteins into exosomes. This study investigates the role of S-palmitoylation at the Cys15 residue of the C4b binding protein alpha chain (C4BPA) in murine sperm motility. Our findings revealed high expression of C4BPA mRNA in the caput epididymis, with the protein present across all regions of the epididymis. Palmitoylation of C4BPA in epididymal epithelial cells was essential for its enrichment in epididymosomes and on sperm, thereby maintaining sperm motility. Inhibition of palmitoylation significantly reduced sperm motility and the localization of C4BPA on sperm. Additionally, palmitoylated C4BPA in exosomes resisted complement C4 attacks, preserving motility, unlike mutated C4BPA (C15S). These results highlight the critical role of palmitoylated C4BPA in protecting sperm from complement attacks and maintaining motility, suggesting that reversible palmitoylation of epididymal proteins could be explored as a therapeutic strategy for male contraception. Our study underscores the importance of post-translational modifications in sperm function and presents new insights into potential male contraceptive methods.

2.
BMC Med Imaging ; 24(1): 261, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354383

ABSTRACT

OBJECTIVE: To evaluate the performance of a semi-automated artificial intelligence (AI) software program (CerebralDoc® system) in aneurysm detection and morphological measurement. METHODS: In this study, 354 cases of computed tomographic angiography (CTA) were retrospectively collected in our hospital. Among them, 280 cases were diagnosed with aneurysms by either digital subtraction angiography (DSA) and CTA (DSA group, n = 102), or CTA-only (non-DSA group, n = 178). The presence or absence of aneurysms, as well as their location and related morphological features determined by AI were evaluated using DSA and radiologist findings. Besides, post-processing image quality from AI and radiologists were also rated and compared. RESULTS: In the DSA group, AI achieved a sensitivity of 88.24% and an accuracy of 81.97%, whereas radiologists achieved a sensitivity of 95.10% and an accuracy of 84.43%, using DSA results as the gold standard. The AI in the non-DSA group achieved 81.46% sensitivity and 76.29% accuracy, as per the radiologists' findings. The comparison of position consistency results showed better performance under loose criteria than strict criteria. In terms of morphological characteristics, both the DSA and the non-DSA groups agreed well with the diagnostic results for neck width and maximum diameter, demonstrating excellent ICC reliability exceeding 0.80. The AI-generated images exhibited superior quality compared to the standard software for post-processing, while also demonstrating a significantly reduced processing time. CONCLUSIONS: The AI-based aneurysm detection rate demonstrates a commendable performance, while the extracted morphological parameters exhibit a remarkable consistency with those assessed by radiologists, thereby showcasing significant potential for clinical application.


Subject(s)
Angiography, Digital Subtraction , Artificial Intelligence , Computed Tomography Angiography , Intracranial Aneurysm , Sensitivity and Specificity , Humans , Retrospective Studies , Angiography, Digital Subtraction/methods , Female , Male , Computed Tomography Angiography/methods , Middle Aged , Intracranial Aneurysm/diagnostic imaging , Aged , Adult , Software , Aged, 80 and over , Radiographic Image Interpretation, Computer-Assisted/methods , Cerebral Angiography/methods
3.
Neurosci Bull ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283565

ABSTRACT

Oligodendrocyte lineage cells, including oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs), are essential in establishing and maintaining brain circuits. Autophagy is a conserved process that keeps the quality of organelles and proteostasis. The role of autophagy in oligodendrocyte lineage cells remains unclear. The present study shows that autophagy is required to maintain the number of OPCs/OLs and myelin integrity during brain aging. Inactivation of autophagy in oligodendrocyte lineage cells increases the number of OPCs/OLs in the developing brain while exaggerating the loss of OPCs/OLs with brain aging. Inactivation of autophagy in oligodendrocyte lineage cells impairs the turnover of myelin basic protein (MBP). It causes MBP to accumulate in the cytoplasm as multimeric aggregates and fails to be incorporated into integral myelin, which is associated with attenuated endocytic recycling. Inactivation of autophagy in oligodendrocyte lineage cells impairs myelin integrity and causes demyelination. Thus, this study shows autophagy is required to maintain myelin quality during aging by controlling the turnover of myelin components.

