Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 767
Filter
1.
Nat Immunol ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223350

ABSTRACT

Deciphering the composition of the tumor microenvironment (TME) is critical for understanding tumorigenesis and to design immunotherapies. In the present study, we mapped genetic effects on cell-type proportions using single-cell and bulk RNA sequencing data, identifying 3,494 immunity quantitative trait loci (immunQTLs) across 23 cancer types from The Cancer Genome Atlas. Functional annotation revealed regulatory potential and we further assigned 1,668 genes that regulate TME composition. We constructed a combined immunQTL map by integrating data from European and Chinese colorectal cancer (CRC) samples. A polygenic risk score that incorporates these immunQTLs and hits on a genome-wide association study outperformed in CRC risk stratification within 447,495 multiethnic individuals. Using large-scale population cohorts, we identified that the immunQTL rs1360948 is associated with CRC risk and prognosis. Mechanistically, the rs1360948-G-allele increases CCL2 expression, recruiting regulatory T cells that can exert immunosuppressive effects on CRC progression. Blocking the CCL2-CCR2 axis enhanced anti-programmed cell death protein 1 ligand therapy. Finally, we have established a database (CancerlmmunityQTL2) to serve the research community and advance our understanding of immunogenomic interactions in cancer pathogenesis.

2.
Am J Cancer Res ; 14(8): 3905-3921, 2024.
Article in English | MEDLINE | ID: mdl-39267666

ABSTRACT

Laryngeal squamous cell carcinoma (LSCC) is a prevalent head and neck neoplasm with escalating global morbidity and mortality rates. Despite the increasing burden of LSCC, the drugs currently approved for its treatment are limited. Therefore, it is necessary to identify novel and promising drugs that target LSCC. Cucurbitacin E (CuE) is a naturally oxygenated tetracyclic triterpenoid that suppresses several cancers. However, its anti-LSCC activity and the molecular mechanisms of action remain unclear. This study explored its impact on LSCC, revealing cell viability attenuation and apoptosis enhancement in vitro. Further investigations indicated that CuE significantly decreased mitochondrial membrane potential, thereby promoting cytochrome c release, increasing cleaved-Caspase 3 and cleaved-PARP levels, and triggering mitochondria-dependent apoptosis. Concurrently, exposure of LSCC cells to CuE enhanced endoplasmic reticulum (ER) stress, mobilized the protein kinase RNA-like endoplasmic reticulum kinase/initiation factor 2a/ATF4/C-EBP homologous protein pathway, and induced LSCC cell apoptosis. Finally, CuE markedly elevated intracellular reactive oxygen species (ROS) levels. When ROS were eliminated with N-acetylcysteine, CuE-mediated mitochondrial dysfunction, ER stress, and cell apoptosis were nearly abolished. Similar outcomes were observed in murine LSCC models. Together, these results highlight that CuE suppresses proliferation while triggering apoptosis in LSCC cells via ROS-regulated mitochondrial dysfunction and the ER stress pathway. Hence, CuE may serve as a promising candidate for LCSS treatment.

3.
Front Oncol ; 14: 1420956, 2024.
Article in English | MEDLINE | ID: mdl-39234395

ABSTRACT

Background and aim: The prognosis of microsatellite stable (MSS)-colorectal cancer liver metastasis (CRCLM) following failure of multi-line therapy remains dismal. The aim of this study is to evaluate the efficacy and safety of hepatic arterial infusion chemotherapy (HAIC) plus fruquintinib and tislelizumab (HAIC-F-T treatment) for MSS-CRCLM which failed from multiple-line therapy. Methods: From February 2021 to June 2023, 45 patients with MSS-CRCLM after failure of multiple-line therapy who received HAIC combined with fruquintinib and tislelizumab (HAIC-F-T triple treatment) were enrolled. The combination therapy included HAIC regimens with oxaliplatin and 5-fluorouracil or irinotecan, oxaliplatin, and 5-fluorouracil on days 1-2, intravenous tislelizumab (200 mg) before HAIC on day 1, and oral fruquintinb (3 mg/d) on day 3-21, every 4 weeks. Overall survival (OS) and progression-free survival (PFS) were estimated using the Kaplan-Meier method. Results: The follow-up ended on June 22, 2024, with a median follow-up time of 17.5 months. The objective response rate was 42.2%, and the disease control rate was 82.2%. The median OS was 15.3 months (95% confidence interval [CI]:12.634-17.966), and the median PFS was 7.5 months (95% CI:5.318-9.682). The independent risk factors related to worse OS were previous PD-1 immunotherapy (P = 0.021) and the number of HAIC-F-T triple treatment cycles of ≤ 2 (P = 0.007). The incidence of grade 3 or higher adverse events (AEs) was 20%, with the most frequent grade 3 or higher AEs being abdominal pain (3/45, 6.7%). Conclusion: HAIC combined with fruquintinib and tislelizumab may be an alternative salvage treatment for patients with MSS-CRCLM following failure of multiple-line therapy.

