Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Ultrason Sonochem ; 108: 106957, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38901304

In industrial production and scientific research, ultrasonic cavitation technology, with its outstanding physical and chemical processing capabilities, has been widely applied in fields such as material surface modification, chemical synthesis, and biotechnology, becoming a focal point of research and application. This article delves into the effects of different ultrasonic frequencies on cavitation outcomes through the combined use of numerical simulation, fluorescence analysis, and high-speed photography, specifically analyzing the quantitative improvement in the mechanical properties of TC17 titanium alloy under ultrasonic cavitation at frequencies of 20 kHz, 30 kHz, and 40 kHz. The study found that at an ultrasonic frequency of 20 kHz, the maximum expansion radius of cavitation bubbles can reach 51.4 µm, 8.6 times their initial radius. Correspondingly, fluorescence intensity and peak area also increased to 402.8 and 28104, significantly above the baseline level. Moreover, after modification by ultrasonic cavitation, the original machining marks on the surface of TC17 titanium alloy became fainter, with the emergence of new, uniformly distributed microfeatures. The microhardness of the material increased from 373.7 Hv to 383.84 Hv, 396.62 Hv, and 414.06 Hv, with a maximum improvement of 10.8 %. At the same time, surface height difference and roughness significantly decreased (to 3.168 µm and 0.61 µm respectively), with reductions reaching 45.1 % and 42.4 %, indicating a significant improvement in material surface quality. Notably, there is a negative correlation between the improvement of mechanical properties and ultrasonic frequency, suggesting that the improvement effects decrease as ultrasonic frequency increases. This research not only reveals the quantitative relationship between ultrasonic cavitation frequency and material surface modification effects but also provides a solid scientific basis and practical guidance for the application of ultrasonic cavitation technology in surface engineering, signifying the technology's potential for broad application in the future.

2.
Sensors (Basel) ; 24(4)2024 Feb 08.
Article En | MEDLINE | ID: mdl-38400262

Intelligent workshop UAV inspection path planning is a typical indoor UAV path planning technology. The UAV can conduct intelligent inspection on each work area of the workshop to solve or provide timely feedback on problems in the work area. The sparrow search algorithm (SSA), as a novel swarm intelligence optimization algorithm, has been proven to have good optimization performance. However, the reduction in the SSA's search capability in the middle or late stage of iterations reduces population diversity, leading to shortcomings of the algorithm, including low convergence speed, low solution accuracy and an increased risk of falling into local optima. To overcome these difficulties, an improved sparrow search algorithm (namely the chaotic mapping-firefly sparrow search algorithm (CFSSA)) is proposed by integrating chaotic cube mapping initialization, firefly algorithm disturbance search and tent chaos mapping perturbation search. First, chaotic cube mapping was used to initialize the population to improve the distribution quality and diversity of the population. Then, after the sparrow search, the firefly algorithm disturbance and tent chaos mapping perturbation were employed to update the positions of all individuals in the population to enable a full search of the algorithm in the solution space. This technique can effectively avoid falling into local optima and improve the convergence speed and solution accuracy. The simulation results showed that, compared with the traditional intelligent bionic algorithms, the optimized algorithm provided a greatly improved convergence capability. The feasibility of the proposed algorithm was validated with a final simulation test. Compared with other SSA optimization algorithms, the results show that the CFSSA has the best efficiency. In an inspection path planning problem, the CFSSA has its advantages and applicability and is an applicable algorithm compared to SSA optimization algorithms.

3.
J Colloid Interface Sci ; 662: 1063-1074, 2024 May 15.
Article En | MEDLINE | ID: mdl-38369419

Polyacrylamide (PAM) hydrogels have garnered significant attention due to their unique swelling properties, biocompatibility, and stability, resulting in them being promising candidates for various applications, ranging from drug delivery to tissue engineering. However, traditional PAM hydrogels suffer from low strength and poor toughness, which limits their widespread use. In this study, based on the theory of filler-reinforced composites, we introduced ordered sulfonated polystyrene (SPS) particles into PAM hydrogels using electric field-assisted techniques. The effects of the geometric dimensions and filling concentration of SPS particles on thermal stability, swelling/deswelling behavior, and mechanical properties of composite hydrogels were investigated. When filled with ordered 100 nm SPS particles at a concentration of 2.0 g·L-1, the resulting SPS/PAM composite exhibited improved water retention capacity, as well as a fracture elongation of 316 % and a tensile strength of 23 kPa. These findings in the paper provide valuable insights into the understanding of PAM hydrogels and open up new avenues for the development of advanced hydrogel-based systems with enhanced performance and functionality.

