Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
Chin Med ; 19(1): 85, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877519

ABSTRACT

BACKGROUND: Liguzinediol (Lig) has emerged as a promising candidate for mitigating Doxorubicin (DOX)-induced cardiotoxicity, a significant limitation in the clinical application of this widely used antineoplastic drug known for its efficacy. This study aimed to explore the effects and potential mechanisms underlying Lig's protective role against DOX-induced cardiotoxicity. METHODS: C57BL/6 mice were treated with DOX. Cardiac function changes were observed by echocardiography. Cardiac structure changes were observed by HE and Masson staining. Immunofluorescence was applied to visualize the cardiomyocyte apoptosis. Western blotting was used to detect the expression levels of AMP-activated protein kinase (AMPK), sirtuin 3 (SIRT3), Caspase-3 and gasdermin E N-terminal fragment (GSDME-N). These experiments confirmed that Lig had an ameliorative effect on DOX-induced cardiotoxicity in mice. RESULTS: The results demonstrated that Lig effectively countered myocardial oxidative stress by modulating intracellular levels of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD). Lig reduced levels of creatine kinase (CK) and lactate dehydrogenase (LDH), while ameliorating histopathological changes and improving electrocardiogram profiles in vivo. Furthermore, the study revealed that Lig activated the AMPK/SIRT3 pathway, thereby enhancing mitochondrial function and attenuating myocardial cell apoptosis. In experiments with H9C2 cells treated with DOX, co-administration of the AMPK inhibitor compound C (CC) led to a significant increase in intracellular ROS levels. Lig intervention reversed these effects, along with the downregulation of GSDME-N, interleukin-1ß (IL-1ß), and interleukin-6 (IL-6), suggesting a potential role of Lig in mitigating Caspase-3/GSDME-mediated pyroptosis. CONCLUSION: The findings of this study suggest that Lig effectively alleviates DOX-induced cardiotoxicity through the activation of the AMPK/SIRT3 pathway, thereby presenting itself as a natural product with therapeutic potential for preventing DOX-associated cardiotoxicity. This novel approach may pave the way for the development of alternative strategies in the clinical management of DOX-induced cardiac complications.

2.
Transl Androl Urol ; 13(5): 679-687, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38855588

ABSTRACT

Background: Clear cell renal cell carcinoma (ccRCC) is one of the most common urological tumors, and its incidence is increasing year by year. Tumor stroma ratio (TSR) can reflect the amount of stromal component around tumor cells, and can independently predict the prognosis of tumor. This study aims to evaluate the prognostic value of TSR in ccRCC patients. Methods: From January 2010 to December 2015, clinical and histopathological data of patients with ccRCC patients who underwent surgical operation were collected. Using TSR (50%) as the cut-off value, the patients were divided into low-TSR group (<50%) and high-TSR group (≥50%). The clinicopathological characteristics and survival status of patients were compared between the two groups. Univariate and multivariate analyses were used to identify the prognostic factors for overall survival (OS), cancer-specific survival (CSS), metastasis-free survival (MFS). Results: The mean age of 569 patients was 56.84±12.76 years old. There were 401 males and 168 females. According to the TSR, patients were divided into low-TSR group (n=333, 58.5%) and high-TSR group (n=236, 41.5%). The median follow-up time was 67.0 months (interquartile range, 33.0-72.0 months). The 5-year OS, CSS and MFS were 91.2%, 94.6% and 91.0%, respectively. The 5-year OS, CSS and MFS were 84.2%,89.7% and 82.7% in the high-TSR group and 96.1%, 98.0% and 96.0% in the low-TSR group (P<0.05). Multivariate analysis showed that age >60 years [hazard ratio (HR) =2.455, 95% confidence interval (CI): 1.292-4.668, P=0.006), tumor grade (HR =6.580, 95% CI: 3.276-13.216, P<0.001) and TSR (HR =2.611, 95% CI: 1.265-5.387, P=0.009) were independent prognostic factors for OS. Multivariate analysis showed that tumor stage (HR =3.213, 95% CI: 1.437-7.184, P=0.004), tumor grade (HR =6.102, 95% CI: 2.664-13.976, P<0.001) and TSR (HR =2.653, 95% CI: 1.063-6.621, P=0.03) were independent prognostic factors for CSS. Multivariate analysis showed that tumor stage (HR =4.805, 95% CI: 2.677-8.624, P<0.001), tumor grade (HR =6.423, 95% CI: 3.432-12.020, P<0.001), hemorrhage (HR =0.514, 95% CI: 0.265-0.996, P=0.049) and TSR (HR =2.370, 95% CI: 1.264-4.443, P=0.007) were independent prognostic factors for MFS. Conclusions: TSR is a new independent prognostic risk factor for ccRCC patients. The assessment of TSR is simple and cost-effective, and it is a useful supplement added to the pathological evaluation system.