4.
Nanomicro Lett ; 16(1): 279, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225896

ABSTRACT

The new-generation electronic components require a balance between electromagnetic interference shielding efficiency and open structure factors such as ventilation and heat dissipation. In addition, realizing the tunable shielding of porous shields over a wide range of wavelengths is even more challenging. In this study, the well-prepared thermoplastic polyurethane/carbon nanotubes composites were used to fabricate the novel periodic porous flexible metamaterials using fused deposition modeling 3D printing. Particularly, the investigation focuses on optimization of pore geometry, size, dislocation configuration and material thickness, thus establishing a clear correlation between structural parameters and shielding property. Both experimental and simulation results have validated the superior shielding performance of hexagon derived honeycomb structure over other designs, and proposed the failure shielding size (Df ≈λ/8 - λ/5) and critical inclined angle (θf ≈43° - 48°), which could be used as new benchmarks for tunable electromagnetic shielding. In addition, the proper regulation of the material thickness could remarkably enhance the maximum shielding capability (85 - 95 dB) and absorption coefficient A (over 0.83). The final innovative design of the porous shielding box also exhibits good shielding effectiveness across a broad frequency range (over 2.4 GHz), opening up novel pathways for individualized and diversified shielding solutions.

5.
BMC Cancer ; 24(1): 1095, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227825

ABSTRACT

PURPOSE: One of the most frequent side effects of radical prostatectomy (RP) is urinary incontinence. The primary cause of urine incontinence is usually thought to be impaired urethral sphincter function; nevertheless, the pathophysiology and recovery process of urine incontinence remains unclear. This study aimed to identify potential risk variables, build a risk prediction tool that considers preoperative urodynamic findings, and direct doctors to take necessary action to reduce the likelihood of developing early urinary incontinence. METHODS: We retrospectively screened patients who underwent radical prostatectomy between January 1, 2020 and December 31, 2023 at the First People 's Hospital of Nantong, China. According to nomogram results, patients who developed incontinence within three months were classified as having early incontinence. The training group's general characteristics were first screened using univariate logistic analysis, and the LASSO method was applied for the best prediction. Multivariate logistic regression analysis was carried out to determine independent risk factors for early postoperative urine incontinence in the training group and to create nomograms that predict the likelihood of developing early urinary incontinence. The model was internally validated by computing the performance of the validation cohort. The nomogram discrimination, correction, and clinical usefulness were assessed using the c-index, receiver operating characteristic curve, correction plot, and clinical decision curve. RESULTS: The study involved 142 patients in all. Multivariate logistic regression analysis following RP found seven independent risk variables for early urinary incontinence. A nomogram was constructed based on these independent risk factors. The training and validation groups' c-indices showed that the model had high accuracy and stability. The calibration curve demonstrates that the corrective effect of the training and verification groups is perfect, and the area under the receiver operating characteristic curve indicates great identification capacity. Using a nomogram, the clinical net benefit was maximised within a probability threshold of 0.01-1, according to decision curve analysis (DCA). CONCLUSION: The nomogram model created in this study can offer a clear, personalised analysis of the risk of early urine incontinence following RP. It is highly discriminatory and accurate, and it can help create efficient preventative measures and identify high-risk populations.


Subject(s)
Nomograms , Prostatectomy , Prostatic Neoplasms , Urinary Incontinence , Humans , Prostatectomy/adverse effects , Urinary Incontinence/etiology , Urinary Incontinence/diagnosis , Male , Middle Aged , Retrospective Studies , Prostatic Neoplasms/surgery , Aged , Risk Factors , Postoperative Complications/etiology , Postoperative Complications/diagnosis , Postoperative Complications/epidemiology , ROC Curve , China/epidemiology
6.
Curr Res Immunol ; 5: 100081, 2024.
Article in English | MEDLINE | ID: mdl-39113760