4.
J Colloid Interface Sci ; 648: 834-845, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37327626

Incorporating high thermal conductivity fillers into the matrix material and optimizing their distribution offers a targeted approach to controlling heat flow conduction. However, the design of composite microstructure, particularly the precise orientation of fillers in the micro-nano domain, remains a formidable challenge to date. Here, we report a novel method for constructing directional/localized thermal conduction pathways based on silicon carbide whiskers (SiCWs) in the polyacrylamide (PAM) gel matrix using micro-structured electrodes. SiCWs are one-dimensional nanomaterials with ultra-high thermal conductivity, strength, and hardness. The outstanding properties of SiCWs can be maximized through ordered orientation. Under the conditions of 18 V voltage and 5 MHz frequency, SiCWs can achieve complete orientation in only about 3 s. In addition, the prepared SiCWs/PAM composite exhibits interesting properties, including enhanced thermal conductivity and localized conduction of heat flow. When the SiCWs concentration is 0.5 g·L-1, the thermal conductivity of SiCWs/PAM composite is about 0.7 W·m-1·K-1, which is 0.3 W·m-1·K-1 higher than that of PAM gel. This work achieved structural modulation of the thermal conductivity by constructing a specific spatial distribution of SiCWs units in the micro-nanoscale domain. The resulting SiCWs/PAM composite has unique localized heat conduction properties and is expected to become a new generation of composites with better characteristics and functions in thermal transmission and thermal management.

5.
Micromachines (Basel) ; 15(1)2023 Dec 23.
Article En | MEDLINE | ID: mdl-38258157

To investigate the machining effect of ultrasonic honing microjets on a titanium-tantalum alloy surface, a cavitation microjet flow impingement model was established using the smoothed particle hydrodynamics-finite element method (SPH-FEM) coupling method including the effects of wall elastic-plastic deformation, the ultrasonic field and the honing pressure field. Simulation analysis was conducted on a single impact with different initial speeds and a continuous impact at a constant initial speed. The results showed that the initial speed of the microjet needed to reach at least 580 to 610 m/s in order to obtain an obvious effect of the single impact. The single impact had almost no effect at low speeds. However, when the microjet continuously impacted the same position, obvious pits were produced via a cumulative effect. These pits were similar to that obtained by the single impact, and they had the maximum depth at the edge rather than the center. With the increase in the microjet's initial speed, the total number of shocks required to reach the same depth gradually decreases. When the number of impacts is large, with the increase in the number of impacts, the growth rate of the maximum pit depth gradually slows down, and even shows no growth or negative growth at some times. Using the continuous impacts of the microjet by prolonging the processing time can enhance titanium-tantalum alloy machining with ultrasonic honing for material removal.

6.
J Trop Med ; 2022: 8266878, 2022.
Article En | MEDLINE | ID: mdl-36249736

Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses standards were followed, and the protocol was registered in PROSPERO (CRD42020200077). Five electronic databases were searched to identify eligible studies published between 1990 and 2022. Search terms included anti-TB treatment and drug-induced liver injury. Studies that reported the incidence of ATLI or provided sufficient data to calculate the incidence of ATLI were included, and duplicate studies were excluded. Meta-analysis was conducted on the basis of logit-transformed metrics for the incidence of ATLI with 95% confidence intervals (CIs), followed by a predefined subgroup meta-analysis. Temporal trend analyses were performed to describe the change in pooled incidence over time. A random effects metaregression was conducted to explore the source of heterogeneity. All statistical analyses were carried out using R 4.0.1. Results: A total of 160 studies from 156 records with 116147 patients were included in the meta-analysis. Based on the random effects model, the pooled incidence of ATLI was 11.50% (95% CI: 10.10%-12.97%) and showed an upward trend over time (P < 0.001). Patients who received first-line anti-TB drugs, patients in South America, and patients with hepatitis B and C virus coinfection had a higher incidence of ATLI (13.66%, 18.16%, and 39.19%, respectively). Sensitivity analyses also confirmed this robust incidence after the exclusion of some studies. The metaregression showed that different anti-TB regimens and geographical regions were important explanatory factors of the heterogeneity between studies. Conclusions: The present systematic review provided a basis for estimating the incidence of ATLI worldwide, which varied among patients with different anti-TB regimens in different geographical regions and with different coinfections and had an upward trend. Regular liver function monitoring is imperative for patient safety during the anti-TB treatment course.

7.
Biomimetics (Basel) ; 7(4)2022 Oct 15.
Article En | MEDLINE | ID: mdl-36278724

Soft grippers have attracted great interest in the soft robotics research field. Due to their lack of deformability and control over compliance, it can be challenging for them to pick up objects that are too large or too small in size. In particular, compliant objects are vulnerable to the large grasping force. Therefore, it is crucial to be able to adjust the stiffness of the gripper materials. In this study, a soft gripper consisting of three artificial fingers is reported on. Each of the artificial fingers is made of a tri-layer polymer structure. An exterior layer, made of an ecoflex-graphene composite is embedded with electric wires as a heating source, by applying direct-current potential. The Joule heat not only allows for deformation of the exterior layer, but also transfers heat to the middle layer of the thermoplastic polyurethane (TPU) elastomer. As a result, the stiffness of the TPU layer can be adjusted using electro-thermal heating. Meanwhile, the third layer consists of a polydimethylsiloxane replica as a supporting layer with a gecko-inspired dry adhesive structure. By applying voltage through electric wires, the artificial fingers can bend and, thus, the soft gripper can hold the objects, with the help of the dry adhesive layer. Finally, objects like a shuttlecock, tennis ball and a glass beaker, can be picked up by the soft gripper. This research may provide an insight for the design and fabrication of soft robotic manipulators.

8.
Ultrason Sonochem ; 89: 106119, 2022 Sep.
Article En | MEDLINE | ID: mdl-35969914

In ultrasonic-assisted machining, the synergistic effect of the cavitation effect and micro-abrasive particles plays a crucial role. Studies have focused on the investigation of the micro-abrasive particles, cavitation micro-jets, and cavitation shock waves either individually or in pairs. To investigate the synergy of shock waves and micro-jets generated by cavitation with micro-abrasive particles in ultrasonic-assisted machining, the continuous control equations of a cavitation bubble, shock wave, micro-jet, and micro-abrasive particle influenced by the dimensionless amount (R/R0), a particle size-velocity-pressure model of the micro-abrasive particle was established. The effects of ultrasonic frequency, sound pressure amplitude, and changes in particle size on micro-abrasive particle velocity and pressure were numerically simulated. At an ultrasonic frequency of 20 kHz and ultrasonic sound pressure of 0.1125 MPa, a smooth spherical SiO2 micro-abrasive particle (size = 5 µm) was obtained, with a maximum velocity of 190.3-209.4 m/s and pressure of 79.69-89.41 MPa. The results show that in the range of 5-50 µm, smaller particle sizes of the micro-abrasive particles led to greater velocity and pressure. The shock waves, micro-jets, and micro-abrasive particles were all positively affected by the dimensionless amount (R/R0) of cavitation bubble collapse, the larger the dimensionless quantity, the faster their velocity and the higher their pressure.


Silicon Dioxide , Ultrasonics , Particle Size
9.
Nanomaterials (Basel) ; 13(1)2022 Dec 20.
Article En | MEDLINE | ID: mdl-36615914

The demand for flexible pressure sensors in wearable devices is dramatically increasing. However, challenges still exist in making flexible pressure sensors, including complex or costly fabrication processes and difficulty in mass production. In this paper, a new method is proposed for preparing the flexible pressure sensors that combines an imprinting technique with blade-coating of a graphene-silver nanosheet-polymer nanocomposite. The piezo-resistive type flexible pressure sensor consists of interdigital electrodes and nanocomposite as a sensing layer, as well as a micropillar array structure. The morphology of the sensitive layer of the sensor is characterized by scanning electron microscopy (SEM). The response performance, sensitivity, and stability of the sensor are investigated. The test results show that the initial resistance of the pressure sensor is only 1.6 Ω, the sensitivity is 0.04 kPa-1, and the response time is about 286 ms. In addition, a highly hydrophobic wetting property can be observed on the functional structure surface of the sensor. The contact angle is 137.2 degrees, revealing the self-cleaning property of the sensor. Finally, the prepared sensor is demonstrated as a wearable device, indicating promising potential in practical applications.

10.
PLoS One ; 15(8): e0238172, 2020.
Article En | MEDLINE | ID: mdl-32845911

E-cigarette devices are wide ranging, leading to significant differences in levels of toxic carbonyls in their respective aerosols. Power can be a useful method in predicting relative toxin concentrations within the same device, but does not correlate well to inter-device levels. Herein, we have developed a simple mathematical model utilizing parameters of an e-cigarette's coil and wick in order to predict relative levels of e-liquid solvent degradation. Model 1, which is coil length/(wick surface area*wraps), performed in the moderate-to-substantial range as a predictive tool (R2 = 0.69). Twelve devices, spanning a range of coil and wick styles, were analyzed. Model 1 was evaluated against twelve alternative models and displayed the best predictability. Relationships that included power settings displayed weak predictability, validating that power levels cannot be reliably compared between devices due to differing wicking and coil components and heat transfer efficiencies.


Aerosols/chemistry , Carbon Compounds, Inorganic/analysis , Electronic Nicotine Delivery Systems , Vaping/adverse effects , Humans , Models, Theoretical
11.
Ultrason Sonochem ; 67: 105175, 2020 Oct.
Article En | MEDLINE | ID: mdl-32446201

For the analysis of ultrasonic cavitation erosion on the surface of materials, the ultrasonic cavitation erosion experiments for AlCu4Mg1 and Ti6Al4V were carried out, and the changes of surface topography, surface roughness, and Vickers hardness were explored. Cavitation pits gradually expand and deepen with the increase of experiment time, and Ti6Al4V is more difficult to erode by cavitation than AlCu4Mg1. After experiments, the cavitation damage characteristics such as the single pit, the rainbow ring area, the fisheye pit, and some small pits were observed, which can be considered to be induced by a single micro-jet impact, ablation effect caused by the high temperature, micro-jet impingement with a sharp angle, and multibeam micro-jets coupling impact or negative pressure in the local area produced by micro-jet impact, respectively. The surface roughness and Vickers hardness of the material increase slowly after rapid growth at different points in time as the experiment time increases. With the increase of the ultrasonic amplitude, both of them first increase and then decrease after the ultrasonic amplitude is greater than 10.8 µm. The increases in surface roughness and Vickers hardness tend to decrease as the viscosity coefficient increases. Ultrasonic cavitation can cause submicron surface roughness and increase surface hardness by 20.36%, so it can be used as a surface treatment method.

12.
Ultrason Sonochem ; 66: 105115, 2020 Sep.
Article En | MEDLINE | ID: mdl-32248040

High-speed micro-jet produced by cavitation collapse near the wall is the main mechanism of material damage, and cavitation pit is the most typical damage feature. The reason why high-pressure and high-speed micro-jet can only cause nano- and microscale cavitation pit is that the micro-jet is a short-term impact load of nano- and microscale, and the material shows size effect during the formation of pits. To further explore the cavitation damage characteristics and deformation mechanism of materials, the theoretical framework of indentation test and J-C constitutive model were adopted, and the size effect of materials during the process of cavitation pit formation was mainly considered, and the prediction models of cavitation impact load, impact pressure and velocity of micro-jet were established. The results showed that the equivalent stress and strain of cavitation pit and the impact pressure and velocity of micro-jet are only related to the diameter-to-depth ratio of pit without size effect, and also to the diameter of pit with size effect. Larger diameter and deeper depth of the pit infers greater cavitation impact load, and the influence of the pit diameter is more obvious. When considering the size effect, there is an additional size effect coefficient: 1+54hpα2µ2bdp2σJC2. In the selected size range of pit, the cavitation impact load, impact pressure and velocity of micro-jet predicted with size effect increase by 0.9408%-322.5% compared with those without size effect. The maximum increase ratio appears at the minimum of diameter-to-depth ratio of pit (dp = 2 µm and dh = 2 µm), that is, the smaller the pit diameter is and the greater the depth is, the greater the increase ratio is. Ten typical cavitation pits were selected for inversion analysis. The impact pressure and velocity of micro-jet with and without size effect are 473-1131 MPa and 355-848 m/s, and 427-604 MPa and 320-453 m/s, respectively. The predicted values increase by about 11%-88% when considering the size effect, and the micro-jet velocity predicted is closer to that observed by high-speed cameras, which confirms the necessity and rationality of size effect in the inversion analysis of cavitation pits.