3.
Lancet Infect Dis ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38663423

ABSTRACT

BACKGROUND: Growing evidence suggests that symptoms associated with post-COVID-19 condition (also known as long COVID) can affect multiple organs and systems in the human body, but their association with viral persistence is not clear. The aim of this study was to investigate the persistence of SARS-CoV-2 in diverse tissues at three timepoints following recovery from mild COVID-19, as well as its association with long COVID symptoms. METHODS: This single-centre, cross-sectional cohort study was done at China-Japan Friendship Hospital in Beijing, China, following the omicron wave of COVID-19 in December, 2022. Individuals with mild COVID-19 confirmed by PCR or a lateral flow test scheduled to undergo gastroscopy, surgery, or chemotherapy, or scheduled for treatment in hospital for other reasons, at 1 month, 2 months, or 4 months after infection were enrolled in this study. Residual surgical samples, gastroscopy samples, and blood samples were collected approximately 1 month (18-33 days), 2 months (55-84 days), or 4 months (115-134 days) after infection. SARS-CoV-2 was detected by digital droplet PCR and further confirmed through RNA in-situ hybridisation, immunofluorescence, and immunohistochemistry. Telephone follow-up was done at 4 months post-infection to assess the association between the persistence of SARS-CoV-2 RNA and long COVID symptoms. FINDINGS: Between Jan 3 and April 28, 2023, 317 tissue samples were collected from 225 patients, including 201 residual surgical specimens, 59 gastroscopy samples, and 57 blood component samples. Viral RNA was detected in 16 (30%) of 53 solid tissue samples collected at 1 month, 38 (27%) of 141 collected at 2 months, and seven (11%) of 66 collected at 4 months. Viral RNA was distributed across ten different types of solid tissues, including liver, kidney, stomach, intestine, brain, blood vessel, lung, breast, skin, and thyroid. Additionally, subgenomic RNA was detected in 26 (43%) of 61 solid tissue samples tested for subgenomic RNA that also tested positive for viral RNA. At 2 months after infection, viral RNA was detected in the plasma of three (33%), granulocytes of one (11%), and peripheral blood mononuclear cells of two (22%) of nine patients who were immunocompromised, but in none of these blood compartments in ten patients who were immunocompetent. Among 213 patients who completed the telephone questionnaire, 72 (34%) reported at least one long COVID symptom, with fatigue (21%, 44 of 213) being the most frequent symptom. Detection of viral RNA in recovered patients was significantly associated with the development of long COVID symptoms (odds ratio 5·17, 95% CI 2·64-10·13, p<0·0001). Patients with higher virus copy numbers had a higher likelihood of developing long COVID symptoms. INTERPRETATION: Our findings suggest that residual SARS-CoV-2 can persist in patients who have recovered from mild COVID-19 and that there is a significant association between viral persistence and long COVID symptoms. Further research is needed to verify a mechanistic link and identify potential targets to improve long COVID symptoms. FUNDING: National Natural Science Foundation of China, National Key R&D Program of China, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, and New Cornerstone Science Foundation. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.

4.
Bioresour Technol ; 399: 130608, 2024 May.
Article in English | MEDLINE | ID: mdl-38499202

ABSTRACT

A novel porous manganese and nitrogen co-doped biochar (Mn-N@SBC) was synthesized via one-step pyrolysis, utilizing loofah agricultural waste as the precursor and NaHCO3 as the activator. The behavior of bisphenol A adsorbed on Mn-N@SBC was evaluated using static batch adsorption experiments. Compared to direct manganese-nitrogen co-doping, co-doping based on NaHCO3 activation significantly increased the specific surface area (231 to 1027 m2·g-1) and adsorption capacity (15 to 351 mg·g-1). Wide pH (2-10) and good resistance to cation/anion, humic acid and actual water demonstrated the robust adaptability of Mn-N@SBC to environmental factors. The significantly reduced specific surface area after adsorption, adverse effects of ethanol and phenanthrene on the removal of bisphenol A, and theoretically predicted interaction sites indicated the primary adsorption mechanisms involved pore filling, hydrophobicity, and π-π-electron-donor-acceptor interaction. This work presented an approach to create high-efficiency adsorbents from agricultural waste, offering theoretical and practical guidance for the removal of pollutants.