4.
Small ; : e2406319, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221550

ABSTRACT

In the domain of heterogeneous catalytic activation of peroxymonosulfate (PMS), high-valent metal-oxo (HVMO) species are widely recognized as potent oxidants for the abatement of organic pollutants. However, the generation selectivity and efficiency of HVMO are often constrained by stringent requirements for catalyst adsorption sites and electron transfer efficiency. In this study, a single-atom catalyst, CuSA/CNP&S, is synthesized featuring multiple types (planar/axial) of heteroatom coordination via an H-bond-assisted self-assembly strategy. It is confirmed that CuN3 active centers with axial S coordination are uniformly distributed in a carbon matrix modified by planar P atoms. CuSA/CNP&S activated PMS to selectively generate Cu(III)═OH species as the primary reactive oxygen species (ROS). The pseudo-first-order kinetic rate for bisphenol A degradation reached 1.51 min-1, a 17.57-fold increase compared to the unmodified CuSA/CN catalyst. Additionally, the CuSA/CNP&S catalyst demonstrates high efficiency and durability in removing contaminants from various aqueous matrices. Theoretical calculations and experimental results indicate that the intrinsic electric field generated by distal planar P atoms enhances electron transfer efficiency within the carbon matrix. Meanwhile, axial S coordination elevates the d-band center and tunes the eg * band broadening of Cu, thereby enhancing the adsorption selectivity for the terminal oxygen of PMS. This multitype coordination synergistically mitigates the issues of low selectivity and yield of HVMO species.

5.
Article in English | MEDLINE | ID: mdl-39231582

ABSTRACT

BACKGROUND: Neuromyelitis optica spectrum disorder (NMOSD) can be categorised into aquaporin-4 antibody (AQP4-IgG) NMOSD or seronegative NMOSD. While our knowledge of AQP4-IgG NMOSD has evolved significantly in the past decade, seronegative NMOSD remains less understood. This study aimed to evaluate the predictors of relapses and treatment responses in AQP4-IgG NMOSD and seronegative NMOSD. METHODS: This was a multicentre, international, retrospective cohort study using the MSBase registry. Recurrent relapse risk was assessed using an Andersen-Gill model and risk of first relapse was evaluated using a Cox proportional hazards model. Covariates that putatively influence relapse risk included demographic factors, clinical characteristics and immunosuppressive therapies; the latter was assessed as a time-varying covariate. RESULTS: A total of 398 patients (246 AQP4-IgG NMOSD and 152 seronegative NMOSD) were included. The AQP4-IgG NMOSD and seronegative NMOSD patients did not significantly differ by age at disease onset, ethnicity or annualised relapse rate. Both low-efficacy and high-efficacy immunosuppressive therapies were associated with significant reductions in recurrent relapse risk, with notably greater protection conferred by high-efficacy therapies in both AQP4-IgG NMOSD (HR 0.27, 95% CI 0.15 to 0.49, p<0.001) and seronegative NMOSD (HR 0.21, 95% CI 0.08 to 0.51, p<0.001). Longer disease duration (HR 0.97, 95% CI 0.95 to 0.99, p<0.001) and male sex (HR 0.52, 95% CI 0.34 to 0.84, p=0.007) were additional protective variables in reducing the recurrent relapse risk for the AQP4-IgG NMOSD group. CONCLUSION: Although further studies are needed to improve our understanding of seronegative NMOSD, our findings underscore the importance of aggressive treatment with high-efficacy immunotherapies in both NMOSD subtypes, regardless of serostatus.