13.
Ultrason Sonochem ; 59: 104744, 2019 Dec.
Article En | MEDLINE | ID: mdl-31473426

Ultrasonic cavitation is a physical dynamic phenomenon of bubbles inflation, compression, and collapse in liquid. A dual-frequency ultrasonic cavitation dynamics model is established in this paper to investigate dynamic evolution of bubble under single and dual frequency ultrasonic modes. The variation of bubble radius, pressure, energy, temperature, and number of water vapor molecules inside the bubble in single and dual frequency ultrasonic modes are analyzed, respectively. The results show the oscillation of cavitation bubbles is more unstable and easier to collapse in dual-frequency ultrasound field than those in single-frequency ultrasound field. With the increase of the ultrasonic frequency, cavitation effect is weakened due to the shortage of oscillation period. Under the same ultrasonic power, the maximums of bubble radius, pressure, and water vapor molecules number inside the bubble in the dual-frequency mode are larger than those in the single-frequency mode. Under the ultrasonic excited by 50 kHz + 70 kHz, the maximum bubble radius and pressure can reach 36.061 µm and 2285.9 MPa, respectively, which are much larger than 18.183 µm, 730.61 MPa at 50 kHz and 14.576 µm, 332.25 MPa at 70 kHz. The calculation results of three different frequency combinations (30 kHz + 50 kHz, 40 kHz + 60 kHz and 50 kHz + 70 kHz) indicate dual-frequency ultrasound can significantly enhance the cavitation effect.

14.
Chem Soc Rev ; 48(15): 4336-4337, 2019 Jul 29.
Article En | MEDLINE | ID: mdl-31282907

Correction for 'Functional synthetic probes for selective targeting and multi-analyte detection and imaging' by Yongkang Yue et al., Chem. Soc. Rev., 2019, DOI: 10.1039/c8cs01006d.

15.
Chem Soc Rev ; 48(15): 4155-4177, 2019 Jul 29.
Article En | MEDLINE | ID: mdl-31204740

In contrast to the classical design of a probe with one binding site to target one specific analyte, probes with multiple interaction sites or, alternatively, with single sites promoting tandem reactions to target one or multiple analytes, have been developed. They have been used in addressing the inherent challenges of selective targeting in the presence of structurally similar compounds and in complex matrices, as well as the visualization of the in vivo interaction or crosstalk between the analytes. Examples of analytes include reactive sulfur species, reactive oxygen species, nucleotides and enzymes. This review focuses on recent innovations in probe design, detection mechanisms and the investigation of biological processes. The vision is to promote the ongoing development of fluorescent probes to enable deeper insight into the physiology of bioactive analytes.

16.
Micromachines (Basel) ; 9(3)2018 Mar 12.
Article En | MEDLINE | ID: mdl-30424058

Polymer microstructures are widely used in optics, flexible electronics, and so forth. We demonstrate a cost-effective bottom-up manner for patterning polymer microstructures by evaporative self-assembly under a flexible geometric confinement at a high temperature. Two-parallel-plates confinement would become curve-to-flat shape geometric confinement as the polydimethylsiloxane (PDMS) cover plate deformed during solvent swelling. We found that a flexible cover plate would be favorable for the formation of gradient microstructures, with various periodicities and widths obtained at varied heights of clearance. After thermal annealing, the edge of the PMMA (Poly-methylmethacrylate) microstructures would become smooth, while the RR-P3HT (regioregular-poly(3-hexylthiophene)) might generate nanocrystals. The morphologies of RR-P3HT structures included thick films, straight lines, hierarchical stripes, incomplete stripes, and regular dots. Finally, a simple field-effect transistor (FET) device was demonstrated with the RR-P3HT micropattern as an active layer.

17.
Polymers (Basel) ; 10(11)2018 Oct 25.
Article En | MEDLINE | ID: mdl-30961114

In this reported work, thermoplastic polyurethane (TPU) was used as a reactive polymer modifying agent to prepare a modified-asphalt, using a high-speed shearing method. Physical performance tests of the TPU-modified asphalt were conducted before and after short-term aging, and the aging resistance was examined by the change in materials properties. In addition, low-temperature rheological properties, thermal properties, the high-temperature storage stability, and the aging mechanism of TPU-modified asphalt were also investigated. The results showed that the addition of TPU improved the aging resistance of base asphalt, which was evidenced by the increased penetration ratio and decreased softening point of the asphalt, after aging. Similarly, Fourier Transform infrared (FTIR) spectroscopy results verified that TPU improved the asphalt aging resistance. It was found that the TPU functional groups played a role in improving thermal properties, high-temperature storage stability, and in the dispersion of modified asphalt.

