Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 15(6): 401, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849370

ABSTRACT

The triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor that affects cellular phenotypes by modulating phagocytosis and metabolism, promoting cell survival, and counteracting inflammation. Its role in renal injury, in particular, unilateral ureteral obstruction (UUO) or ischemia-reperfusion injury (IRI)-induced renal injury remains unclear. In our study, WT and Trem2-/- mice were employed to evaluate the role of TREM2 in renal macrophage infiltration and tissue injury after UUO. Bone marrow-derived macrophages (BMDM) from both mouse genotypes were cultured and polarized for in vitro experiments. Next, the effects of TREM2 on renal injury and macrophage polarization in IRI mice were also explored. We found that TREM2 expression was upregulated in the obstructed kidneys. TREM2 deficiency exacerbated renal inflammation and fibrosis 3 and 7 days after UUO, in association with reduced macrophage infiltration. Trem2-/- BMDM exhibited increased apoptosis and poorer survival compared with WT BMDM. Meanwhile, TREM2 deficiency augmented M1 and M2 polarization after UUO. Consistent with the in vivo observations, TREM2 deficiency led to increased polarization of BMDM towards the M1 proinflammatory phenotype. Mechanistically, TREM2 deficiency promoted M1 and M2 polarization via the JAK-STAT pathway in the presence of TGF-ß1, thereby affecting cell survival by regulating mTOR signaling. Furthermore, cyclocreatine supplementation alleviated cell death caused by TREM2 deficiency. Additionally, we found that TREM2 deficiency promoted renal injury, fibrosis, and macrophage polarization in IRI mice. The current data suggest that TREM2 deficiency aggravates renal injury by promoting macrophage apoptosis and polarization via the JAK-STAT pathway. These findings have implications for the role of TREM2 in the regulation of renal injury that justify further evaluation.


Subject(s)
Apoptosis , Macrophages , Membrane Glycoproteins , Mice, Inbred C57BL , Receptors, Immunologic , STAT Transcription Factors , Signal Transduction , Animals , Macrophages/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice , STAT Transcription Factors/metabolism , Janus Kinases/metabolism , Kidney/pathology , Kidney/metabolism , Mice, Knockout , Male , Fibrosis , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Ureteral Obstruction/pathology , Ureteral Obstruction/metabolism , Ureteral Obstruction/complications , Cell Polarity , TOR Serine-Threonine Kinases/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics
2.
Front Immunol ; 15: 1365226, 2024.
Article in English | MEDLINE | ID: mdl-38812511

ABSTRACT

Objective: The aberrant mobilization and activation of various T lymphocyte subpopulations play a pivotal role in the pathogenesis of diabetic kidney disease (DKD), yet the regulatory mechanisms underlying these processes remain poorly understood. Our study is premised on the hypothesis that the dysregulation of immune checkpoint molecules on T lymphocytes disrupts kidney homeostasis, instigates pathological inflammation, and promotes DKD progression. Methods: A total of 360 adult patients with DKD were recruited for this study. The expression of immune checkpoint molecules on T lymphocytes was assessed by flow cytometry for peripheral blood and immunofluorescence staining for kidney tissue. Single-cell sequencing (scRNA-seq) data from the kidneys of DKD mouse model were analyzed. Results: Patients with DKD exhibited a reduction in the proportion of CD3+TIM-3+ T cells in circulation concurrent with the emergence of significant albuminuria and hematuria (p=0.008 and 0.02, respectively). Conversely, the incidence of infection during DKD progression correlated with an elevation of peripheral CD3+TIM-3+ T cells (p=0.01). Both univariate and multivariate logistic regression analysis revealed a significant inverse relationship between the proportion of peripheral CD3+TIM-3+ T cells and severe interstitial mononuclear infiltration (OR: 0.193, 95%CI: 0.040,0.926, p=0.04). Immunofluorescence assays demonstrated an increase of CD3+, TIM-3+ and CD3+TIM-3+ interstitial mononuclear cells in the kidneys of DKD patients as compared to patients diagnosed with minimal change disease (p=0.03, 0.02 and 0.002, respectively). ScRNA-seq analysis revealed decreased gene expression of TIM3 on T lymphocytes in DKD compared to control. And one of TIM-3's main ligands, Galectin-9 on immune cells showed a decreasing trend in gene expression as kidney damage worsened. Conclusion: Our study underscores the potential protective role of TIM-3 on T lymphocytes in attenuating the progression of DKD and suggests that monitoring circulating CD3+TIM3+ T cells may serve as a viable strategy for identifying DKD patients at heightened risk of disease progression.