Subject(s)
Benzhydryl Compounds , Manganese , Phenols , Water Pollutants, Chemical , Sodium Bicarbonate , Nitrogen/chemistry , Density Functional Theory , Charcoal/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Kinetics
5.
Taiwan J Obstet Gynecol ; 63(2): 205-213, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38485316

ABSTRACT

OBJECTIVE: To evaluate the autophagy status of cumulus cells (CCs) in women with poor ovarian response (POR). MATERIALS AND METHODS: CCs were divided into normal ovarian response (NOR) group and POR group. The ultrastructure of autophagy was analyzed by transmission electron microscopy (NOR: n = 18, POR: n = 26). The mRNA and protein of autophagy markers were detected by Quantitative real-time polymerase chain reaction (NOR: n = 15, POR: n = 19) and Western blotting (NOR: n = 41, POR: n = 38), respectively. RESULTS: Transmission electron microscopy demonstrated abundant autophagosomes and even autophagic death in the POR group. There were no differences in LC3 and P62 mRNA expression between the two groups (p > 0.05). The BCL2 mRNA expression was lower in the POR group (p < 0.05). Moreover, the LC3 II/I ratio and the P62 protein expression were significantly higher in the POR group (p < 0.05). CONCLUSIONS: Autophagy in CCs of POR women is activated and the autophagic flux is blocked. The up-regulation of autophagy in CCs may be related to the pathogenesis of POR.


Subject(s)
Autophagy , Cumulus Cells , Humans , Female , Up-Regulation , Blotting, Western , RNA, Messenger/genetics
6.
Eur J Pharmacol ; 971: 176530, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38527700

ABSTRACT

After myocardial infarction (MI), there is a notable disruption in cellular calcium ion homeostasis and mitochondrial function, which is believed to be intricately linked to endoplasmic reticulum (ER) stress. This research endeavors to elucidate the involvement of glucose regulated protein 75 (GRP75) in post-MI calcium ion homeostasis and mitochondrial function. In MI rats, symptoms of myocardial injury were accompanied by an increase in the activation of ER stress. Moreover, in oxygen-glucose deprivation (OGD)-induced cardiomyocytes, it was confirmed that inhibiting ER stress exacerbated intracellular Ca2+ disruption and cell apoptosis. Concurrently, the co-localization of GRP75 with IP3R and VDAC1 increased under ER stress in cardiomyocytes. In OGD-induced cardiomyocytes, knockdown of GRP75 not only reduced the Ca2+ levels in both the ER and mitochondria and improved the ultrastructure of cardiomyocytes, but it also increased the number of contact points between the ER and mitochondria, reducing mitochondria associated endoplasmic reticulum membrane (MAM) formation, and decreased cell apoptosis. Significantly, knockdown of GRP75 did not affect the protein expression of PERK and hypoxia-inducible factor 1α (HIF-1α). Transcriptome analysis of cardiomyocytes revealed that knockdown of GRP75 mainly influenced the molecular functions of sialyltransferase and IP3R, as well as the biosynthesis of glycosphingolipids and lactate metabolism. The complex interaction between the ER and mitochondria, driven by the GRP75 and its associated IP3R1-GRP75-VDAC1 complex, is crucial for calcium homeostasis and cardiomyocyte's adaptive response to ER stress. Modulating GRP75 could offer a strategy to regulate calcium dynamics, diminish glycolysis, and thereby mitigate cardiomyocyte apoptosis.