ABSTRACT

NK cells participate in ischemia reperfusion injury (IRI) and transplant rejection. Endogenous regulatory systems may exist to attenuate NK cell activation and cytotoxicity in IRI associated with kidney transplantation. A greater understanding of NK regulation will provide insights in transplant outcomes and could direct new therapeutic strategies. Kidney tubular epithelial cells (TECs) may negatively regulate NK cell activation by their surface expression of a complex family of C-type lectin-related proteins (Clrs). We have found that Clr-b and Clr-f were expressed by TECs. Clr-b was upregulated by inflammatory cytokines TNFα and IFNγ in vitro. Silencing of both Clr-b and Clr-f expression using siRNA resulted in increased NK cell killing of TECs compared to silencing of either Clr-b or Clr-f alone (p < 0.01) and when compared to control TECs (p < 0.001). NK cells treated in vitro with soluble Clr-b and Clr-f proteins reduced their capacity to kill TECs (p < 0.05). Hence, NK cell cytotoxicity can be inhibited by Clr proteins on the surface of TECs. Our study suggests a synergistic effect of Clr molecules in regulating NK cell function in renal cells and this may represent an important endogenous regulatory system to limit NK cell-mediated organ injury during inflammation.

7.
Analyst ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39171410

ABSTRACT

Nanozymes, serving as synthetic alternatives to natural enzymes, offer several benefits including cost-effectiveness, enzyme-like catalytic abilities, enhanced stability, adjustable catalytic activity, easy recyclability, mild reaction conditions, and environmental friendliness. Nonetheless, the ongoing quest to develop nanozymes with enhanced activity and to delve into the catalytic mechanism remains a challenge. In our research, we effectively developed Au@CuO nanocomposites (Au@CuO Nc), replicating the functions of four enzymes found in nature: peroxidase (POD), catalase (CAT), glutathione peroxidase (GPx), and oxidase (OXD). The catalytic efficiency of Au@CuO Nc for TMB oxidation (oxTMB) was approximately 4.8 times greater than that of plain Cu2O cubes, attributed to the synergistic catalytic impact between the Au element and Cu2O within Au@CuO Nc. Mechanistic studies revealed that the novel Au@CuO Nc nanozyme greatly enhances the decomposition of H2O2 to reactive oxygen species (ROS) intermediates (˙OH, ˙O2- and 1O2), resulting in increased POD-like activity of the single-component Cu2O cubes. When an antioxidant like TA was added to the chromogenic system, it converted oxTMB into a colorless form of TMB, enabling further evaluation of TA. Hence, a colorimetric sensor was developed for the rapid and precise quantitative measurement of TA, demonstrating strong linearity between 0.3 and 2.4 µM and featuring a low detection threshold of 0.25 µM. Moreover, this sensor was effectively utilized for the assessment of TA in actual tea samples. This work innovatively proposes a simplified and reliable strategy for the advanced design of highly effective Cu-based nanozymes, enhancing enzyme-like reactions for simultaneous, on-site colorimetric probing of antioxidants.

8.
Nat Commun ; 15(1): 7324, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39183203

ABSTRACT

During the progression of proliferative vitreoretinopathy (PVR) following ocular trauma, previously quiescent retinal pigment epithelial (RPE) cells transition into a state of rapid proliferation, migration, and secretion. The elusive molecular mechanisms behind these changes have hindered the development of effective pharmacological treatments, presenting a pressing clinical challenge. In this study, by monitoring the dynamic changes in chromatin accessibility and various histone modifications, we chart the comprehensive epigenetic landscape of RPE cells in male mice subjected to traumatic PVR. Coupled with transcriptomic analysis, we reveal a robust correlation between enhancer activation and the upregulation of the PVR-associated gene programs. Furthermore, by constructing transcription factor regulatory networks, we identify the aberrant activation of enhancer-driven RANK-NFATc1 pathway as PVR advanced. Importantly, we demonstrate that intraocular interventions, including nanomedicines inhibiting enhancer activity, gene therapies targeting NFATc1 and antibody therapeutics against RANK pathway, effectively mitigate PVR progression. Together, our findings elucidate the epigenetic basis underlying the activation of PVR-associated genes during RPE cell fate transitions and offer promising therapeutic avenues targeting epigenetic modulation and the RANK-NFATc1 axis for PVR management.