6.
Small ; : e2404885, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39308232

ABSTRACT

The overall maximization of photocatalytic H2O2 production efficiency urgently requires the comprehensive optimization of each step in multiplex photocatalysis. Despite numerous endeavors, isolated researches focusing on single efficiencies hinder further advancements in overall catalytic activity. In this work, a series of imine-linked COFs (TT-COF-X), incorporating electronically tunable functional groups (X = ─H, ─OMe, ─OH, ─Br), are rationally fabricated for visible-light-driven H2O2 production via a dual-channel pathway involving 2e- water oxidation and 2e- oxygen reduction. Combined simulations and characterizations reveal that the synergistic modification of functional groups for electronic conjugation and locally intramolecular polarity collectively enhanced light absorption, charge separation and transfer, and interface water-oxygen affinity efficiency. Notably, femtosecond time-resolved transient absorption (fs-TA) reveals that the polarity-induced built-in electric field play a crucial role in facilitating exciton dissociation by reacting BIEF-mediated shallow trapping state. The simultaneously optimal tri-efficiency ultimately results in the highest H2O2 production rate of 3406.25 µmol h-1 g-1 and apparent quantum yields of 8.1% of TT-COF-OH. This study offers an emerging strategy to rational design of photocatalysts from the comprehensive tri-efficiency-oriented perspective.

7.
Biomed Pharmacother ; 179: 117409, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39243434

ABSTRACT

BACKGROUND AND PURPOSE: Diabetic retinopathy (DR) is a prevalent complication of diabetes, with a rising global incidence, and can result in significant vision impairment and potential blindness in adults. Corilagin (COR) has been shown to regulate several pathological processes. However, the specific protective role and mechanism of action of COR in DR remain unknown. EXPERIMENTAL APPROACH: The protective effects and mechanisms of COR in DR were examined using the ARPE-19 cell line and C57BL/6 mice. Intraretinal tissue damage and molecular markers were evaluated to investigate the impact of COR on oxidative stress and cell death pathways. KEY RESULTS: In vitro, COR significantly reduced the cytotoxic effects of high glucose (HG) on ARPE-19 cells. Furthermore, COR also effectively decreased HG-induced lipid peroxidation, iron deposition, and ferroptosis and reduced damage to retinal tight junction proteins. Similarly, an in vivo study of streptozotocin (STZ)-induced DM mice showed that the daily gavage of COR for eight weeks notably alleviated DR. Mechanistically, COR activated the Nrf2 antioxidant signaling pathway both in vivo and in vitro, preventing HG-induced alterations in morphological and biochemical parameters. Notably, our study demonstrated that compared with controls, Nrf2 knockout mice and siNrf2-treated cells were more vulnerable to ferroptosis under HG conditions, and the protective effect of COR on DR was substantially diminished in these models. CONCLUSION AND IMPLICATIONS: These data indicate that COR has a protective effect against HG-induced retinal injury via a mechanism associated with the Nrf2-dependent antioxidant pathway and ferroptosis regulation.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Ferroptosis , Glucosides , Hydrolyzable Tannins , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Oxidative Stress , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Hydrolyzable Tannins/pharmacology , Ferroptosis/drug effects , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/pathology , Diabetic Retinopathy/metabolism , Signal Transduction/drug effects , Glucosides/pharmacology , Humans , Mice , Male , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Cell Line , Oxidative Stress/drug effects , Mice, Knockout , Glucose/metabolism , Glucose/toxicity , Antioxidants/pharmacology , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology
8.
Angew Chem Int Ed Engl ; : e202414918, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39297218

ABSTRACT

As great potential recycling strategy, the direct regeneration of spent LiCoO2 (LCO) is beneficial for lowering environmental pollutions and promoting global sustainability. However, owing to the using of binder and electrolyte, some fluorine impurities would be remained into spent materials. Considering the doping behaviors of F-elements, their suitable content introducing would facilitate the energy-storage abilities of regenerated LCO. Herein, through the tailored introduction of F-elements, spent LCO are successfully regenerated with physical-chemical evolutions. Benefitting from the existed oxygen vacancies, the diffusion energy-barrier of F-elements is reduced from 1.73 eV to 0.61 eV, facilitating the establishment of gradient F-doped subsurface, along with the formation of rigid CoO5F. Meanwhile, excess F-elements (1 wt.%, as a threshold) lead to the formation of LiF passivation layer on the surface. Thus, the as-optimized sample displays a considerable capacity of 154.4 mAh g-1 even at 5.0 C, with retention rate (88.3%) in 3.0~4.5V. Supported by detailed electrochemical and kinetic analysis, the structural advantages are confirmed to boost the improved redox activity of Co-ions and the alleviating of irreversible oxygen-release. Give this, the work is anticipated to reveal the evolutions of regenerated LCO with the introduced F-elements, whilst providing the practical regeneration strategies toward excellent high-voltage properties.

9.
J Ethnopharmacol ; : 118859, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39341266

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dihuang Yinzi (DHYZ) is a classic prescription in traditional Chinese medicine. Its therapeutic effect on Alzheimer's disease (AD) has been widely validated. However, the underlying molecular mechanisms of DHYZ in AD treatment remain unclear and require further research. AIM OF THE STUDY: Elucidating DHYZ's promotion of mitochondrial biogenesis through the AMPK/SIRT1/PGC-1α pathway improves neuronal loss, mitochondrial damage, and memory deficits in AD. MATERIALS AND METHODS: Administering DHYZ by gavage to SAMP8 mice, after completing behavioral tests, the effects of DHYZ on hippocampal neuron loss and mitochondrial structural damage in AD model mice were assessed using Nissl staining and transmission electron microscopy. Western blot was used to detect the expression of mitochondrial biogenesis-related proteins PGC-1α, CREB, mitochondrial fusion protein MFN2, and mitochondrial fission proteins DRP1 and FIS1. At the same time, immunofluorescence(IF) was employed to measure the relative fluorescence intensity of mitochondrial fusion protein MFN1. After determining the optimal dose of DYHZ for treating AD, we conducted mechanistic studies. By intraperitoneally injecting SAMP8 mice with the AMPK inhibitor (Compound C) to inhibit AMPK protein expression and subsequently treating them with DHYZ, the impact of DHYZ on hippocampal neurons in AD model mice was evaluated using Nissl and hematoxylin-eosin staining. Western blot was used to detect the protein expression of AMPK, p-AMPK, SIRT1, PGC-1α, NRF1, and TFAM. In contrast, IF was used to measure the relative fluorescence intensity of PGC-1α, NRF1, and TFAM proteins in the hippocampal CA1 region. RESULTS: DHYZ significantly improved AD model mice's cognitive impairment and memory deficits and mitigated hippocampal neuron loss and degeneration. Additionally, it ameliorated mitochondrial morphological structures. DHYZ upregulated the protein expression of mitochondrial biogenesis-related proteins PGC-1α, CREB, and mitochondrial fusion proteins MFN1 and MFN2 while inhibiting the expression of mitochondrial fission proteins DRP1 and FIS1. Further studies revealed that DHYZ could upregulate the expression of the AMPK/SIRT1/PGC-1α pathway proteins and their downstream proteins NRF1 and TFAM. CONCLUSION: DHYZ promotes mitochondrial biogenesis by activating the AMPK/SIRT1/PGC-1α signaling pathway, thereby improving memory deficits, neuronal loss, and mitochondrial dysfunction in AD.

10.
Food Chem X ; 24: 101802, 2024 Dec 30.
Article in English | MEDLINE | ID: mdl-39310890

ABSTRACT

The flavor profiles of cherries cultivated in greenhouse and those grown in open fields show significant variations, however, the underlying flavor-contributing factors remain unidentified. Hence, a joint investigation with widely targeted metabolomics analysis, volatile fingerprint analysis, and descriptive sensory analysis for the Russia 8 and Tieton cherry cultivars was conducted using UPLC-MS/MS and GC × GC-TOFMS to clarify the flavor differences of open-air and greenhouse-grown cherries. The study found that open-air cultivation could lead to the accumulation of non-volatile flavor substances and prompted appearance of higher acidity, astringency, plum-like flavor, and fresh herb notes; most of differential metabolites were significantly positively correlated with astringency, plum-like flavor and bitterness. Through correlation analysis and path analysis, potential flavor components and key important pathways contributing to flavor disparities were provided, and light intensity, soil moisture content, temperature and humidity were inferred as the main factors affecting the flavor profiles of open-air and greenhouse-grown cherries.