Subject(s)
Diabetic Nephropathies , Hepatitis A Virus Cellular Receptor 2 , T-Lymphocytes , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Diabetic Nephropathies/immunology , Diabetic Nephropathies/etiology , Diabetic Nephropathies/pathology , Female , Middle Aged , Male , Animals , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Aged , Adult , Inflammation/immunology , Kidney/pathology , Kidney/immunology , Mice, Inbred C57BL , Disease Progression
3.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 75-83, 2024 Jan 28.
Article in English, Chinese | MEDLINE | ID: mdl-38615169

ABSTRACT

OBJECTIVES: With the in-depth study of complement dysregulation, glomerulonephritis with dominant C3 has received increasing attention, with a variety of pathologic types and large differences in symptoms and prognosis between pathologic types. This study analyzes the clinical, pathological, and prognostic characteristics of different pathological types of glomerulonephritis with dominant C3, aiming to avoid misdiagnosis and missed diagnoses. METHODS: The clinical, pathological, and follow-up data of 52 patients diagnosed as glomerulonephritis with dominant C3 by renal biopsy from June 2013 to October 2022 were retrospectively analyzed. According to the clinical feature and results of pathology, 15 patients with post-infectious glomerulonephritis (PIGN) and 37 patients with of non-infectious glomerulonephritis (N-PIGN) were classified. N-PIGN subgroup analysis was performed, and 16 patients were assigned into a C3-alone-deposition group and 21 in a C3-dominant-deposition group, or 27 in a C3 glomerulopathy (C3G) group and 10 in a non-C3 nephropathy (N-C3G) group. RESULTS: The PIGN group had lower creatinine values (84.60 µmol/L vs179.62 µmol/L, P=0.001), lower complement C3 values (0.36 g/L vs0.74 g/L, P<0.001) at biopsy, and less severe pathological chronic lesions compared with the N-PIGN group. In the N-PIGN subgroup analysis, the C3-dominant-deposition group had higher creatinine values (235.30 µmol/L vs106.70 µmol/L, P=0.004) and higher 24-hour urine protein values (4 025.62 mg vs1 981.11 mg, P=0.037) than the C3-alone-deposition group. The prognosis of kidney in the PIGN group (P=0.049), the C3-alone-deposition group (P=0.017), and the C3G group (P=0.018) was better than that in the N-PIGN group, the C3-dominant-deposition group, and the N-C3G group, respectively. CONCLUSIONS: Glomerulonephritis with dominant C3 covers a variety of pathological types, and PIGN needs to be excluded before diagnosing C3G because of considerable overlap with atypical PIGN and C3G; in addition, the deposition of C1q complement under fluorescence microscope may indicate poor renal prognosis, and relevant diagnosis, treatment, and follow-up should be strengthened.


Subject(s)
Complement C3 , Glomerulonephritis , Humans , Creatinine , Retrospective Studies , Glomerulonephritis/diagnosis , Kidney
4.
Am J Transplant ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38648890

ABSTRACT

The activation of innate immunity following transplantation has been identified as a crucial factor in allograft inflammation and rejection. However, the role of cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)/stimulator of interferon genes (STING) signaling-mediated innate immunity in the pathogenesis of allograft rejection remains unclear. Utilizing a well-established murine model of corneal transplantation, we demonstrated increased expression of cGAS and STING in rejected-corneal allografts compared with syngeneic (Syn) and normal (Nor) corneas, along with significant activation of the cGAS/STING pathway, as evidenced by the enhanced phosphorylation of TANK-binding kinase 1and interferon regulatory factor 3. Pharmacological and genetic inhibition of cGAS/STING signaling markedly delayed corneal transplantation rejection, resulting in prolonged survival time and reduced inflammatory infiltration. Furthermore, we observed an increase in the formation of neutrophil extracellular traps (NETs) in rejected allografts, and the inhibition of NET formation through targeting peptidylarginine deiminase 4 and DNase I treatment significantly alleviated immune rejection and reduced cGAS/STING signaling activity. Conversely, subconjunctival injection of NETs accelerated corneal transplantation rejection and enhanced the activation of the cGAS/STING pathway. Collectively, these findings demonstrate that NETs contribute to the exacerbation of allograft rejection via cGAS/STING signaling, highlighting the targeting of the NETs/cGAS/STING signaling pathway as a potential strategy for prolonging allograft survival.

5.
Curr Med Chem ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38415439

ABSTRACT

INTRODUCTION: Due to the confounding heterogeneity, the therapeutic strategy for proliferative glomerulonephritis with monoclonal IgG deposits (PGNMID) remains to be defined. CASE REPRESENTATION: We report a 38-year-old man with recurrent swelling of the eyelids and lower limbs, undergoing rituximab combined with steroid and tacrolimus treatment, who achieved an improved renal outcome. Underlying solid malignant tumours were excluded from the diagnosis. DISCUSSION: We treated patients with rituximab along with steroids and tacrolimus. Improvements in proteinuria and renal function were observed. We also reviewed the current literature to assess the efficacy of rituximab in the treatment of PGNMID. CONCLUSION: However, a larger pool of patients and a longer follow-up period are required to establish the role of rituximab and steroids in the treatment of PGNMID.

6.
Curr Med Chem ; 31(22): 3436-3446, 2024.
Article in English | MEDLINE | ID: mdl-38299395

ABSTRACT

BACKGROUND: Lipid metabolism imbalance is involved in the mechanism of renal tubular injury in diabetic kidney disease (DKD). Fatty acid binding protein 4 (FABP4) has been reported to participate in cellular lipid toxicity. However, the expression of FABP4 in renal tissues of DKD and its correlation with clinical/ pathological parameters and prognosis have not been studied. METHODS: A retrospective cohort study was conducted in 108 hospitalized Type 2 diabetes (T2D) patients with renal injury, including 70 with DKD and 38 with NDKD (non-DKD). Clinical features, pathological findings, and follow-up parameters were collected. Serum and urine FABP4 were detected by ELISA. An immunohistochemistry stain was used to determine FABP4 in renal tubulointerstitium. A double immunofluorescence stain was employed to assess FABP4- and CD68-positive macrophages. Correlation analysis, logistic regression models, receiver operating characteristic (ROC), and Kaplan-Meier survival curve were performed for statistical analysis. RESULTS: DKD patients had increased expression of FABP4 and ectopic fat deposition in tubules. As shown by correlation analyses, FABP4 expression in renal tubules was positively correlated with UNAG (r=0.589, p=0.044) and ESRD (r=0.740, p=0.004). Multivariate regression analysis revealed that UNAG level was correlated with FABP4 expression level above median value (odds ratio:1.154, 95% confidence interval:1.009-1.321, p=0.037). High-expression of FABP4 in renal tubules of DKD was at an increased risk of ESRD. Increased FABP4 expression in inflammatory cells was also associated with ESRD in DKD. CONCLUSION: High-expression of FABP4 is involved in the pathogenesis of renal tubular lipid injury and is a risk factor for poor prognosis in DKD patients.


Subject(s)
Diabetic Nephropathies , Fatty Acid-Binding Proteins , Kidney Tubules , Humans , Fatty Acid-Binding Proteins/metabolism , Male , Female , Middle Aged , Prognosis , Retrospective Studies , Kidney Tubules/metabolism , Kidney Tubules/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/diagnosis , Risk Factors , Aged , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications
7.
Biol. Res ; 56: 5-5, 2023. ilus, graf
Article in English | LILACS | ID: biblio-1429906

ABSTRACT

BACKGROUND: Alpha-kinase 1 (ALPK1) is a master regulator in inflammation and has been proved to promote renal fibrosis by promoting the production of IL-1ß in diabetic nephropathy (DN) mice. Pyroptosis is involved in high glucose (HG)-induced tubular cells injury, characterized by activation of Gasdermin D (GSDMD) and the release of IL-1ß and IL-18, resulting in inflammatory injury in DN. It is reasonable to assume that ALPK1 is involved in pyroptosis-related tubular injury in DN. However, the mechanism remains poorly defined. METHODS: Immunohistochemistry (IHC) staining was performed to detect the expression of pyroptosis- and fibrosis-related proteins in renal sections of DN patients and DN mice. DN models were induced through injection of streptozotocin combined with a high-fat diet. Protein levels of ALPK1, NF-κB, Caspase-1, GSDMD, IL-1ß, IL-18 and α-SMA were detected by Western blot. HK-2 cells treated with high-glucose (HG) served as an in vitro model. ALPK1 small interfering RNA (siRNA) was transfected into HK-2 cells to down-regulate ALPK1. The pyroptosis rates were determined by flow cytometry. The concentrations of IL-1ß and IL-18 were evaluated by ELISA kits. Immunofluorescence staining was used to observe translocation of NF-κB and GSDMD. RESULTS: The heat map of differentially expressed genes showed that ALPK1, Caspase-1 and GSDMD were upregulated in the DN group. The expression levels of ALPK1, Caspase-1, GSDMD and CD68 were increased in renal biopsy tissues of DN patients by IHC. ALPK1expression and CD68+ macrophages were positively correlated with tubular injury in DN patients. Western blot analysis showed increased expressions of ALPK1, phospho-NF-κB P65, GSDMD-NT, and IL-1ß in renal tissues of DN mice and HK-2 cells, accompanied with increased renal fibrosis-related proteins (FN, α-SMA) and macrophages infiltration in interstitial areas. Inhibition of ALPK1 attenuated HG-induced upregulation expressions of NF-κB, pyroptosis-related proteins Caspase-1, GSDMD-NT, IL-1ß, IL-18, α-SMA, and pyroptosis level in HK-2 cells. Also, the intensity and nuclear translocation of NF-κB and membranous translocation of GSDMD were ameliorated in HG-treated HK-2 cells after treatment with ALPK1 siRNA. CONCLUSIONS: Our data suggest that ALPK1/NF-κB pathway initiated canonical caspase-1-GSDMD pyroptosis pathway, resulting in tubular injury and interstitial inflammation of DN.


Subject(s)
Animals , Mice , Diabetes Mellitus , Diabetic Nephropathies , Fibrosis , NF-kappa B/metabolism , Caspases , Interleukin-18 , RNA, Small Interfering , Pyroptosis , Glucose , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL