Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
BMJ Open Respir Res ; 11(1)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39089741

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) bronchiolitis contributes to a large morbidity and mortality burden globally. While emerging evidence suggests that airway microRNA (miRNA) is involved in the pathobiology of RSV infection, its role in the disease severity remains unclear. METHODS: In this multicentre prospective study of infants (aged<1 year) hospitalised for RSV bronchiolitis, we sequenced the upper airway miRNA and messenger RNA (mRNA) at hospitalisation. First, we identified differentially expressed miRNAs (DEmiRNAs) associated with higher bronchiolitis severity-defined by respiratory support (eg, positive pressure ventilation, high-flow oxygen therapy) use. We also examined the biological significance of miRNAs through pathway analysis. Second, we identified differentially expressed mRNAs (DEmRNAs) associated with bronchiolitis severity. Last, we constructed miRNA-mRNA coexpression networks and determined hub mRNAs by weighted gene coexpression network analysis (WGCNA). RESULTS: In 493 infants hospitalised with RSV bronchiolitis, 19 DEmiRNAs were associated with bronchiolitis severity (eg, miR-27a-3p, miR-26b-5p; false discovery rate<0.10). The pathway analysis using miRNA data identified 1291 bronchiolitis severity-related pathways-for example, regulation of cell adhesion mediated by integrin. Second, 1298 DEmRNAs were associated with bronchiolitis severity. Last, of these, 190 DEmRNAs were identified as targets of DEmiRNAs and negatively correlated with DEmiRNAs. By applying WGCNA to DEmRNAs, four disease modules were significantly associated with bronchiolitis severity-for example, microtubule anchoring, cell-substrate junction. The hub genes for each of these modules were also identified-for example, PCM1 for the microtubule anchoring module, LIMS1 for the cell-substrate junction module. CONCLUSIONS: In infants hospitalised for RSV bronchiolitis, airway miRNA-mRNA coexpression network contributes to the pathobiology of bronchiolitis severity.


Subject(s)
MicroRNAs , Respiratory Syncytial Virus Infections , Severity of Illness Index , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Prospective Studies , Respiratory Syncytial Virus Infections/genetics , Infant , Male , Female , Bronchiolitis/genetics , Bronchiolitis/therapy , Bronchiolitis, Viral/genetics , Bronchiolitis, Viral/therapy , Infant, Newborn , RNA, Messenger/metabolism , RNA, Messenger/genetics , Gene Expression Profiling
3.
J Pediatr ; 273: 114124, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815738

ABSTRACT

OBJECTIVE: To investigate the changes in predicted lung function measurements when using race-neutral equations in children, based upon the new Global Lung Initiative (GLI) reference equations, utilizing a race-neutral approach in interpreting spirometry results compared with the 2012 race-specific GLI equations. STUDY DESIGN: We analyzed data from 2 multicenter prospective cohorts comprised of healthy children and children with history of severe (requiring hospitalization) bronchiolitis. Spirometry testing was done at the 6-year physical exam, and 677 tests were analyzed using new GLI Global and 2012 GLI equations. We used multivariable logistic regression, adjusted for age, height, and sex, to examine the association of race with the development of new impairment or increased severity (forced expiratory volume in the first second (FEV1) z-score ≤ -1.645) as per 2022 American Thoracic Society (ATS) guidelines. RESULTS: Compared with the race-specific GLI, the race-neutral equation yielded increases in the median forced expiratory volume in the first second and forced vital capacity (FVC) percent predicted in White children but decreases in these two measures in Black children. The prevalence of obstruction increased in White children by 21%, and the prevalence of possible restriction increased in Black children by 222%. Compared with White race, Black race was associated with increased prevalence of new impairments (aOR 7.59; 95%CI, 3.00-19.67; P < .001) and increased severity (aOR 35.40; 95%CI, 4.70-266.40; P = .001). Results were similar across both cohorts. CONCLUSIONS: As there are no biological justifications for the inclusion of race in spirometry interpretation, use of race-neutral spirometry reference equations led to an increase in both the prevalence and severity of respiratory impairments among Black children.