Subject(s)
Calcium , HSP70 Heat-Shock Proteins , Membrane Proteins , Myocardial Infarction , Animals , Rats , Calcium/metabolism , Endoplasmic Reticulum Stress , Glucose/metabolism , Mitochondria/metabolism , Myocardial Infarction/metabolism , Oxygen/metabolism
7.
Zhen Ci Yan Jiu ; 49(2): 171-176, 2024 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-38413038

ABSTRACT

OBJECTIVES: To compare the clinical effect between two acupoint regimens of moxibustion on knee osteoarthritis (KOA), and observe the influences on the serum content of interleukin 1α (IL-1α), interleukin-17A (IL-17A), tumor necrosis factor α (TNF-α), bone gla protein (BGP) and osteoprotegerin (OPG). METHODS: KOA patients were randomly divided into an observation group (40 cases, 2 cases dropped off) and a control group (40 cases, 3 cases dropped off). In the observation group, moxibustion was applied to Xiyan (EX-LE5), Dubi (ST35), Zusanli (ST36), Dazhu (BL11), Xuanzhong (GB39) and Yongquan (KI1) on the affected side. In the control group, EX-LE5, ST35 and ST36 were selected on the affected side. One session of treatment took 30 min in each group, delivered 3 times a week and the duration of treatment was 4 weeks. The scores of Western Ontario and McMaster University (WOMAC) and visual analogue scale (VAS) were observed and the serum content of IL-1α, IL-17A, TNF-α, BGP and OPG of the two groups were measured before and after treatment. RESULTS: Compared with those before treatment, the WOMAC score, VAS score and the serum content of IL-1α, IL-17A and TNF-α were decreased (P<0.05), and the content of BGP and OPG were increased (P<0.05) after treatment. Compared with the control group, the WOMAC score, VAS score and the serum content of IL-1α and TNF-α in the observation group were lower (P<0.05), and the content of BGP and OPG were higher (P<0.05). The total effective rate of the observation group was 89.5% (34/38), and that of the control group was 83.8% (31/37), with no statistically significant difference. CONCLUSIONS: Moxibustion therapy of "nourishing the kidney and benefiting the marrow" can relieve joint pain, improve joint function, reduce the level of inflammatory factors and ameliorate bone metabolic indicators. The effect of the acupoint regimen in this moxibustion therapy is better than that of the local acupoint selection.


Subject(s)
Moxibustion , Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/therapy , Interleukin-17 , Bone Marrow , Tumor Necrosis Factor-alpha , Treatment Outcome , Acupuncture Points , Kidney
8.
J Ethnopharmacol ; 324: 117737, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38228229

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Leech, as a traditional Chinese medicine for the treatment of blood circulation and blood stasis, was also widely used to cure pulmonary fibrosis in China. In clinical practice, some traditional Chinese medicine preparation such as Shui Zhi Xuan Bi Hua Xian Tang and Shui Zhi Tong Luo Capsule composed of leech, could improve the clinical symptoms and pulmonary function in patients with idiopathic pulmonary fibrosis (IPF). However, the material basis of the leech in the treatment of IPF were not yet clear. AIM OF THE STUDY: Screen out the components of leech that have the anti-pulmonary fibrosis effects, and further explore the therapeutic mechanism of the active components. MATERIALS AND METHODS: In this study, the different molecular weight components of leech extract samples were prepared using the semi-permeable membranes with different pore sizes. The therapeutic effects of the leech extract groups with molecular weight greater than 10 KDa (>10 KDa group), between 3 KDa and 10 KDa (3-10 KDa group), and less than 3 KDa (<3 KDa group) on pulmonary fibrosis were firstly investigated by cell proliferation and cytotoxicity assay (MTT), cell wound healing assay, immunofluorescence staining (IF) and Western blot (WB) assay through the TGF-ß1-induced fibroblast cell model. Then bleomycin-induced pulmonary fibrosis (BML-induced PF) mouse model was constructed to investigate the pharmacological activities of the active component group of leech extract in vivo. Pathological changes of the mouse lung were observed by hematoxylin-eosin staining (H&E) and Masson's trichrome staining (Masson). The hydroxyproline (HYP) content of lung tissues was quantified by HYP detection kit. The levels of extracellular matrix-related fibronectin (FN) and collagen type Ⅰ (Collagen Ⅰ), pyruvate kinase M2 (PKM2) monomer and Smad7 protein were determined via WB method. PKM2 and Smad7 protein were further characterized by IF assays. RESULTS: Using TGF-ß1-induced HFL1 cell line as a PF cell model, the in vitro results demonstrated that the >10 KDa group could significantly inhibited the cell proliferation and migration, downregulated the expression level of cytoskeletal protein vimentin and α-smooth muscle actin (α-SMA), and reduced the deposition of FN and Collagen Ⅰ. In the BML-induced PF mouse model, the >10 KDa group significantly reduced the content of HYP, downregulated the expression levels of FN and Collagen Ⅰ in lung tissues, and delayed the pathological changes of lung tissue structure. The results of WB and IF assays further indicated that the >10 KDa group could up-regulate the expression level of PKM2 monomer and Smad7 protein in the cellular level, thereby delaying the progression of pulmonary fibrosis. CONCLUSIONS: Our study revealed that the >10 KDa group was the main material basis of the leech extract that inhibited pulmonary fibrosis through TGF-ß1/Smad3 signaling pathway.


Subject(s)
Idiopathic Pulmonary Fibrosis , Transforming Growth Factor beta1 , Mice , Animals , Humans , Transforming Growth Factor beta1/metabolism , Smad7 Protein/metabolism , Smad7 Protein/pharmacology , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Collagen Type I/metabolism , Bleomycin , Disease Models, Animal , Signal Transduction
9.
Mol Brain ; 16(1): 80, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37986006

ABSTRACT

Cognitive dysfunction increases as menopause progresses. We previously found that estrogen receptors (ERs) contribute to dyslipidemia, but the specific relationship between ERs, dyslipidemia and cognitive dysfunction remains poorly understood. In the present study, we analyzed sequencing data from female hippocampus and normal breast aspirate samples from normal and Alzheimer's disease (AD) women, and the results suggest that abnormal ERs signaling is associated with dyslipidemia and cognitive dysfunction. We replicated a mouse model of dyslipidemia and postmenopausal status in LDLR-/- mice and treated them with ß-estradiol or simvastatin, and found that ovariectomy in LDLR-/- mice led to an exacerbation of dyslipidemia and increased hippocampal apoptosis and cognitive impairment, which were associated with reduced estradiol levels and ERα, ERß and GPER expression. In vitro, a lipid overload model of SH-SY-5Y cells was established and treated with inhibitors of ERs. ß-estradiol or simvastatin effectively attenuated dyslipidemia-induced neuronal apoptosis via upregulation of ERs, whereas ERα, ERß and GPER inhibitors together abolished the protective effect of simvastatin on lipid-induced neuronal apoptosis. We conclude that decreased estrogen and its receptor function in the postmenopausal stage promote neuronal damage and cognitive impairment by exacerbating dyslipidemia, and that estrogen supplementation or lipid lowering is an effective way to ameliorate hippocampal damage and cognitive dysfunction via upregulation of ERs.


Subject(s)
Cognitive Dysfunction , Estrogen Receptor alpha , Humans , Mice , Female , Animals , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Postmenopause , Estrogens/pharmacology , Estradiol/pharmacology , Cognitive Dysfunction/complications , Simvastatin/pharmacology , Simvastatin/therapeutic use , Lipids
10.
Per Med ; 20(6): 485-491, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37909303

ABSTRACT

Background: This study analyzed real-world data from 2004 to 2023 to evaluate the toxicity profile of tyrosine receptor kinase (TRK) inhibitor therapy. Method: A retrospective analysis of US FDA Adverse Event Reporting System data was conducted to identify adverse events in patients receiving TRK inhibitor therapy. Result: Entrectinib demonstrated toxicities primarily in the cardiovascular and nervous systems, followed by the renal and urinary system. Common adverse effects included dizziness, renal impairment, constipation, heart failure and taste disorders. Larotrectinib induced adverse events mainly in the hepatobiliary and nervous systems, with peripheral neuropathy, myalgia, renal impairment and increased alanine aminotransferase commonly reported. Conclusion: Careful monitoring and supportive care strategies are essential for managing adverse events associated with TRK inhibitor therapy.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Retrospective Studies , Receptor Protein-Tyrosine Kinases , Protein Kinase Inhibitors/adverse effects
11.
Nat Commun ; 14(1): 7479, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37980418

ABSTRACT

Solitary fibrous tumors (SFTs) are rare mesenchymal tumors with unpredictable evolution and with a recurrence or metastasis rate of 10-40%. Current medical treatments for relapsed SFTs remain ineffective. Here, we identify potential therapeutic targets and risk factors, including IDH1 p.R132S, high PD-L1 expression, and predominant macrophage infiltration, suggesting the potential benefits of combinational immune therapy and targeted therapy for SFTs. An integrated risk model incorporating mitotic count, density of Ki-67+ cells and CD163+ cells, MTOR mutation is developed, applying a discovery cohort of 101 primary non-CNS patients with negative tumor margins (NTM) and validated in three independent cohorts of 210 SFTs with the same criteria, and in 36 primary CNS SFTs with NTM. Compared with the existing models, our model shows significantly improved efficacy in identifying high-risk primary non-CNS and CNS SFTs with NTM for tumor progression.Our findings hold promise for advancing therapeutic strategies and refining risk prediction in SFTs.


Subject(s)
Severe Fever with Thrombocytopenia Syndrome , Soft Tissue Neoplasms , Solitary Fibrous Tumors , Humans , Solitary Fibrous Tumors/genetics , Solitary Fibrous Tumors/therapy , Solitary Fibrous Tumors/metabolism , Risk Factors , Soft Tissue Neoplasms/pathology , Risk Assessment
12.
Clin Transl Med ; 13(9): e1423, 2023 09.
Article in English | MEDLINE | ID: mdl-37740473

ABSTRACT

BACKGROUND: Cysteine dioxygenase 1 (CDO1) is frequently methylated, and its expression is decreased in many human cancers including breast cancer (BC). However, the functional and mechanistic aspects of CDO1 inactivation in BC are poorly understood, and the diagnostic significance of serum CDO1 methylation remains unclear. METHODS: We performed bioinformatics analysis of publicly available databases and employed MassARRAY EpiTYPER methylation sequencing technology to identify differentially methylated sites in the CDO1 promoter of BC tissues compared to normal adjacent tissues (NATs). Subsequently, we developed a MethyLight assay using specific primers and probes for these CpG sites to detect the percentage of methylated reference (PMR) of the CDO1 promoter. Furthermore, both LentiCRISPR/dCas9-Tet1CD-based CDO1-targeted demethylation system and CDO1 overexpression strategy were utilized to detect the function and underlying mechanism of CDO1 in BC. Finally, the early diagnostic value of CDO1 as a methylation biomarker in BC serum was evaluated. RESULTS: CDO1 promoter was hypermethylated in BC tissues, which was related to poor prognosis (p < .05). The CRISPR/dCas9-based targeted demethylation system significantly reduced the PMR of CDO1 promotor and increased CDO1 expression in BC cells. Consequently, this leads to suppression of cell proliferation, migration and invasion. Additionally, we found that CDO1 exerted a tumour suppressor effect by inhibiting the cell cycle, promoting cell apoptosis and ferroptosis. Furthermore, we employed the MethyLight to detect CDO1 PMR in BC serum, and we discovered that serum CDO1 methylation was an effective non-invasive biomarker for early diagnosis of BC. CONCLUSIONS: CDO1 is hypermethylated and acts as a tumour suppressor gene in BC. Epigenetic editing of abnormal CDO1 methylation could have a crucial role in the clinical treatment and prognosis of BC. Additionally, serum CDO1 methylation holds promise as a valuable biomarker for the early diagnosis and management of BC.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Neoplasms , Humans , Cysteine Dioxygenase/genetics , Apoptosis , Cell Cycle , Demethylation
13.
Micromachines (Basel) ; 14(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37630078

ABSTRACT

Aiming at the problems of low machining accuracy and more serious tool wear in the traditional diamond grinding machining (DGM) microstructure of hard and brittle materials, this paper proposes high-speed rotary ultrasonic machining (HRUM) technology and develops a HRUM machine tool. The hardware part of the machine tool mainly includes the spindle module, micro-motion system module, ultrasonic machining tank module, and data acquisition (DAQ) system module. The LabView-based controlled machining control system, including motion selection, initialization, coarse tool setting, constant force tool setting, control machining, and coordinate display module, is developed. Comparative experimental research of the HRUM and DGM of small holes in Al2O3 ceramics is carried out in the developed HRUM machine tool. The results demonstrate that HRUM effectively reduces axial cutting forces, reduces binder adhesion, and suppresses slippage while improving tool-cutting ability and extending tool life compared to DGM under the same machining parameters. This technology has essential research significance for the high-precision and efficient machining of microstructures in hard and brittle materials.