18.
Ultrasonics ; 84: 13-24, 2018 Mar.
Article En | MEDLINE | ID: mdl-29073483

The effect of ultrasound on generating and controlling the cavitation bubble of the grinding fluid during ultrasonic vibration honing was investigated. The grinding fluid on the surface of the honing stone was measured by utilizing the digital microscope VHX-600ESO. Based on analyzing the cavitation mechanism of the grinding fluid, the bubble dynamics model under conventional honing (CH) and ultrasonic vibration honing (UVH) was established respectively. Difference of dynamic behaviors of the bubble between the cases in UVH and CH was compared respectively, and the effects of acoustic amplitude and ultrasonic frequency on the bubble dynamics were simulated numerically using the Runge-Kutta fourth order method with variable step size adaptive control. Finally, the cavitation intensity of grinding fluids under ultrasound was measured quantitatively using acoustimeter. The results showed that the grinding fluid subjected to ultrasound can generate many bubbles and further forms numerous groups of araneose cavitation bubbles on the surface of the honing stone. The oscillation of the bubble under UVH is more intense than the case under CH, and the maximum velocity of the bubble wall under UVH is higher two magnitudes than the case under CH. For lower acoustic amplitude, the dynamic behaviors of the bubble under UVH are similar to that case under CH. As increasing acoustic amplitude, the cavitation intensity of the bubble is growing increased. Honing pressure has an inhabitation effect on cavitation effect of the grinding fluid. The perfect performance of cavitation of the grinding fluid can be obtained when the device of UVH is in the resonance. However, the cavitation intensity of the grinding fluid can be growing weakened with increasing ultrasonic frequency, when the device of UVH is in the off-resonance. The experimental results agree with the theoretical and numerical analysis, which provides a method for exploring applications of the cavitation effect in ultrasonic assisted machining.

19.
Ultrason Sonochem ; 40(Pt A): 988-994, 2018 Jan.
Article En | MEDLINE | ID: mdl-28946511

Ultrasonic vibration honing technology is an effective means for materials difficult to machine, where cavitation occurs in grinding fluid under the action of ultrasound. To investigate the changes of single cavitation bubble characteristics in the grinding area and how honing parameters influence bubble characteristics, a dynamic model of single cavitation bubble in the ultrasonic vibration honing grinding area was established. The model was based on the bubble dynamics and considered the condensation and evaporation of kerosene steam and honing processing environment. The change rules of bubble radius, temperature, pressure and number of kerosene steam molecules inside the bubble were numerically simulated in the process of bubble moving. The results show that the condensation and evaporation of kerosene steam can help to explain the changes of temperature and pressure inside the bubble. Compared with ultrasonic vibration, the amplitude of bubble radius is greatly suppressed in the ultrasonic honing environment. However, the rate of movement of the bubble is faster. Meanwhile, the minimum values of pressure and temperature are larger, and the number of kerosene steam molecules is less. By studying the effect of honing factors on the movement of the cavitation bubble, it is found that honing pressure has a greater influence on bubble evolution characteristics, while rotation speed of honing head has a minor effect and the reciprocating speed of honing head has little impacts.

20.
Ultrason Sonochem ; 36: 507-516, 2017 May.
Article En | MEDLINE | ID: mdl-28069239

The bubble collapse near a wall will generate strong micro-jet in a liquid environment under ultrasonic field. To explore the effect of the impact of near-wall acoustic bubble collapse micro-jet on an aluminum 1060 sheet, the cavitation threshold formula and micro-jet velocity formula were first proposed. Then the Johnson-Cook rate correlation material constitutive model was considered, and a three-dimensional fluid-solid coupling model of micro-jet impact on a wall was established and analyzed. Finally, to validate the model, ultrasonic cavitation test and inversion analysis based on the theory of spherical indentation test were conducted. The results show that cavitation occurs significantly in the liquid under ultrasonic field, as the applied ultrasonic pressure amplitude is much larger than liquid cavitation threshold. Micro pits appear on the material surface under the impact of micro-jet. Pit depth is determined by both micro-jet velocity and micro-jet diameter, and increases with their increase. Pit diameter is mainly related to the micro-jet diameter and dp/dj≈0.95-1.2, while pit's diameter-to-depth ratio is mainly negatively correlated with the micro-jet velocity. Wall pressure distribution is mostly symmetric and its maximum appears on the edge of micro-jet impingement. Obviously, the greater the micro-jet velocity is, the greater the wall pressure is. Micro pits formed after the impact of micro-jet on aluminum 1060 surface were assessed by ultrasonic cavitation test. Inversion analysis results indicate that equivalent stress, equivalent strain of the pit and impact strength, and velocity of the micro-jet are closely related with pit's diameter-to-depth ratio. For the pit's diameter-to-depth ratio of 16-68, the corresponding micro-jet velocity calculated is 310-370m/s.

...