4.
Arch Bronconeumol ; 60(4): 215-225, 2024 Apr.
Article in English, Spanish | MEDLINE | ID: mdl-38569771

ABSTRACT

Severe bronchiolitis (i.e., bronchiolitis requiring hospitalization) during infancy is a heterogeneous condition associated with a high risk of developing childhood asthma. Yet, the exact mechanisms underlying the bronchiolitis-asthma link remain uncertain. Birth cohort studies have reported this association at the population level, including only small groups of patients with a history of bronchiolitis, and have attempted to identify the underlying biological mechanisms. Although this evidence has provided valuable insights, there are still unanswered questions regarding severe bronchiolitis-asthma pathogenesis. Recently, a few bronchiolitis cohort studies have attempted to answer these questions by applying unbiased analytical approaches to biological data. These cohort studies have identified novel bronchiolitis subtypes (i.e., endotypes) at high risk for asthma development, representing essential and enlightening evidence. For example, one distinct severe respiratory syncytial virus (RSV) bronchiolitis endotype is characterized by the presence of Moraxella catarrhalis and Streptococcus pneumoniae, higher levels of type I/II IFN expression, and changes in carbohydrate metabolism in nasal airway samples, and is associated with a high risk for childhood asthma development. Although these findings hold significance for the design of future studies that focus on childhood asthma prevention, they require validation. However, this scoping review puts the above findings into clinical context and emphasizes the significance of future research in this area aiming to offer new bronchiolitis treatments and contribute to asthma prevention.


Subject(s)
Asthma , Bronchiolitis , Respiratory Syncytial Virus Infections , Infant , Humans , Child , Asthma/etiology , Asthma/complications , Bronchiolitis/etiology , Bronchiolitis/complications , Cohort Studies , Respiratory Syncytial Virus Infections/complications , Respiratory Syncytial Virus Infections/epidemiology
5.
Arch. bronconeumol. (Ed. impr.) ; 60(4): 215-225, abr.2024. tab, graf
Article in English | IBECS | ID: ibc-232043

ABSTRACT

Severe bronchiolitis (i.e., bronchiolitis requiring hospitalization) during infancy is a heterogeneous condition associated with a high risk of developing childhood asthma. Yet, the exact mechanisms underlying the bronchiolitis-asthma link remain uncertain. Birth cohort studies have reported this association at the population level, including only small groups of patients with a history of bronchiolitis, and have attempted to identify the underlying biological mechanisms. Although this evidence has provided valuable insights, there are still unanswered questions regarding severe bronchiolitis-asthma pathogenesis. Recently, a few bronchiolitis cohort studies have attempted to answer these questions by applying unbiased analytical approaches to biological data. These cohort studies have identified novel bronchiolitis subtypes (i.e., endotypes) at high risk for asthma development, representing essential and enlightening evidence. For example, one distinct severe respiratory syncytial virus (RSV) bronchiolitis endotype is characterized by the presence of Moraxella catarrhalis and Streptococcus pneumoniae, higher levels of type I/II IFN expression, and changes in carbohydrate metabolism in nasal airway samples, and is associated with a high risk for childhood asthma development. Although these findings hold significance for the design of future studies that focus on childhood asthma prevention, they require validation. However, this scoping review puts the above findings into clinical context and emphasizes the significance of future research in this area aiming to offer new bronchiolitis treatments and contribute to asthma prevention. (AU)


Subject(s)
Humans , Asthma , Bronchiolitis , Epigenomics , Genomics , Metabolomics , Microbiota , Gene Expression Profiling , Proteomics
7.
Front Immunol ; 15: 1330991, 2024.
Article in English | MEDLINE | ID: mdl-38410509