14.
J Am Chem Soc ; 145(32): 17995-18006, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37550082

ABSTRACT

The acidic oxygen evolution reaction (OER) has long been the bottleneck of proton exchange membrane water electrolyzers given its harsh oxidative and corrosive environments. Herein, we suggest an effective strategy to greatly enhance both the acidic OER activity and stability of Co3O4 spinel by atomic Ru selective substitution on the octahedral Co sites. The resulting highly symmetrical octahedral Ru-O-Co collaborative coordination with strong electron coupling effect enables the direct dioxygen radical coupling OER pathway. Indeed, both experiments and theoretical calculations reveal a thermodynamically breakthrough heterogeneous diatomic oxygen mechanism. Additionally, the active Ru-O-Co units are well-maintained upon the acidic OER thanks to the electron transfer from surrounding electron-enriched tetrahedral Co atoms via bridging oxygen bonds that suppresses the overoxidation and thus dissolution of active Ru and Co species. Consequently, the prepared catalyst, even with a low Ru mass loading of ca. 42.8 µg cm-2, exhibits an attractive acidic OER performance with a low overpotential of 200 mV and a low potential decay rate of 0.45 mV h-1 at 10 mA cm-2. Our work suggests an effective strategy to significantly enhance both the acidic OER activity and stability of low-cost electrocatalysts.

15.
Clin Exp Pharmacol Physiol ; 50(11): 867-877, 2023 11.
Article in English | MEDLINE | ID: mdl-37574718

ABSTRACT

Preventing or treating heart failure (HF) by blocking cardiomyocyte apoptosis is an effective strategy that improves survival and reduces ventricular remodelling and dysfunction in the chronic stage. Autophagy is a mechanism that degrades intracellular components and compensates for energy deficiency, which is commonly observed in cardiomyocytes of failed hearts. Cardiomyocytes activated by doxorubicin (DOX) exhibit strong autophagy. This study aims to investigate the potential protective effect of ligustrazine and its derivative liguzinediol on regulating DOX-induced cardiomyocyte apoptosis and explore the use of the embryonic rat heart-derived myoblast cell line H9C2 for identifying novel treatments for HF. The results indicated that it has been demonstrated to reverse myocardial infarction remodelling in failed hearts by promoting autophagy in salvaged cardiomyocytes and anti-apoptosis of cardiomyocytes in granulation tissue. Our study suggests that ligustrazine and liguzinediol can be a promising agents and autophagy is potential pathway in the management of HF.


Subject(s)
Heart Failure , Myocytes, Cardiac , Rats , Animals , Doxorubicin/pharmacology , Heart Failure/metabolism , Apoptosis , Autophagy
16.
Chem Commun (Camb) ; 59(45): 6837-6840, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37128694

ABSTRACT

We propose an acid-alkaline furfural hybrid battery that can achieve a discharging power density of 47 mW cm-2 under 100 mA cm-2 energy output with a H2 faradaic efficiency (FE) up to ca. 200% and a furoate FE of around 97% with the aid of our developed Pt-Cu electrocatalyst.

17.
Clin Transl Sci ; 16(8): 1369-1380, 2023 08.
Article in English | MEDLINE | ID: mdl-37186419

ABSTRACT

Pulmonary arterial hypertension (PAH) is a pathophysiological state of abnormally elevated pulmonary arterial pressure caused by drugs, inflammation, toxins, viruses, hypoxia, and other risk factors. We studied the therapeutic effect and target of tetramethylpyrazine (tetramethylpyrazine [TMP]; ligustrazine) in the treatment of PAH and we speculated that dramatic changes in myocardin levels can significantly affect the progression of PAH. In vivo, the results showed that administration of TMP significantly prolonged the survival of PAH rats by reducing the proliferative lesions, right ventricular systolic pressure (RVSP), mean pulmonary arterial pressure (mPAP), and the Fulton index in the heart and lung of PAH rats. In vitro, TMP can regulate the levels of smooth muscle protein 22-alpha (SM22-α), and myocardin as well as intracellular cytokines such as NO, transforming growth factor beta (TGF-ß), and connective tissue growth factor (CTGF) in a dose-dependent manner (25, 50, or 100 µM). Transfection of myocardin small interfering RNA (siRNA) aggravated the proliferation of pulmonary artery smooth muscle cells (PSMCs), and the regulatory effect of TMP on α-smooth muscle actin (α-SMA) and osteopontin (OPN) disappeared. The application of 10 nM estrogen receptor alpha (ERα) inhibitor MPP promoted the proliferation of PSMCs, but it does not affect the inhibition of TMP on PSMCs proliferation. Finally, we found that TMP promoted the nucleation of myocardin-related transcription factor-A (MRTF-A) and combined it with myocardin. In conclusion, TMP can inhibit the transformation of PSMCs from the contractile phenotype to the proliferative phenotype by promoting the formation of the nuclear (MRTF-A/myocardin) transcription complex to treat PAH.


Subject(s)
Pulmonary Arterial Hypertension , Pulmonary Artery , Rats , Animals , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Rats, Sprague-Dawley , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology
18.
ACS Appl Mater Interfaces ; 15(15): 18819-18827, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37022290

ABSTRACT

Fe2O3 is one of the most common anode materials beyond carbons but suffers from unsatisfactory capacity and poor stability, which are associated with the insufficient utilization of active material and the structural instability caused by the phase transformation. In this work, we report an effective strategy to overcome the above issues through electronic structure optimization by constructing delicately designed Fe2O3@VN core-shell structure. The Fe2O3@VN/CC exhibits a much higher areal capacity of 254.8 mC cm-2 at 5 mA cm-2 (corresponding to 318.5 mF cm-2, or 265.4 F g-1) than the individual VN (48 mC cm-2, or 60 mF cm-2) or Fe2O3/CC (93.36 mC cm-2, or 116.7 mF cm-2), along with enhanced stability. Moreover, the assembled asymmetric supercapacitor devices based on Fe2O3@VN/CC anode and RuO2/CC cathode show a high stack energy density of 0.5 mWh cm-3 at a power density of 12.28 mW cm-3 along with good stability (80% capacitance retention after 14000 cycles at 10 mA cm-2). This work not only establishes the Fe2O3@VN as a high-performance anode material but also suggests a general strategy to enhance the electrochemical performance of traditional anodes that suffer from low capacity (capacitance) and poor stability.

19.
Altern Ther Health Med ; 29(5): 238-241, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37052970

ABSTRACT

Objective: The study aims to explore the correlation between the expression levels of peptidylarginine deiminase 4 (PADI4), guanylate binding protein 1 (GBP1), miR-215, and tumor mutational burden (TMB) and clinical features and prognosis of lung cancer. Methods: A total of 156 patients with lung cancer admitted to our hospital from July 2021 to March 2022 were selected. Clinical characteristics of patients were collected and PADI4, GBP1, miR-215, and TMB levels were detected. The correlation between the expression levels of PADI4, GBP1, miR-215, and TMB and the clinical characteristics of lung cancer was analyzed. The predictive value of the expression levels of PADI4, GBP1, miR-215, and TMB for lung cancer prognosis was analyzed by the receiver operator characteristic (ROC) curve. Results: The expression levels of PADI4 and GBP1 were significantly different with respect to smoking history and histopathological type of lung cancer (P < .05). The expression levels of miR-215 and TMB were significantly different in terms of age, smoking history, lymph node metastasis, and tumor node metastasis (TNM) stage of lung cancer (P < .05). ROC curve results showed that the area under the curve (AUC) of PADI4, GBP1, miR-215, and TMB combined to predict the prognosis of lung cancer was 0.814 (0.789-0.912), which was higher than the diagnostic efficacy of single biomarker (P < .05). Its sensitivity and specificity were 85.75% and 89.34%, respectively. Conclusions: The expression levels of PADI4, GBP1, miR-215, and TMB are correlated with the clinical characteristics and prognosis of lung cancer, and can be used as prognostic markers.


Subject(s)
Lung Neoplasms , MicroRNAs , Humans , Biomarkers, Tumor/genetics , GTP-Binding Proteins/metabolism , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Prognosis , Sensitivity and Specificity
20.
Angew Chem Int Ed Engl ; 62(19): e202300390, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36912576

ABSTRACT

The traditional technologies for industrial and agricultural effluent treatment are often energy-intensive. Herein, we suggest an electrochemical redox strategy for spontaneous and simultaneous decontamination of wastewater and generation of both fuels and electricity at low cost. Using hydrazine and nitrate effluents as a demonstration, we propose a hydrazine-nitrate flow battery (HNFB) that can efficiently purify the wastewater and meanwhile generate both ammonia fuel and electricity with the assistance of our developed bimetallic RuCo precatalyst. Specifically, the battery delivers a peak power density of 12 mW cm-2 and continuously operates for 20 h with an ammonia yield rate of ca. 0.38 mmol h-1 cm-2 under 100 mA cm-2 . The generated electricity can further drive a hydrazine electrolyzer to produce hydrogen fuel. Our work provides an alternative pathway to purify wastewater and generate high value-added fuels at low cost.

SELECTION OF CITATIONS
SEARCH DETAIL
...