Subject(s)
NFATC Transcription Factors , Retinal Pigment Epithelium , Signal Transduction , Vitreoretinopathy, Proliferative , Animals , Vitreoretinopathy, Proliferative/metabolism , Vitreoretinopathy, Proliferative/genetics , Vitreoretinopathy, Proliferative/pathology , Retinal Pigment Epithelium/metabolism , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Mice , Male , Mice, Inbred C57BL , Humans , Enhancer Elements, Genetic/genetics , Epigenesis, Genetic , Disease Models, Animal , Eye Injuries/metabolism , Eye Injuries/genetics , Eye Injuries/pathology , Gene Expression Profiling , Multiomics
9.
Arch Dermatol Res ; 316(8): 565, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177801

ABSTRACT

OBJECTIVE: Two-sample Mendelian randomization (TSMR) was employed to examine the association between lipidome and five inflammatory skin diseases. METHOD: To evaluate the association between various molecular subtypes of lipidome and the risk of five inflammatory skin diseases, we analyzed a comprehensive GWAS dataset comprising 179 lipidome. The Two-Sample Mendelian Randomization (TSMR) method was employed to investigate causal relationships. Heterogeneity and pleiotropy were assessed using Cochran's Q test, MR-Egger intercept test, and MR-PRESSO global test. Additionally, a sensitivity analysis was conducted to evaluate the influence of individual single nucleotide polymorphisms on Mendelian Randomization study. RESULTS: Using 179 serum lipidome as exposures and five common inflammatory skin diseases as outcomes, we investigated their associations in this large-scale study. Our findings reveal significant impacts of glycerophospholipids, glycerolipids, and sphingomyelins on inflammatory skin diseases. Glycerophospholipids were protective against pemphigus but predominantly posed risks for other inflammatory skin diseases. Specifically, phosphatidylcholine (16:0_0:0) exhibited the most significant risk association with lichen planus (OR = 1.25, 95% CI 1.11-1.40, P < 0.001). Conversely, glycerolipids showed no effect on lichen planus but were protective against pemphigus while potentially posing risks for other conditions. Triacylglycerol (46:2) showed the most substantial risk association with vitiligo (OR = 1.99, 95% CI 1.35-2.93, P < 0.001). Furthermore, sphingomyelins had no effect on atopic dermatitis but posed potential risks for other inflammatory skin diseases. Sphingomyelin (d40:1) notably emerged as a significant risk factor for pemphigus (OR = 1.91, 95% CI 1.37-2.66, P < 0.001). CONCLUSIONS: This study has elucidated the potential harmful effects of glycerophospholipids, glycerolipids, and sphingomyelins on inflammatory skin diseases, while also providing valuable insights for future research into the pathophysiology, prevention and treatment of these conditions.


Subject(s)
Genome-Wide Association Study , Lipidomics , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Humans , Genetic Predisposition to Disease , Skin Diseases/genetics , Skin Diseases/epidemiology
10.
J Am Chem Soc ; 146(32): 22335-22347, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39092859

ABSTRACT

Searching for high energy-density electrode materials for sodium ion batteries has revealed Na-deficient intercalation compounds with lattice oxygen redox as promising high-capacity cathodes. However, anionic redox reactions commonly encountered poor electrochemical reversibility and unfavorable structural transformations during dynamic (de)sodiation processes. To address this issue, we employed lithium orbital hybridization chemistry to create Na-O-Li configuration in a prototype P2-layered Na43/60Li1/20Mg7/60Cu1/6Mn2/3O2 (P2-NaLMCM') cathode material. That Li+ ions, having low electronegativity, reside in the transition metal slabs serves to stimulate unhybridized O 2p orbitals to facilitate the stable capacity contribution of oxygen redox at high state of charge. The prismatic-type structure evolving to an intergrowth structure of the Z phase at high charging state could be simultaneously alleviated by reducing the electrostatic repulsion of O-O layers. As a consequence, P2-NaLMCM' delivers a high specific capacity of 183.8 mAh g-1 at 0.05 C and good cycling stability with a capacity retention of 80.2% over 200 cycles within the voltage range of 2.0-4.5 V. Our findings provide new insights into both tailoring oxygen redox chemistry and stabilizing dynamic structural evolution for high-energy battery cathode materials.

11.
Article in English | MEDLINE | ID: mdl-39158955

ABSTRACT

PURPOSE: This observational study aimed to investigate associations between dietary live microbe intake and mortality, as well as biological aging. METHODS: Adults from the 1999-2018 National Health and Nutrition Examination Survey were categorized into low, medium, and high dietary live microbe groups. Foods with medium and high live microbe content were aggregated into a medium-high consumption category. The outcomes included all-cause, cardiovascular, and cancer mortality, along with biological age (BA) acceleration assessed by the Klemera-Doubal method (KDM) and PhenoAge. Multiple regression analyses and mediation analyses were conducted to assess associations, adjusting for potential confounders. RESULTS: A total of 34,133 adults were included in our analyses. Over an average follow-up period of 9.92 years, 5,462 deaths occurred. In multivariate adjusted models, every 100 grams of medium-high group foods consumed was associated with reduced all-cause mortality (hazard ratio [HR] 0.94, 95% confidence interval [CI] 0.91 to 0.97, P < 0.001) and cardiovascular mortality (HR 0.91, 95% CI 0.86 to 0.96, P < 0.001), but not with cancer mortality (HR 1.01, 95% CI 0.95 to 1.07, P = 0.768). Every 100 grams medium-high group foods consumption was associated with decreased KDM BA acceleration (fully adjusted regression coefficient -0.09, 95% CI -0.15 to -0.04, P = 0.001) and PhenoAge acceleration (fully adjusted regression coefficient -0.07, 95% CI -0.11 to -0.03, P < 0.001). Mediation analysis showed that BA acceleration partially mediated live microbes-mortality associations. CONCLUSION: Our results suggest that higher dietary live microbe intake is associated with lower mortality risk and slower biological aging. However, further research is needed to verify these findings.

12.
Diabetes Obes Metab ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39165042

ABSTRACT

AIM: To assess the association of Life's Essential 8 (LE8) and the presence of abdominal aortic calcification (AAC) with mortality among middle-aged and older individuals. METHODS: Participants aged older than 40 years were enrolled from the National Health and Nutrition Examination Survey 2013-2014. AAC was assessed using dual-energy X-ray absorptiometry. Mortality data were ascertained through linkage with the National Death Index until 31 December 2019. The LE8 score incorporates eight components: diet, physical activity, nicotine exposure, sleep health, body mass index, blood lipids, blood glucose and blood pressure. The total LE8 score, an unweighted average of all components, was categorized into low (0-49), medium (50-79) and high (80-100) scores. RESULTS: This study included 2567 individuals, with a mean LE8 score of 67.28 ± 0.48 and an AAC prevalence of 28.28%. Participants with low LE8 scores showed a significantly higher prevalence of AAC (odds ratio = 2.12 [1.12-4.19]) compared with those with high LE8 scores. Over a median 6-year follow-up, there were 222 all-cause deaths, and 55 cardiovascular deaths occurred. Participants with AAC had an increased risk of all-cause (hazard ratio [HR] = 2.17 [1.60-2.95]) and cardiovascular (HR = 2.35 [1.40-3.93]) mortality. Moreover, individuals with AAC and low or medium LE8 scores exhibited a 137% (HR = 2.37 [1.58-3.54]) and 119% (HR = 2.19 [1.61-2.99]) higher risk of all-cause mortality, as well as a 224% (HR = 3.24 [1.73-6.04]) and 125% (HR = 2.25 [1.24-4.09]) increased risk of cardiovascular mortality, respectively. CONCLUSIONS: The LE8 score correlates with AAC prevalence in middle-aged and older individuals and serves as a valuable tool for evaluating the risk of all-cause and cardiovascular mortality in individuals with AAC.

13.
Nat Med ; 30(8): 2295-2302, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39095596

ABSTRACT

Previous findings have indicated the potential benefits of the Chinese traditional medicine Qiliqiangxin (QLQX) in heart failure. Here we performed a double-blind, randomized controlled trial to evaluate the efficacy and safety of QLQX in patients with heart failure and reduced ejection fraction (HFrEF). This multicenter trial, conducted in 133 hospitals in China, enrolled 3,110 patients with HFrEF with NT-proBNP levels of ≥450 pg ml-1 and left ventricular ejection fraction of ≤40%. Participants were randomized to receive either QLQX capsules or placebo (four capsules three times daily) alongside standard heart failure therapy. The trial met its primary outcome, which was a composite of hospitalization for heart failure and cardiovascular death: over a median follow-up of 18.3 months, the primary outcome occurred in 389 patients (25.02%) in the QLQX group and 467 patients (30.03%) in the placebo group (hazard ratio (HR), 0.78; 95% confidence interval (CI), 0.68-0.90; P < 0.001). In an analysis of secondary outcomes, the QLQX group showed reductions in both hospitalization for heart failure (15.63% versus 19.16%; HR, 0.76; 95% CI, 0.64-0.90; P = 0.002) and cardiovascular death (13.31% versus 15.95%; HR, 0.83; 95% CI, 0.68-0.996; P = 0.045) compared to the placebo group. All-cause mortality did not differ significantly between the two groups (HR, 0.84; 95% CI, 0.70-1.01; P = 0.058) and adverse events were also comparable between the groups. The results of this trial indicate that QLQX may improve clinical outcomes in patients with HFrEF when added to conventional therapy. ChiCTR registration: ChiCTR1900021929 .


Subject(s)
Drugs, Chinese Herbal , Heart Failure , Stroke Volume , Humans , Heart Failure/drug therapy , Heart Failure/mortality , Heart Failure/physiopathology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/adverse effects , Drugs, Chinese Herbal/administration & dosage , Male , Female , Double-Blind Method , Stroke Volume/drug effects , Middle Aged , Aged , Medicine, Chinese Traditional , Treatment Outcome , Hospitalization , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood
14.
Chem Sci ; 15(32): 13041-13048, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39148785

ABSTRACT

Herein, a catalytic photoredox-neutral strategy for alkyne deuterocarboxylation with tetrabutylammonium oxalate as the carbonyl source and D2O as the deuteration agent was described. For the first time, the oxalic salt acted as both the reductant and carbonyl source through single electron transfer and subsequential homolysis of the C-C bond. The strongly reductive CO2 radical anion species in situ generated from oxalate played significant roles in realizing the global deuterocarboxylation of terminal and internal alkynes to access various tetra- and tri-deuterated aryl propionic acids with high yields and deuteration ratios.

15.
Skin Res Technol ; 30(9): e13858, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39196303

ABSTRACT

BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory skin condition whose origins remain unclear. Existing epidemiological evidence suggests that inflammation and immune factors play pivotal roles in the onset and progression of AD. However, previous research on the connection between immune inflammation and AD has yielded inconclusive results. METHODS: To evaluate the causal relationship between immunological characteristics and AD, this study employed a bidirectional, two-sample Mendelian randomization (MR) approach. We utilized large-scale, publicly available genome-wide association studies to investigate the causal associations between 731 immunological feature cells and the risk of AD. RESULTS: Significant associations were identified between six immune phenotypes and AD risk: increased Basophil %CD33dim HLA DR-CD66b-, CD25 on IgD+ CD24+, CD40 on monocytes, HLA DR on CD14+ CD16-monocytes, HLA DR on CD14+monocytes correlated with higher AD risk, while elevated CD3 on CD4 Treg was linked to lower risk. Reverse MR analysis revealed AD as a risk factor for IgD+ CD38br AC and IgD+ CD38br %B cell, but a protective factor against CD20 on IgD+ CD38- naive and CD8 on NKT. CONCLUSION: Our findings elucidate the intricate interplay between immune cells and AD, informing future research into AD pathophysiology and therapeutics.


Subject(s)
Dermatitis, Atopic , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Dermatitis, Atopic/genetics , Dermatitis, Atopic/immunology , Risk Factors , Monocytes/immunology , Genetic Predisposition to Disease/genetics , Antigens, CD/genetics
16.
Water Res ; 262: 122143, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39067275

ABSTRACT

The lockdown restrictions against coronavirus disease 2019 (COVID-19) have led to unprecedented reductions in global anthropogenic activities. Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic combustion-induced pollutants, but the influence of anthropogenic responses to COVID-19 on PAH contamination remains largely unknown. Here we quantified the impacts of lockdown restrictions on 16PAH pollution based on the data in concentrations dissolved in the water phase and absorbed on the suspended particulate matter (SPM) in the Elbe River from 2015 to 2021 and determined the changes in source contributions classified by individual years and stations. Results show that the annual average PAH concentrations in water and SPM were determined as 0.055 µg·L-1 and 3.77 mg·kg-1 from 2015 to 2021, respectively. Pronounced declines in PAH on SPM (up to -18 %) were observed during the three lockdowns in Germany from 2020 to 2021. However, dramatic rebounds of anthropogenic activities during the removal of the lockdown led to increases (up to 29 %) in ∑16PAH concentrations compared to the same period in previous years. Through the source apportionment method, vehicle and coal emissions were the two most predominant sources of PAHs in the river. Vehicle contribution decreased during the lockdown, while coal emissions increased by 5 %. Health risks for three age groups were assessed as potential low risk and decreased by 18 % from 1.54 × 10-4 in 2015 to 1.27 × 10-4 in 2019, and rebounded to 1.40 × 10-4 in 2020-2021. The findings of this study highlight the strong consistency between PAH concentrations and anthropogenic intensity, implying that source control from improved cleaner production is an effective pathway for mitigating PAH contamination in the aquatic environment.


Subject(s)
COVID-19 , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons , Rivers , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/analysis , COVID-19/epidemiology , Water Pollutants, Chemical/analysis , Humans , Rivers/chemistry , SARS-CoV-2 , Germany , Particulate Matter/analysis
17.
BMC Cancer ; 24(1): 916, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080571

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) ranks as the third most common malignancies in the world, and periodic examination of the patient is advantageous in reducing the mortality of CRC. The first blood-based Septin9 gene methylation assay which recognized by the US FDA for CRC examination was Epi proColon. However, this assay was not broadly applied in the current clinical guideline because of its relatively lower sensitivity in the detection of early-stage CRC. METHODS: This study aimed at developing a new multiplex Septin9 methylation assay (ColonUSK) which simultaneously evaluates two CpG-rich subregions in the promoter of the Septin9 gene and an internal control in a single reaction. ColonUSK proved increased sensitivity, with a detection limit as low as 12pg of the positive DNA compared with the Septin9 assay targeting one CpG-rich subregion. 1366 subjects were prospectively recruited from four comprehensive hospitals in China in an opportunistic screening study for assessing its value in CRC detection. Blind testing was developed to evaluate ColonUSK in comparison with clinical examination using clinical gold standard such as colonoscopy. RESULTS: The assay demonstrates clinical sensitivity for diagnosing colorectal cancer (CRC) and advanced adenoma at rates of 77.34% and 25.26%, respectively. Furthermore, ColonUSK exhibits a high degree of specificity for non-CRC cases (95.95%) clinically. Significantly, the detection rate of cases in high-grade intraepithelial neoplasia increased to 54.29%. The value for the assay in the Kappa test was 0.76, showing a high degree of consistency between ColonUSK and clinical gold standard. CONCLUSIONS: ColonUSK indicated moderate diagnostic value and could become a non-invasive detection way for CRC. The implementation of the ColonUSK assay has the capacity to markedly enhance CRC screening practices.


Subject(s)
Colorectal Neoplasms , DNA Methylation , Early Detection of Cancer , Septins , Humans , Septins/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Male , Female , Middle Aged , Early Detection of Cancer/methods , Aged , Promoter Regions, Genetic , Sensitivity and Specificity , Biomarkers, Tumor/genetics , CpG Islands , Neoplasm Staging , Adult , Prospective Studies , Neoplasm Grading
18.
Biochem Biophys Res Commun ; 725: 150215, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38870845

ABSTRACT

Cardiac ischemia results in anaerobic metabolism and lactic acid accumulation and with time, intracellular and extracellular acidosis. Ischemia and subsequent reperfusion injury (IRI) lead to various forms of programmed cell death. Necroptosis is a major form of programmed necrosis that worsens cardiac function directly and also promotes inflammation by the release of cellular contents. Potential effects of increasing acidosis on programmed cell death and their specific components have not been well studied. While apoptosis is caspase-dependent, in contrast, necroptosis is mediated by the receptor-interacting protein kinases 1 and 3 (RIPK1/3). In our study, we observed that at physiological pH = 7.4, caspase-8 inhibition did not prevent TNFα-induced cell death in mouse cardiac vascular endothelial cells (MVECs) but promoted necroptotic cell death. As expected, necroptosis was blocked by RIPK1 inhibition. However, at pH = 6.5, TNFα induced an apoptosis-like pattern which was inhibited by caspase-8 inhibition. Interestingly phosphorylation of necroptotic molecules RIPK1, RIPK3, and mixed lineage kinase domain-like protein (MLKL) was enhanced in an acidic pH environment. However, RIPK3 and MLKL phosphorylation was self-limited which may have limited their participation in necroptosis. In addition, an acidic pH promoted apoptosis-inducing factor (AIF) cleavage and nuclear translocation. AIF RNA silencing inhibited cell death, supporting the role of AIF in this cell death. In summary, our study demonstrated that the pH of the micro-environment during inflammation can bias cell death pathways by altering the function of necroptosis-related molecules and promoting AIF-mediated cell death. Further insights into the mechanisms by which an acidic cellular micro-environment influences these and perhaps other forms of regulated cell death, may lead to therapeutic strategies to attenuate IRI.


Subject(s)
Apoptosis , Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases , Tumor Necrosis Factor-alpha , Animals , Hydrogen-Ion Concentration , Apoptosis/drug effects , Necroptosis/drug effects , Mice , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Tumor Necrosis Factor-alpha/metabolism , Caspase 8/metabolism , Protein Kinases/metabolism , Protein Kinases/genetics , Cells, Cultured , Phosphorylation , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/pathology
19.
Clin Pharmacol Ther ; 116(2): 315-327, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38825990

ABSTRACT

Bispecific antibodies, by enabling the targeting of more than one disease-associated antigen or engaging immune effector cells, have both advantages and challenges compared with a combination of two different biological products. As of December 2023, there are 11 U.S. Food and Drug Administration-approved BsAb products on the market. Among these, 9 have been approved for oncology indications, and 8 of these are CD3 T-cell engagers. Clinical pharmacology strategies, including dose-related strategies, are critical for bispecific antibody development. This analysis reviewed clinical studies of all approved bispecific antibodies in oncology and identified dose-related perspectives to support clinical dose optimization and regulatory approvals, particularly in the context of the Food and Drug Administration's Project Optimus: (1) starting doses and dose ranges in first-in-human studies; (2) dose strategies including step-up doses or full doses for recommended phase 2 doses or dose level(s) used for registrational intent; (3) restarting therapy after dose delay; (4) considerations for the introduction of subcutaneous doses; (5) body weight vs. flat dosing strategy; and (6) management of immunogenicity. The learnings arising from this review are intended to inform successful strategies for future bispecific antibody development.


Subject(s)
Antibodies, Bispecific , Drug Approval , Neoplasms , United States Food and Drug Administration , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/administration & dosage , Humans , United States , Neoplasms/drug therapy , Neoplasms/immunology , Dose-Response Relationship, Drug , Drug Development/methods , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/immunology , Antineoplastic Agents, Immunological/pharmacology , Pharmacology, Clinical/methods , Animals
20.
Mil Med Res ; 11(1): 36, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863031

ABSTRACT

BACKGROUND: Dysregulation of enhancer transcription occurs in multiple cancers. Enhancer RNAs (eRNAs) are transcribed products from enhancers that play critical roles in transcriptional control. Characterizing the genetic basis of eRNA expression may elucidate the molecular mechanisms underlying cancers. METHODS: Initially, a comprehensive analysis of eRNA quantitative trait loci (eRNAQTLs) was performed in The Cancer Genome Atlas (TCGA), and functional features were characterized using multi-omics data. To establish the first eRNAQTL profiles for colorectal cancer (CRC) in China, epigenomic data were used to define active enhancers, which were subsequently integrated with transcription and genotyping data from 154 paired CRC samples. Finally, large-scale case-control studies (34,585 cases and 69,544 controls) were conducted along with multipronged experiments to investigate the potential mechanisms by which candidate eRNAQTLs affect CRC risk. RESULTS: A total of 300,112 eRNAQTLs were identified across 30 different cancer types, which exert their influence on eRNA transcription by modulating chromatin status, binding affinity to transcription factors and RNA-binding proteins. These eRNAQTLs were found to be significantly enriched in cancer risk loci, explaining a substantial proportion of cancer heritability. Additionally, tumor-specific eRNAQTLs exhibited high responsiveness to the development of cancer. Moreover, the target genes of these eRNAs were associated with dysregulated signaling pathways and immune cell infiltration in cancer, highlighting their potential as therapeutic targets. Furthermore, multiple ethnic population studies have confirmed that an eRNAQTL rs3094296-T variant decreases the risk of CRC in populations from China (OR = 0.91, 95%CI 0.88-0.95, P = 2.92 × 10-7) and Europe (OR = 0.92, 95%CI 0.88-0.95, P = 4.61 × 10-6). Mechanistically, rs3094296 had an allele-specific effect on the transcription of the eRNA ENSR00000155786, which functioned as a transcriptional activator promoting the expression of its target gene SENP7. These two genes synergistically suppressed tumor cell proliferation. Our curated list of variants, genes, and drugs has been made available in CancereRNAQTL ( http://canernaqtl.whu.edu.cn/#/ ) to serve as an informative resource for advancing this field. CONCLUSION: Our findings underscore the significance of eRNAQTLs in transcriptional regulation and disease heritability, pinpointing the potential of eRNA-based therapeutic strategies in cancers.


Subject(s)
Enhancer Elements, Genetic , Neoplasms , Quantitative Trait Loci , Humans , Enhancer Elements, Genetic/genetics , Neoplasms/genetics , Genetic Variation/genetics , Genome-Wide Association Study/methods , Colorectal Neoplasms/genetics , Case-Control Studies , RNA/genetics , China , Enhancer RNAs
SELECTION OF CITATIONS
SEARCH DETAIL