ABSTRACT

Bronchiolitis, a viral lower respiratory infection, is the leading cause of infant hospitalization, which is associated with an increased risk for developing asthma later in life. Bronchiolitis can be caused by several respiratory viruses, such as respiratory syncytial virus (RSV), rhinovirus (RV), and others. It can also be caused by a solo infection (e.g., RSV- or RV-only bronchiolitis) or co-infection with two or more viruses. Studies have shown viral etiology-related differences between RSV- and RV-only bronchiolitis in the immune response, human microRNA (miRNA) profiles, and dominance of certain airway microbiome constituents. Here, we identified bacterial small RNAs (sRNAs), the prokaryotic equivalent to eukaryotic miRNAs, that differ between infants of the 35th Multicenter Airway Research Collaboration (MARC-35) cohort with RSV- versus RV-only bronchiolitis. We first derived reference sRNA datasets from cultures of four bacteria known to be associated with bronchiolitis (i.e., Haemophilus influenzae, Moraxella catarrhalis, Moraxella nonliquefaciens, and Streptococcus pneumoniae). Using these reference sRNA datasets, we found several sRNAs associated with RSV- and RV-only bronchiolitis in our human nasal RNA-Seq MARC-35 data. We also determined potential human transcript targets of the bacterial sRNAs and compared expression of the sRNAs between RSV- and RV-only cases. sRNAs are known to downregulate their mRNA target, we found that, compared to those associated with RV-only bronchiolitis, sRNAs associated with RSV-only bronchiolitis may relatively activate the IL-6 and IL-8 pathways and relatively inhibit the IL-17A pathway. These data support that bacteria may be contributing to inflammation differences seen in RSV- and RV-only bronchiolitis, and for the first time indicate that the potential mechanism in doing so may be through bacterial sRNAs.


Subject(s)
Bronchiolitis , Enterovirus Infections , MicroRNAs , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Viruses , Infant , Humans , Rhinovirus/genetics , RNA, Bacterial , Bronchiolitis/genetics , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus Infections/genetics , Immunity
8.
J Allergy Clin Immunol ; 153(6): 1729-1735.e7, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38272372

ABSTRACT

BACKGROUND: Severe bronchiolitis (ie, bronchiolitis requiring hospitalization) during infancy is a major risk factor for developing childhood asthma. However, the biological mechanisms linking these 2 conditions remain unclear. OBJECTIVE: We sought to investigate the longitudinal relationship between nasopharyngeal airway long noncoding RNA (lncRNA) in infants with severe bronchiolitis and subsequent asthma development. METHODS: In this multicenter prospective cohort study of infants with severe bronchiolitis, we performed RNA sequencing of nasopharyngeal airway lncRNAs at index hospitalization. First, we identified differentially expressed lncRNAs (DE-lncRNAs) associated with asthma development by age 6 years. Second, we investigated the associations of DE-lncRNAs with asthma-related clinical characteristics. Third, to characterize the function of DE-lncRNAs, we performed pathway analysis for mRNA targeted by DE-lncRNAs. Finally, we examined the associations of DE-lncRNAs with nasal cytokines at index hospitalization. RESULTS: Among 343 infants with severe bronchiolitis (median age, 3 months), we identified 190 DE-lncRNAs (false-discovery rate [FDR] < 0.05) associated with asthma development (eg, LINC02145, RAMP2-AS1, and PVT1). These DE-lncRNAs were associated with asthma-related clinical characteristics (FDR < 0.05), for example, respiratory syncytial virus or rhinovirus infection, infant eczema, and IgE sensitization. Furthermore, DE-lncRNAs were characterized by asthma-related pathways, including mitogen-activated protein kinase, FcɛR, and phosphatidylinositol 3-kinase (PI3K)-protein kinase B signaling pathways (FDR < 0.05). These DE-lncRNAs were also associated with nasal cytokines (eg, IL-1ß, IL-4, and IL-13; FDR < 0.05). CONCLUSIONS: In a multicenter cohort study of infants with severe bronchiolitis, we identified nasopharyngeal airway lncRNAs associated with childhood asthma development, characterized by asthma-related clinical characteristics, asthma-related pathways, and nasal cytokines. Our approach identifies lncRNAs underlying the bronchiolitis-asthma link and facilitates the early identification of infants at high risk of subsequent asthma development.


Subject(s)
Asthma , Bronchiolitis , Nasopharynx , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Asthma/genetics , Infant , Bronchiolitis/genetics , Male , Female , Prospective Studies , Child, Preschool , Child , Cytokines , Risk Factors
11.
J Am Heart Assoc ; : e030211, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37947095

