Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 277: 126333, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38850801

ABSTRACT

MicroRNA (miRNA) represents a class of important potential biomarkers, and their intracellular imaging is extremely useful for fundamental research and early diagnosis of human cancers. Hybridization chain reaction (HCR) has been shown to be effective in detecting miRNA in living cells. However, its practical applications are still hampered by inefficient reaction kinetics and poor biological stability under complex intracellular conditions. To address these issues, we report a palindrome-mediated multiple hybridization chain reaction (P-HCR) system to better visualize intracellular miRNAs. In the presence of the target miRNA, a layered nanosheet DNA architecture (LSDA) can be assembled in situ via the palindrome-mediated multiple HCR process. We demonstrate that the biological stability of this reaction system could be significantly improved by designing the probes to dumbbell-shaped structures and the distance of hairpins was effectively decreased due to palindrome-chained effect. Consequently, miRNA can be quantitatively identified even at extremely low concentrations of 4.7 pM. The P-HCR system can effectively differentiate the expression levels of miRNA in different tumor cells and normal cells, as demonstrated in live cell tests and the results were in agreement with the PCR, which is considered the gold standard. The new (P-HCR) system has the potential to revolutionize miRNA imaging in living cells.


Subject(s)
DNA , MicroRNAs , Nanostructures , Nucleic Acid Hybridization , MicroRNAs/analysis , Humans , Nanostructures/chemistry , DNA/chemistry , DNA Probes/chemistry , Inverted Repeat Sequences
2.
Front Immunol ; 14: 1070953, 2023.
Article in English | MEDLINE | ID: mdl-37334367

ABSTRACT

Background: Polyamines metabolism is closely related to tumor development and progression, as well as tumor microenvironment (TME). In this study, we focused on exploring whether polyamines metabolism-associated genes would provide prognosis and immunotherapy response prediction in lung adenocarcinoma (LUAD). Methods: The expression profile data of polyamines metabolism-associated genes were acquired from the Cancer Genome Atlas (TCGA) database. Utilizing the least absolute shrinkage and selection operator (LASSO) algorithm, we created a risk score model according to polyamines metabolism-associated gene signatures. Meanwhile, an independent cohort (GSE72094) was employed to validate this model. Through the univariate and multivariate Cox regression analyses, the independent prognostic factors were identified. Subsequently, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect their expression in LUAD cells. By consensus clustering analysis, polyamines metabolism-associated subgroups were determined in LUAD patients, with differential gene expression, prognosis, and immune characteristics analyses explored. Results: A total of 59 polyamines metabolism genes were collected for this study, of which 14 genes were identified for the construction of risk score model using LASSO method. High- and low- risk groups of LUAD patients in TCGA cohort were distinguished via this model, and high-risk group presented dismal clinical outcomes. The same prognostic prediction of this model had been also validated in GSE72094 cohort. Meanwhile, three independent prognostic factors (PSMC6, SMOX, SMS) were determined for constructing the nomogram, and they were all upregulated in LUAD cells. In addition, two distinct subgroups (C1 and C2) were identified in LUAD patients. Comparing the two subgroups, 291 differentially expressed genes (DEGs) were acquired, mainly enriching in organelle fission, nuclear division, and cell cycle. Comparing to C1 subgroup, the patients in C2 subgroup had favorable clinical outcomes, increased immune cells infiltration, and effective immunotherapy response. Conclusion: This study identified polyamines metabolism-associated gene signatures for predicting the patients' survival, and they were also linked to immune cells infiltration and immunotherapy response in LUAD patients.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/therapy , Prognosis , Immunotherapy , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Polyamines , Tumor Microenvironment/genetics
3.
J Nanobiotechnology ; 20(1): 486, 2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36403038

ABSTRACT

BACKGROUND: As the most common subtype in lung cancer, the precise and efficient treatment for non-small cell lung cancer (NSCLC) remains an outstanding challenge owing to early metastasis and poor prognosis. Chemotherapy, the most commonly used treatment modality, is a difficult choice for many cancer patients due to insufficient drug accumulation in tumor sites and severe systemic side-effects. In this study, we constructed a cell-specific aptamer-modified DNA nanostructure (Apt-NS) as a targeting drug delivery system achieving the precision therapy for lung cancer. METHODS: The synthesis of DNA nanostructure and its stability were evaluated using gel electrophoresis. The targeting properties and internalization mechanism were investigated via flow cytometry and confocal analyses. Drug loading, release, and targeted drug delivery were determined by fluorescence detection, Zeta potentials assay, and confocal imaging. CCK8 assays, colony formation, cell apoptosis, metastasis analyses and in vivo experiments were conducted to assess the biological functions of DNA nanostructure. RESULTS: Self-assembled DNA nanoparticles (Apt-NS) had excellent stability to serum and DNase I and the ability to specifically recognize A549 cells. Upon specific binding, the drug-loaded nanoparticles (Apt-NS-DOX) were internalized into target cells by clathrin-mediated endocytosis. Subsequently, DOX could be released from Apt-NS-DOX based on the degradation of the lysosome. Apt-NS-DOX exerted significant suppression of cell proliferation, invasion and migration, and also enhanced cell apoptosis due to the excellent performance of drug delivery and intracellular release, while maintaining a superior biosafety. In addition, the antitumor effects of Apt-NS-DOX were further confirmed using in vivo models. CONCLUSIONS: Our study provided cell-specific aptamer-modified DNA nanostructures as a drug-delivery system targeting A549 cells, which could precisely and efficiently transport chemotherapeutic drug into tumor cells, exerting enhanced antineoplastic efficacy. These findings highlight that DNA nanostructure serving as an ideal drug delivery system in cancer treatment appears great promise in biomedical applications.


Subject(s)
Aptamers, Nucleotide , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Nanostructures , Humans , Aptamers, Nucleotide/chemistry , Carcinoma, Non-Small-Cell Lung/drug therapy , Doxorubicin/pharmacology , Doxorubicin/chemistry , Cell Line, Tumor , Lung Neoplasms/drug therapy , Drug Delivery Systems/methods , Nanostructures/chemistry , DNA/chemistry
4.
Comput Struct Biotechnol J ; 20: 4390-4401, 2022.
Article in English | MEDLINE | ID: mdl-36051873

ABSTRACT

ADP-ribosylation factor (Arf)-GTPase-activating protein (GAP) with coiled-coil, ankyrin repeat and PH domains 1 (ACAP1) has been reported to serve as an adaptor for clathrin coat complex playing a role in endocytic recycling and cellular migration. The potential role of ACAP1 in lung adenocarcinoma (LUAD) has not been yet completely defined. We performed the comprehensive analyses, including gene expression, survival analysis, genetic alteration, function enrichment, and immune characteristics. ACAP1 was remarkably downregulated in tumor tissues, and linked with the clinicopathologic features in LUAD patients. Prognostic analysis demonstrated that low ACAP1 expression was correlated with unsatisfactory overall survival (OS) and disease specific survival (DSS) in LUAD patients. Moreover, ACAP1 could be determined as a prognostic biomarker according to Cox proportional hazard model and nomogram model. We also confirmed that ACAP1 was downregulated in two LUAD cell lines, comparing to normal lung cell. Overexpression of ACAP1 caused a profound attenuation in cell proliferation, migration, invasion, and promoted cell apoptosis. Additionally, functional enrichment analyses confirmed that ACAP1 was highly correlated with T cell activation and immune response. Then, we further conducted immune landscape analyses, including single cell RNA sequencing, immune cells infiltration, and immune checkpoints. ACAP1 expression was positively associated with the infiltrating level of immune cells in TME and the expression of immune checkpoint molecules. This study first comprehensively analyzed molecular expression, clinical implication, and immune landscape features of ACAP1 in LUAD, suggesting that ACAP1 was predictive of prognosis and could serve as a potential biomarker predicting immunotherapy response for LUAD patients.

5.
Comput Struct Biotechnol J ; 20: 3106-3119, 2022.
Article in English | MEDLINE | ID: mdl-35782736

ABSTRACT

Shc SH2-domain binding protein 1 (SHCBP1), a protein specific binding to SH2 domain of Src homolog and collagen homolog (Shc), takes part in the regulation of various signal transduction pathways, which has been reported to be associated with tumorigenesis and progression. However, the pathological mechanisms are not completely investigated. Thus, this study aimed to comprehensively elucidate the potential functions of SHCBP1 in multiple cancer types. The comprehensive analyses for SHCBP1 in various tumors, including gene expression, diagnosis, prognosis, immune-related features, genetic alteration, and function enrichment, were conducted based on multiple databases and analysis tools. SHCBP1 was upregulated in most types of cancers. The results of qRT-PCR had confirmed that SHCBP1 mRNA was significantly upregulated in lung adenocarcinoma (LUAD) and liver hepatocellular carcinoma (LIHC) cell lines. Based on the receiver operating characteristic (ROC) and survival analysis, SHCBP1 was considered as a potential diagnostic and prognostic biomarker. Furthermore, SHCBP1 expression was linked with tumor immunity and immunosuppressive microenvironment according to the correlation analysis of SHCBP1 expression with immune cells infiltration, immune checkpoint genes, and immune-related genes (MHC genes, chemokines, and chemokines receptors). Moreover, SHCBP1 expression correlated with tumor mutational burden (TMB), microsatellite instability (MSI), and neoantigens. The feature of SHCBP1 mutational landscape in pan-cancer was identified. Finally, we focused on investigating the clinical significance and the potential biological role of SHCBP1 in LUAD. Our study comprehensively uncovered that SHCBP1 could be identified as an immune-related biomarker for cancer diagnosis and prognosis, and a potential therapeutic target for tumor immunotherapy.

6.
Talanta ; 244: 123412, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35405462

ABSTRACT

Lung cancer with worldwide distribution, high incidence and low survival rate is significantly and increasingly threatening human health. Thus, the specific detection of lung cancer-associated biomarkers is of crucial importance in early diagnosis and treatment. In this work, taking microRNA-21 as an example, a biosensor is proposed via a stimuli-induced strand displacement amplification (SDA) and cascade signal amplification with the assistance of polymerase. An allosteric molecular beacon (MB) with chemical modification is designed to emit the enhanced fluorescent signal in presence of microRNA target. The sensing system possesses a linear calibration curve from 5 pM to 40 nM with the limit of detection (LOD) of 0.7 pM and displays good specificity to discriminate coexisting microRNAs. In addition, the feasibility is confirmed by performing the detection of miRNA-21 extracted from non-small cell lung cancer (NSCLC) A549 cells, and a good recovery is achieved in complex human serum sample. Therefore, the miRNA-triggered cascaded amplification would be crucial strategy to facilitate microRNA analysis in the biological detection and broad clinical applications.


Subject(s)
Biosensing Techniques , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Humans , Limit of Detection , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , MicroRNAs/analysis , Nucleic Acid Amplification Techniques
7.
Talanta ; 233: 122543, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34215046

ABSTRACT

Lead poisoning endangers soil, plants and human health due to its toxic effect. It is urgent to develop ideal tool for the in vivo detection of Pb2+.In this study, tetrahedron-based Pb2+-sensitive DNAzyme sensor (TPS) is constructed by taking advantages of a classic Pb2+-dependent GR-5 DNAzyme and DNA tetrahedral structure, where the cleavage substrate and DNAzyme are modified with fluorophore FAM and quencher BHQ-1, respectively. DNA tetrahedron is arranged at the terminus of substrate/DNAzyme duplex to offer the protective shield against the nuclease attack. In the absence of Pb2+, FAM and BHQ-1 are kept close and FAM fluorescence is efficiently quenched. However, in the presence of Pb2+ cofactor, the DNAzyme exhibits the catalytic activity and cleaves the substrate strands, spatially separating the FAM away from BHQ-1 and releasing fluorescence. Utilizing the sensing probe, the Pb2+ can be quantitatively detected down to 1 nM without the interference from nontarget metal ions. Even if incubating in the human serum solution for 12 h, no substantial nuclease degradation is detected. In different complex biological milieu, the TPS can preserve the 85% of fluorescence signal, indicating that the developed TPS is a promising tool for the future application in the in vivo detection of Pb2+.


Subject(s)
Biosensing Techniques , DNA, Catalytic , DNA , Fluorescent Dyes , Humans , Ions
SELECTION OF CITATIONS
SEARCH DETAIL