11.
Nat Ecol Evol ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39209981

ABSTRACT

Ecosystem functioning depends on biodiversity at multiple trophic levels, yet relationships between multitrophic diversity and ecosystem multifunctionality have been poorly explored, with studies often focusing on individual trophic levels and functions and on specific ecosystem types. Here, we show that plant diversity can affect ecosystem functioning both directly and by affecting other trophic levels. Using data on 13 trophic groups and 13 ecosystem functions from two large biodiversity experiments-one representing temperate grasslands and the other subtropical forests-we found that plant diversity increases multifunctionality through elevated multitrophic diversity. Across both experiments, the association between multitrophic diversity and multifunctionality was stronger than the relationship between the diversity of individual trophic groups and multifunctionality. Our results also suggest that the role of multitrophic diversity is greater in forests than in grasslands. These findings imply that, to promote sustained ecosystem multifunctionality, conservation planning must consider the diversity of both plants and higher trophic levels.

12.
Sci Rep ; 14(1): 18332, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39112624

ABSTRACT

Postpancreatectomy hemorrhage (PPH) is an important risk factor for postoperative complications after laparoscopic pancreaticoduodenectomy (LPD). Recent studies have reported that the use of ligamentum teres hepatis (LTH) in LPD may reduce the risk of PPH. Therefore, this study aims to investigate whether wrapping the hepatic hilar artery with the LTH can reduce PPH after LPD. We reviewed the data of 131 patients who underwent LPD in our team from April 2018 to December 2023. The patients were divided into Groups A (60 patients) and B (71 patients) according to whether the hepatic portal artery was wrapped or not. The perioperative data of the two groups were compared to evaluate the effect of LTH wrapping the hepatic hilar artery on LPD. The platelet count of Group A was (225.25 ± 87.61) × 10^9/L, and that of Group B was (289.38 ± 127.35) × 10^9/L, with a statistically significant difference (p < 0.001). The operation time of group A [300.00 (270.00, 364.00)] minutes was shorter than that of group B [330.00 (300.00, 360.00)] minutes, p = 0.037. In addition, A set of postoperative hospital stay [12.00 (10.00, 15.00)] days shorter than group B [15.00 (12.00, 19.50)] days, p < 0.001. No PPH occurred in Group A, while 8 patients in Group B had PPH (7 cases of gastroduodenal artery hemorrhage and 1 case of proper hepatic artery hemorrhage), p = 0.019. The new technique of wrapping the hepatic hilar artery through the LTH can effectively reduce the occurrence of PPH after LPD.


Subject(s)
Hepatic Artery , Laparoscopy , Pancreaticoduodenectomy , Postoperative Hemorrhage , Humans , Pancreaticoduodenectomy/adverse effects , Pancreaticoduodenectomy/methods , Male , Female , Middle Aged , Laparoscopy/adverse effects , Laparoscopy/methods , Hepatic Artery/surgery , Postoperative Hemorrhage/etiology , Postoperative Hemorrhage/prevention & control , Aged , Ligaments/surgery , Retrospective Studies , Operative Time , Adult , Postoperative Complications/prevention & control , Postoperative Complications/etiology , Length of Stay
13.
World J Gastrointest Surg ; 16(7): 2167-2174, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39087123

ABSTRACT

BACKGROUND: In recent years, pure laparoscopic radical surgery for Bismuth-Corlette type III and IV hilar cholangiocarcinoma (HCCA) has been preliminarily explored and applied, but the surgical strategy and safety are still worthy of further improvement and attention. AIM: To summarize and share the application experience of the emerging strategy of "hepatic hilum area dissection priority, liver posterior separation first" in pure laparoscopic radical resection for patients with HCCA of Bismuth-Corlette types III and IV. METHODS: The clinical data and surgical videos of 6 patients with HCCA of Bismuth-Corlette types III and IV who underwent pure laparoscopic radical resection in our department from December 2021 to December 2023 were retrospectively analyzed. RESULTS: Among the 6 patients, 4 were males and 2 were females. The average age was 62.2 ± 11.0 years, and the median body mass index was 20.7 (19.2-24.1) kg/m2. The preoperative median total bilirubin was 57.7 (16.0-155.7) µmol/L. One patient had Bismuth-Corlette type IIIa, 4 patients had Bismuth-Corlette type IIIb, and 1 patient had Bismuth-Corlette type IV. All patients successfully underwent pure laparoscopic radical resection following the strategy of "hepatic hilum area dissection priority, liver posterior separation first". The operation time was 358.3 ± 85.0 minutes, and the intraoperative blood loss volume was 195.0 ± 108.4 mL. None of the patients received blood transfusions during the perioperative period. The median length of stay was 8.3 (7.0-10.0) days. Mild bile leakage occurred in 2 patients, and all patients were discharged without serious surgery-related complications. CONCLUSION: The emerging strategy of "hepatic hilum area dissection priority, liver posterior separation first" is safe and feasible in pure laparoscopic radical surgery for patients with HCCA of Bismuth-Corlette types III and IV. This strategy is helpful for promoting the modularization and process of pure laparoscopic radical surgery for complicated HCCA, shortens the learning curve, and is worthy of further clinical application.

14.
Cell Biol Int ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090812

ABSTRACT

Corticotropin-releasing hormone (CRH) has been well documented playing a role in the regulation of cellular processes, immune responses, and inflammatory processes that can influence the occurrence and development of tumors. Supervillin (SVIL) is a membrane-associated and actin-binding protein, which is actively involved in the proliferation, spread, and migration of cancer cells. This work investigated CRH's influence on bladder cancer cells' migration and relevant mechanisms. By using human bladder cancer cells T24 and RT4 in wound healing experiments and transwell assay, we found that the migration ability of the T24 cells was significantly increased after CRH treatment. In vivo experiments showed that CRH significantly promoted the metastases of T24 cells in cell line-derived xenograft (CDX) mouse model. Interestingly, downregulation of SVIL by SVIL-specifc small hairpin RNAs significantly reduced the promoting effect of CRH on bladder cancer cell migration. Furthermore, CRH significantly increased SVIL messenger RNA and protein expression in T24 cells, accompanied with AKT and ERK phosphorylation in T24 cells. Pretreatment with AKT inhibitor (MK2206) blocked the CRH-induced SVIL expression and ERK phosphorylation. Also, inhibition of ERK signaling pathway by U0126 significantly reduced the CRH-induced SVIL expression and AKT phosphorylation. It suggested that cross-talking between AKT and ERK pathways was involved in the effect of CRH on SVIL. Taken together, we demonstrated that CRH induced migration of bladder cancer cells, in which AKT and ERK pathways -SVIL played a key role.

15.
Insect Sci ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39099473

ABSTRACT

Bumblebees are important pollinators for many natural and agricultural systems in temperate regions. Interspecific and intraspecific variation in floral resource preferences have been proposed to influence bumblebee community structure. In particular, sexual dimorphism is a major source of intraspecific niche variation. Although interspecific resource partitioning is well studied, few studies have explored the intraspecific dynamics between workers and males. Here, we report a study on a total of 11 528 workers and 2220 males of 14 bumblebee species recorded over 5 years in the Hengduan Mountains of Southwest China. We first compared the potential for interspecific and intraspecific competition between workers and males using visitation records and resource partitioning indices (overlap index). We then evaluated the influence of nectar traits on flower preference, including nectar volume and the levels of hexose, sucrose and 10 essential amino acids (EAAs). We found that the niche overlap between intraspecific workers and males was higher than that between different species, and temporal overlap alone did not strongly determine diet overlap. Males of most species preferred flowers with high levels of EAAs and hexose, whereas workers of some species preferred flowers with high nectar volume and sucrose levels. This study suggests that there is floral resource partitioning among bumblebee species, and between workers and males, which may play a key role in alleviating interspecific and intraspecific competition. These findings also provide a useful guide for which kinds of plants might be most valuable for bumblebees, especially the understudied males, in this biodiversity hotspot.

16.
Anal Chem ; 96(33): 13576-13587, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39102235

ABSTRACT

Glucuronidation, a crucial process in phase II metabolism, plays a vital role in the detoxification and elimination of endogenous substances and xenobiotics. A comprehensive and confident profiling of glucuronate-conjugated metabolites is imperative to understanding their roles in physiological and pathological processes. In this study, a chemical isotope labeling and dual-filtering strategy was developed for global profiling of glucuronide metabolites in biological samples. N,N-Dimethyl ethylenediamine (DMED-d0) and its deuterated counterpart DMED-d6 were used to label carboxylic acids through an amidation reaction. First, carboxyl-containing compounds were extracted based on a characteristic mass difference (Δm/z, 6.037 Da) observed in MS between light- and heavy-labeled metabolites (filter I). Subsequently, within the pool of carboxyl-containing compounds, glucuronides were identified using two pairs of diagnostic ions (m/z 247.1294/253.1665 and 229.1188/235.1559 for DMED-d0/DMED-d6-labeled glucuronides) originating from the fragmentation of the derivatized glucuronic acid group in MS/MS (filter II). Compared with non-derivatization, DEMD labeling significantly enhanced the detection sensitivity of glucuronides, as evidenced by a 3- to 55-fold decrease in limits of detection for representative standards. The strategy was applied to profiling glucuronide metabolites in urine samples from colorectal cancer (CRC) patients. A total of 685 features were screened as potential glucuronides, among which 181 were annotated, mainly including glucuronides derived from lipids, organic oxygen, and phenylpropanoids. Enzymatic biosynthesis was employed to accurately identify unknown glucuronides without standards, demonstrating the reliability of the dual-filtering strategy. Our strategy exhibits great potential for profiling the glucuronide metabolome with high coverage and confidence to reveal changes in CRC and other diseases.


Subject(s)
Glucuronides , Isotope Labeling , Humans , Glucuronides/urine , Glucuronides/metabolism , Glucuronides/chemistry , Tandem Mass Spectrometry/methods , Colorectal Neoplasms/urine , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/metabolism
17.
Cell Death Dis ; 15(8): 591, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39143050

ABSTRACT

Neurons rely heavily on high mitochondrial metabolism to provide sufficient energy for proper development. However, it remains unclear how neurons maintain high oxidative phosphorylation (OXPHOS) during development. Mitophagy plays a pivotal role in maintaining mitochondrial quality and quantity. We herein describe that G protein-coupled receptor 50 (GPR50) is a novel mitophagy receptor, which harbors the LC3-interacting region (LIR) and is required in mitophagy under stress conditions. Although it does not localize in mitochondria under normal culturing conditions, GPR50 is recruited to the depolarized mitochondrial membrane upon mitophagy stress, which marks the mitochondrial portion and recruits the assembling autophagosomes, eventually facilitating the mitochondrial fragments to be engulfed by the autophagosomes. Mutations Δ502-505 and T532A attenuate GPR50-mediated mitophagy by disrupting the binding of GPR50 to LC3 and the mitochondrial recruitment of GPR50. Deficiency of GPR50 causes the accumulation of damaged mitochondria and disrupts OXPHOS, resulting in insufficient ATP production and excessive ROS generation, eventually impairing neuronal development. GPR50-deficient mice exhibit impaired social recognition, which is rescued by prenatal treatment with mitoQ, a mitochondrially antioxidant. The present study identifies GPR50 as a novel mitophagy receptor that is required to maintain mitochondrial OXPHOS in developing neurons.


Subject(s)
Mitochondria , Mitophagy , Neurons , Receptors, G-Protein-Coupled , Animals , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Neurons/metabolism , Mitochondria/metabolism , Mice , Humans , Oxidative Phosphorylation , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Reactive Oxygen Species/metabolism , Mice, Knockout , Neurogenesis
18.
Small ; : e2406033, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39185806

ABSTRACT

Spent graphite, as the main component of retired batteries, have attracted plenty of attentions. Although a series of recycling strategies are proposed, they still suffer from high cost of regeneration and large CO2 emission, mainly ascribed to the full-recovery of surface and internal phase at ultra-high temperature. However, the existing of suitable internal defects is conductive to their energy-storage abilities. Herein, with the introduction of Fe-based catalysts, spent graphite is successfully repaired at low temperature with the tailored surface traits, including conductivities, isotropy and so on. As Li-storage anodes, all of samples can display a capacity of 340 mAh g-1 above at 1.0 C after 200 cycles. At high rate 5.0 C, their capacity can be also kept ≈300 mAh g-1, and remained ≈233 mAh g-1 even after 1000 cycles. Assisted by electrochemical and kinetic behaviors, their cycling traits with dynamic surface transformations are detailed explored, including activated/fading mechanism, Li-depositions forming etc. Moreover, the calculated constant time of as-optimized regenerated sample is ≈3.0 × 10-4 s, further revealing the importance of surface designing. Therefore, the work is expected to shed light on their energy-storage behaviors, and offer low-temperature regenerated strategies of spent graphite with high value.

19.
Eur J Radiol ; 178: 111607, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39033690

ABSTRACT

OBJECTIVE: To demonstrate the value of using 50 keV virtual monochromatic images with deep learning image reconstruction (DLIR) in low-dose dual-energy CT enterography (CTE). METHODS: In this prospective study, 114 participants (62 % M; 41.9 ± 16 years) underwent dual-energy CTE. The early-enteric phase was performed using standard-dose (noise index (NI): 8) and images were reconstructed at 70 keV and 50 keV with 40 % strength ASIR-V (ASIR-V40%). The late-enteric phase used low-dose (NI: 12) and images were reconstructed at 50 keV with ASIR-V40%, and DLIR at medium (DLIR-M) and high strength (DLIR-H). Image standard deviation (SD), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), edge-rise-slope (ERS) were computed. The quantitative comb sign score was calculated for the 27 patients with Crohn's disease. The subjective noise, image contrast, display of rectus artery were scored using a 5-point scale by two radiologists blindly. RESULTS: Effective dose was reduced by 50 % (P < 0.001) in the late-enteric phase to 3.26 mSv. The lower-dose 50 keV-DLIR-H images (SD:17.7 ± 0.5HU) had similar image noise (P = 0.97) as the standard-dose 70 keV-ASIR-V40% images (SD:17.7 ± 0.73HU), but with higher (P < 0.001) SNR, CNR, ERS and quantitative comb sign score (5.7 ± 0.17, 1.8 ± 0.12, 156.04 ± 5.21 and 5.05 ± 0.73, respectively). Furthermore, the lower-dose 50 keV-DLIR-H images obtained the highest score in the rectus artery visibility (4.27 ± 0.6). CONCLUSIONS: The 50 keV images in dual-energy CTE with DLIR provides high-quality images, with a 50 % reduction in radiation dose. Images with high contrast and density resolutions significantly enhance the diagnostic confidence of Crohn's disease and are essential for the clinical development of individualized treatment plans.


Subject(s)
Deep Learning , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted , Radiography, Dual-Energy Scanned Projection , Tomography, X-Ray Computed , Humans , Female , Male , Adult , Prospective Studies , Tomography, X-Ray Computed/methods , Radiography, Dual-Energy Scanned Projection/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Middle Aged , Signal-To-Noise Ratio , Aged , Crohn Disease/diagnostic imaging
20.
Molecules ; 29(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998965

ABSTRACT

In this study, a self-responsive fluorescence aptasensor was established for the determination of lactoferrin (Lf) in dairy products. Herein, the aptamer itself functions as both a recognition element that specifically binds to Lf and a fluorescent signal reporter in conjunction with fluorescent moiety. In the presence of Lf, the aptamer preferentially binds to Lf due to its specific and high-affinity recognition by folding into a self-assembled and three-dimensional spatial structure. Meanwhile, its reduced spatial distance in the aptamer-Lf complex induces a FRET phenomenon based on the quenching of 6-FAM by amino acids in the Lf protein, resulting in a turn-off of the fluorescence of the system. As a result, the Lf concentration can be determined straightforwardly corresponding to the change in the self-responsive fluorescence signal. Under the optimized conditions, good linearities (R2 > 0.99) were achieved in an Lf concentration range of 2~10 µg/mL for both standard solutions and the spiked matrix, as well as with the desirable detection limits of 0.68 µg/mL and 0.46 µg/mL, respectively. Moreover, the fluorescence aptasensor exhibited reliable recoveries (89.5-104.3%) in terms of detecting Lf in three commercial samples, which is comparable to the accuracy of the HPCE method. The fluorescence aptasensor offers a user-friendly, cost-efficient, and promising sensor platform for point-of-need detection.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Dairy Products , Lactoferrin , Lactoferrin/analysis , Lactoferrin/chemistry , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Dairy Products/analysis , Fluorescence , Limit of Detection , Spectrometry, Fluorescence/methods , Food Analysis/methods , Fluorescence Resonance Energy Transfer/methods
SELECTION OF CITATIONS
SEARCH DETAIL