ABSTRACT

Background Patients with rheumatoid arthritis (RA) have a 2- to 10-fold increased risk of cardiovascular disease (CVD), but the biological mechanisms and existence of causality underlying such associations remain to be investigated. We aimed to investigate the genetic associations and underlying mechanisms between RA and CVD by leveraging large-scale genomic data and genetic cross-trait analytic approaches. Methods and Results Within UK Biobank data, we examined the genetic correlation, shared genetics, and potential causality between RA (Ncases=6754, Ncontrols=452 384) and cardiovascular diseases (CVD, Ncases=44 238, Ncontrols=414 900) using linkage disequilibrium score regression, cross-trait meta-analysis, and Mendelian randomization. We observed significant genetic correlations of RA with myocardial infarction (rg:0.40 [95% CI, 0.24-0.56), angina (rg:0.42 [95% CI, 0.28-0.56]), coronary heart diseases (rg:0.41 [95% CI, 0.27-0.55]), and CVD (rg:0.43 [95% CI, 0.29-0.57]) after correcting for multiple testing (P<0.05/5). When stratified by frequent use of analgesics, we found increased genetic correlation between RA and CVD among participants without aspirin usage (rg:0.54 [95% CI, 0.30-0.78] for angina; Pvalue=6.69×10-6) and among participants with paracetamol usage (rg:0.75 [95% CI, 0.20-1.29] for myocardial infarction; Pvalue=8.90×10-3), whereas others remained similar. Cross-trait meta-analysis identified 9 independent shared loci between RA and CVD, including PTPN22 at chr1p13.2, BCL2L11 at chr2q13, and CCR3 at chr3p21.31 (Psingle trait<1×10-3 and Pmeta<5×10-8), highlighting potential shared pathogenesis including accelerating atherosclerosis, upregulating oxidative stress, and vascular permeability. Finally, Mendelian randomization estimates showed limited evidence of causality between RA and CVD. Conclusions Our results supported shared genetic pathogenesis rather than causality in explaining the observed association between RA and CVD. The identified shared genetic factors provided insights into potential novel therapeutic target for RA-CVD comorbidities.

12.
PeerJ ; 11: e16194, 2023.
Article in English | MEDLINE | ID: mdl-37842064

ABSTRACT

Influenza viruses pose a significant and ongoing threat to human health. Many host factors have been identified to be associated with influenza virus infection. However, there is currently a lack of an integrated resource for these host factors. This study integrated human genes and proteins associated with influenza virus infections for 14 subtypes of influenza A viruses, as well as influenza B and C viruses, and built a database named H2Flu to store and organize these genes or proteins. The database includes 28,639 differentially expressed genes (DEGs), 1,850 differentially expressed proteins, and 442 proteins with differential posttranslational modifications after influenza virus infection, as well as 3,040 human proteins that interact with influenza virus proteins and 57 human susceptibility genes. Further analysis showed that the dynamic response of human cells to virus infection, cell type and strain specificity contribute significantly to the diversity of DEGs. Additionally, large heterogeneity was also observed in protein-protein interactions between humans and different types or subtypes of influenza viruses. Overall, the study deepens our understanding of the diversity and complexity of interactions between influenza viruses and humans, and provides a valuable resource for further studies on such interactions.


Subject(s)
Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Humans , Influenza, Human/genetics , Multiomics , Influenza A virus/genetics
13.
Nat Commun ; 14(1): 5495, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679381

ABSTRACT

Bronchiolitis is the most common lower respiratory infection in infants, yet its pathobiology remains unclear. Here we present blood DNA methylation data from 625 infants hospitalized with bronchiolitis in a 17-center prospective study, and associate them with disease severity. We investigate differentially methylated CpGs (DMCs) for disease severity. We characterize the DMCs based on their association with cell and tissues types, biological pathways, and gene expression. Lastly, we also examine the relationships of severity-related DMCs with respiratory and immune traits in independent cohorts. We identify 33 DMCs associated with severity. These DMCs are differentially methylated in blood immune cells. These DMCs are also significantly enriched in multiple tissues (e.g., lung) and cells (e.g., small airway epithelial cells), and biological pathways (e.g., interleukin-1-mediated signaling). Additionally, these DMCs are associated with respiratory and immune traits (e.g., asthma, lung function, IgE levels). Our study suggests the role of DNA methylation in bronchiolitis severity.


Subject(s)
Asthma , Bronchiolitis , Humans , Infant , Prospective Studies , Epigenome , Bronchiolitis/genetics , DNA Methylation/genetics
14.
Respir Med ; 218: 107401, 2023 11.
Article in English | MEDLINE | ID: mdl-37657534

ABSTRACT

BACKGROUND AND OBJECTIVES: Understanding early life risk factors for decreased lung function could guide prevention efforts and improve lung health throughout the lifespan. Our objective was to investigate the association between history of severe (hospitalized) bronchiolitis in infancy and age 6-year lung function. METHODS: We analyzed data from two prospective cohort studies: infants hospitalized with bronchiolitis and a parallel cohort of healthy infants. Children were followed longitudinally, and spirometry was performed at age 6 years. To examine the relationship between history of severe bronchiolitis and primary outcomes - FEV1% predicted (pp) and FEV1/FVCpp - we used multivariable linear regression models adjusted for insurance status, perterm birth, secondhand smoke exposure, breastfeeding status, traffic-related air pollution and polygenic risk score. Secondary outcomes included FVCpp and bronchodilator responsiveness (BDR). RESULTS: Age 6-year spirometry was available for 425 children with history of severe bronchiolitis in infancy and 48 controls. Unadjusted analysis revealed that while most children had normal range lung function, children with a history of severe bronchiolitis had lower FEV1pp and FEV1/FVCpp. In adjusted analyses, the same findings were observed: FEV1pp was 8% lower (p = 0.004) and FEV1/FVCpp was 4% lower (p = 0.007) in children with history of severe bronchiolitis versus controls. FVC and BDR did not differ between groups. CONCLUSIONS: Children with severe bronchiolitis in infancy have decreased FEV1 and FEV1/FVC at age 6 years, compared to controls. These children may be at increased risk for chronic respiratory illness later in life.


Subject(s)
Bronchiolitis , Child , Infant , Humans , Prospective Studies , Respiratory Function Tests , Lung , Forced Expiratory Volume
15.
EBioMedicine ; 95: 104742, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37536062

ABSTRACT

BACKGROUND: Bronchiolitis is a leading cause of infant hospitalization. Recent research suggests the heterogeneity within bronchiolitis and the relationship of airway viruses and bacteria with bronchiolitis severity. However, little is known about the pathobiological role of fungi. We aimed to identify bronchiolitis mycotypes by integrating fungus and virus data, and determine their association with bronchiolitis severity and biological characteristics. METHODS: In a multicentre prospective cohort study of 398 infants (age <1 year, male 59%) hospitalized for bronchiolitis, we applied clustering approaches to identify mycotypes by integrating nasopharyngeal fungus (detected in RNA-sequencing data) and virus data (respiratory syncytial virus [RSV], rhinovirus [RV]) at hospitalization. We examined their association with bronchiolitis severity-defined by positive pressure ventilation (PPV) use and biological characteristics by nasopharyngeal metatranscriptome and transcriptome data. RESULTS: In infants hospitalized for bronchiolitis, we identified four mycotypes: A) fungiM.restrictavirusRSV/RV, B) fungiM.restrictavirusRSV, C) fungiM.globosavirusRSV/RV, D) funginot-detectedvirusRSV/RV mycotypes. Compared to mycotype A infants (the largest subtype, n = 211), mycotype C infants (n = 85) had a significantly lower risk of PPV use (7% vs. 1%, adjOR, 0.21; 95% CI, 0.02-0.90; p = 0.033), while the risk of PPV use was not significantly different in mycotype B or D. In the metatranscriptome and transcriptome data, mycotype C had similar bacterial composition and microbial functions yet dysregulated pathways (e.g., Fc γ receptor-mediated phagocytosis pathway and chemokine signaling pathway; FDR <0.05). INTERPRETATION: In this multicentre cohort, fungus-virus clustering identified distinct mycotypes of infant bronchiolitis with differential severity risks and unique biological characteristics. FUNDING: This study was supported by the National Institutes of Health.


Subject(s)
Bronchiolitis , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Infant , Humans , Male , Respiratory Syncytial Virus Infections/genetics , Prospective Studies , Bronchiolitis/etiology , Hospitalization , Respiratory Syncytial Virus, Human/genetics , Rhinovirus , Patient Acuity
16.
Eur Respir J ; 62(2)2023 08.
Article in English | MEDLINE | ID: mdl-37321621

ABSTRACT

BACKGROUND: Severe bronchiolitis (i.e. bronchiolitis requiring hospitalisation) during infancy is a major risk factor for childhood asthma. However, the exact mechanism linking these common conditions remains unclear. We examined the longitudinal relationship between nasal airway miRNAs during severe bronchiolitis and the risk of developing asthma. METHODS: In a 17-centre prospective cohort study of infants with severe bronchiolitis, we sequenced their nasal microRNA at hospitalisation. First, we identified differentially expressed microRNAs (DEmiRNAs) associated with the risk of developing asthma by age 6 years. Second, we characterised the DEmiRNAs based on their association with asthma-related clinical features, and expression level by tissue and cell types. Third, we conducted pathway and network analyses by integrating DEmiRNAs and their mRNA targets. Finally, we investigated the association of DEmiRNAs and nasal cytokines. RESULTS: In 575 infants (median age 3 months), we identified 23 DEmiRNAs associated with asthma development (e.g. hsa-miR-29a-3p; false discovery rate (FDR) <0.10), particularly in infants with respiratory syncytial virus infection (FDR for the interaction <0.05). These DEmiRNAs were associated with 16 asthma-related clinical features (FDR <0.05), e.g. infant eczema and corticosteroid use during hospitalisation. In addition, these DEmiRNAs were highly expressed in lung tissue and immune cells (e.g. T-helper cells, neutrophils). Third, DEmiRNAs were negatively correlated with their mRNA targets (e.g. hsa-miR-324-3p/IL13), which were enriched in asthma-related pathways (FDR <0.05), e.g. toll-like receptor, PI3K-Akt and FcɛR signalling pathways, and validated by cytokine data. CONCLUSION: In a multicentre cohort of infants with severe bronchiolitis, we identified nasal miRNAs during illness that were associated with major asthma-related clinical features, immune response, and risk of asthma development.


Subject(s)
Asthma , Bronchiolitis , MicroRNAs , Respiratory Syncytial Virus Infections , Humans , Infant , Child , Prospective Studies , Phosphatidylinositol 3-Kinases , Bronchiolitis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Respiratory Syncytial Virus Infections/complications , Respiratory Syncytial Virus Infections/genetics , Cytokines/metabolism , RNA, Messenger/genetics
17.
Front Immunol ; 14: 1187065, 2023.
Article in English | MEDLINE | ID: mdl-37234152

ABSTRACT

Background: Bronchiolitis is the leading cause of infant hospitalization in U.S. and is associated with increased risk for childhood asthma. Immunoglobulin E (IgE) not only plays major roles in antiviral immune responses and atopic predisposition, but also offers a potential therapeutic target. Objective: We aimed to identify phenotypes of infant bronchiolitis by using total IgE (tIgE) and virus data, to determine their association with asthma development, and examine their biological characteristics. Methods: In a multicenter prospective cohort study of 1,016 infants (age <1 year) hospitalized for bronchiolitis, we applied clustering approaches to identify phenotypes by integrating tIgE and virus (respiratory syncytial virus [RSV], rhinovirus [RV]) data at hospitalization. We examined their longitudinal association with the risk of developing asthma by age 6 years and investigated their biological characteristics by integrating the upper airway mRNA and microRNA data in a subset (n=182). Results: In infants hospitalized for bronchiolitis, we identified 4 phenotypes: 1) tIgElowvirusRSV-high, 2) tIgElowvirusRSV-low/RV, 3) tIgEhighvirusRSV-high, and 4) tIgEhighvirusRSV-low/RV phenotypes. Compared to phenotype 1 infants (resembling "classic" bronchiolitis), phenotype 4 infants (tIgEhighvirusRSV-low/RV) had a significantly higher risk for developing asthma (19% vs. 43%; adjOR, 2.93; 95% CI, 1.02-8.43; P=.046). Phenotypes 3 and 4 (tIgEhigh) had depleted type I interferon and enriched antigen presentation pathways; phenotype 4 also had depleted airway epithelium structure pathways. Conclusions: In this multicenter cohort, tIgE-virus clustering identified distinct phenotypes of infant bronchiolitis with differential risks of asthma development and unique biological characteristics.


Subject(s)
Asthma , Bronchiolitis , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Viruses , Humans , Prospective Studies , Immunoglobulin E/genetics , Rhinovirus , Phenotype
18.
Allergol Immunopathol (Madr) ; 51(3): 99-107, 2023.
Article in English | MEDLINE | ID: mdl-37169566

ABSTRACT

Bronchiolitis is the most common respiratory infection leading to hospitalization and constitutes a significant healthcare burden. The two main viral agents causing bronchiolitis, respiratory syncytial virus (RSV) and rhinovirus (RV), have distinct cytopathic, immune response, and clinical characteristics. Different approaches have been suggested for subtyping bronchiolitis based on viral etiology, atopic status, transcriptome profiles in blood, airway metabolome, lipidomic data, and airway microbiota. The highest risk of asthma at school age has been in a subgroup of bronchiolitis characterized by older age, high prevalence of RV infection, previous breathing problems, and/or eczema. Regarding solely viral etiology, RV-bronchiolitis in infancy has been linked to a nearly three times higher risk of developing asthma than RSV-bronchiolitis. Although treatment with betamimetics and systemic corticosteroids has been found ineffective in bronchiolitis overall, it can be beneficial for infants with severe RV bronchiolitis. Thus, there is a need to develop a more individualized therapeutic approach for bronchiolitis and follow-up strategies for infants at higher risk of asthma in the future perspective.


Subject(s)
Asthma , Bronchiolitis, Viral , Bronchiolitis , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Infant , Humans , Bronchiolitis/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Asthma/epidemiology , Asthma/prevention & control , Asthma/etiology , Hospitalization , Respiratory Sounds/etiology
19.
J Infect Dis ; 228(10): 1410-1420, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37166169

ABSTRACT

BACKGROUND: In infant bronchiolitis, recent evidence indicates that respiratory viruses (eg, respiratory syncytial virus [RSV], rhinovirus [RV]) contribute to the heterogeneity of disease severity. Of the potential pathobiological molecules, lipids serve as signaling molecules in airway inflammation. However, little is known about the role of the airway lipidome in between-virus heterogeneity and disease severity. METHODS: In this multicenter prospective study of 800 infants hospitalized for RSV or RV bronchiolitis, we analyzed nasopharyngeal lipidome data. We examined discriminatory lipids between RSV and RV infection and the association of the discriminatory lipids with bronchiolitis severity, defined by positive pressure ventilation (PPV) use. RESULTS: We identified 30 discriminatory nasopharyngeal lipid species and 8 fatty acids between RSV and RV infection. In the multivariable models adjusting for patient-level confounders, 8 lipid species-for example, phosphatidylcholine (18:2/18:2) (adjusted odds ratio [aOR], 0.23 [95% confidence interval {CI}, .11-.44]; false discovery rate [FDR] = 0.0004) and dihydroceramide (16:0) (aOR, 2.17 [95% CI, 1.12-3.96]; FDR = 0.04)-were significantly associated with the risk of PPV use. Additionally, 6 fatty acids-for example, eicosapentaenoic acid (aOR, 0.27 [95% CI, .11-.57]; FDR = 0.01)-were also significantly associated with the risk of PPV use. CONCLUSIONS: In infants hospitalized for bronchiolitis, the nasopharyngeal lipidome plays an important role in the pathophysiology of between-virus heterogeneity and disease severity.


Subject(s)
Bronchiolitis , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Viruses , Humans , Infant , Prospective Studies , Lipidomics , Rhinovirus , Fatty Acids , Lipids
20.
Allergol. immunopatol ; 51(3): 99-107, 01 mayo 2023. ilus, tab
Article in English | IBECS | ID: ibc-219830

ABSTRACT

Bronchiolitis is the most common respiratory infection leading to hospitalization and constitutes a significant healthcare burden. The two main viral agents causing bronchiolitis, respiratory syncytial virus (RSV) and rhinovirus (RV), have distinct cytopathic, immune response, and clinical characteristics. Different approaches have been suggested for subtyping bronchiolitis based on viral etiology, atopic status, transcriptome profiles in blood, airway metabolome, lipidomic data, and airway microbiota. The highest risk of asthma at school age has been in a subgroup of bronchiolitis characterized by older age, high prevalence of RV infection, previous breathing problems, and/or eczema. Regarding solely viral etiology, RV-bronchiolitis in infancy has been linked to a nearly three times higher risk of developing asthma than RSV-bronchiolitis. Although treatment with betamimetics and systemic corticosteroids has been found ineffective in bronchiolitis overall, it can be beneficial for infants with severe RV bronchiolitis. Thus, there is a need to develop a more individualized therapeutic approach for bronchiolitis and follow-up strategies for infants at higher risk of asthma in the future perspective (AU)


Subject(s)
Humans , Bronchiolitis/complications , Bronchiolitis/therapy , Asthma/complications , Asthma/prevention & control , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL