Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
1.
Biotechnol J ; 19(6): e2400140, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38896410

ABSTRACT

Artificial Intelligence (AI) technology is spearheading a new industrial revolution, which provides ample opportunities for the transformational development of traditional fermentation processes. During plasmid fermentation, traditional subjective process control leads to highly unstable plasmid yields. In this study, a multi-parameter correlation analysis was first performed to discover a dynamic metabolic balance among the oxygen uptake rate, temperature, and plasmid yield, whilst revealing the heating rate and timing as the most important optimization factor for balanced cell growth and plasmid production. Then, based on the acquired on-line parameters as well as outputs of kinetic models constructed for describing process dynamics of biomass concentration, plasmid yield, and substrate concentration, a machine learning (ML) model with Random Forest (RF) as the best machine learning algorithm was established to predict the optimal heating strategy. Finally, the highest plasmid yield and specific productivity of 1167.74 mg L-1 and 8.87 mg L-1/OD600 were achieved with the optimal heating strategy predicted by the RF model in the 50 L bioreactor, respectively, which was 71% and 21% higher than those obtained in the control cultures where a traditional one-step temperature upshift strategy was applied. In addition, this study transformed empirical fermentation process optimization into a more efficient and rational self-optimization method. The methodology employed in this study is equally applicable to predict the regulation of process dynamics for other products, thereby facilitating the potential for furthering the intelligent automation of fermentation processes.


Subject(s)
Bioreactors , Escherichia coli , Fermentation , Machine Learning , Plasmids , Plasmids/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/growth & development , Bioreactors/microbiology , Batch Cell Culture Techniques/methods , Biomass
2.
Biodes Res ; 6: 0038, 2024.
Article in English | MEDLINE | ID: mdl-38919710

ABSTRACT

Recently, there has been increasing interest in the use of bacteria for cancer therapy due to their ability to selectively target tumor sites and inhibit tumor growth. However, the complexity of the interaction between bacteria and tumor cells evokes unpredictable therapeutic risk, which induces inflammation, stimulates the up-regulation of cyclooxygenase II (COX-2) protein, and stimulates downstream antiapoptotic gene expression in the tumor microenvironment to reduce the antitumor efficacy of chemotherapy and immunotherapy. In this study, we encapsulated celecoxib (CXB), a specific COX-2 inhibitor, in liposomes anchored to the surface of Escherichia coli Nissle 1917 (ECN) through electrostatic absorption (C@ECN) to suppress ECN-induced COX-2 up-regulation and enhance the synergistic antitumor effect of doxorubicin (DOX). C@ECN improved the antitumor effect of DOX by restraining COX-2 expression. In addition, local T lymphocyte infiltration was induced by the ECN to enhance immunotherapy efficacy in the tumor microenvironment. Considering the biosafety of C@ECN, a hypoxia-induced lysis circuit, pGEX-Pvhb-Lysis, was introduced into the ECN to limit the number of ECNs in vivo. Our results indicate that this system has the potential to enhance the synergistic effect of ECN with chemical drugs to inhibit tumor progression in medical oncology.

3.
Nat Chem Biol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783134

ABSTRACT

Fluorescent RNAs (FRs) provide an attractive approach to visualizing RNAs in live cells. Although the color palette of FRs has been greatly expanded recently, a green FR with high cellular brightness and photostability is still highly desired. Here we develop a fluorogenic RNA aptamer, termed Okra, that can bind and activate the fluorophore ligand ACE to emit bright green fluorescence. Okra has an order of magnitude enhanced cellular brightness than currently available green FRs, allowing the robust imaging of messenger RNA in both live bacterial and mammalian cells. We further demonstrate the usefulness of Okra for time-resolved measurements of ACTB mRNA trafficking to stress granules, as well as live-cell dual-color superresolution imaging of RNA in combination with Pepper620, revealing nonuniform and distinct distributions of different RNAs throughout the granules. The favorable properties of Okra make it a versatile tool for the study of RNA dynamics and subcellular localization.

4.
Biotechnol J ; 19(4): e2300740, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581087

ABSTRACT

ß-Phenylethanol (2-PE), as an important flavor component in wine, is widely used in the fields of flavor chemistry and food health. 2-PE can be sustainably produced through Saccharomyces cerevisiae. Although significant progress has been made in obtaining high-yield strains, as well as improving the synthesis pathways of 2-PE, there still lies a gap between these two fields to unpin. In this study, the macroscopic metabolic characteristics of high-yield and low-yield 2-PE strains were systematically compared and analyzed. The results indicated that the production potential of the high-yield strain might be contributed to the enhancement of respiratory metabolism and the high tolerance to 2-PE. Furthermore, this hypothesis was confirmed through comparative genomics. Meanwhile, transcriptome analysis at key specific growth rates revealed that the collective upregulation of mitochondrial functional gene clusters plays a more prominent role in the production process of 2-PE. Finally, findings from untargeted metabolomics suggested that by enhancing respiratory metabolism and reducing the Crabtree effect, the accumulation of metabolites resisting high 2-PE stress was observed, such as intracellular amino acids and purines. Hence, this strategy provided a richer supply of precursors and cofactors, effectively promoting the synthesis of 2-PE. In short, this study provides a bridge for studying the metabolic mechanism of high-yield 2-PE strains with the subsequent targeted strengthening of relevant synthetic pathways. It also provides insights for the synthesis of nonalcoholic products in S. cerevisiae.


Subject(s)
Phenylethyl Alcohol , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/metabolism , Phenylethyl Alcohol/metabolism , Multiomics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Biosynthetic Pathways , Fermentation
5.
Microb Cell Fact ; 23(1): 88, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38519954

ABSTRACT

BACKGROUND: The halophilic bacterium Halomonas elongata is an industrially important strain for ectoine production, with high value and intense research focus. While existing studies primarily delve into the adaptive mechanisms of this bacterium under fixed salt concentrations, there is a notable dearth of attention regarding its response to fluctuating saline environments. Consequently, the stress response of H. elongata to salt shock remains inadequately understood. RESULTS: This study investigated the stress response mechanism of H. elongata when exposed to NaCl shock at short- and long-time scales. Results showed that NaCl shock induced two major stresses, namely osmotic stress and oxidative stress. In response to the former, within the cell's tolerable range (1-8% NaCl shock), H. elongata urgently balanced the surging osmotic pressure by uptaking sodium and potassium ions and augmenting intracellular amino acid pools, particularly glutamate and glutamine. However, ectoine content started to increase until 20 min post-shock, rapidly becoming the dominant osmoprotectant, and reaching the maximum productivity (1450 ± 99 mg/L/h). Transcriptomic data also confirmed the delayed response in ectoine biosynthesis, and we speculate that this might be attributed to an intracellular energy crisis caused by NaCl shock. In response to oxidative stress, transcription factor cysB was significantly upregulated, positively regulating the sulfur metabolism and cysteine biosynthesis. Furthermore, the upregulation of the crucial peroxidase gene (HELO_RS18165) and the simultaneous enhancement of peroxidase (POD) and catalase (CAT) activities collectively constitute the antioxidant defense in H. elongata following shock. When exceeding the tolerance threshold of H. elongata (1-13% NaCl shock), the sustained compromised energy status, resulting from the pronounced inhibition of the respiratory chain and ATP synthase, may be a crucial factor leading to the stagnation of both cell growth and ectoine biosynthesis. CONCLUSIONS: This study conducted a comprehensive analysis of H. elongata's stress response to NaCl shock at multiple scales. It extends the understanding of stress response of halophilic bacteria to NaCl shock and provides promising theoretical insights to guide future improvements in optimizing industrial ectoine production.


Subject(s)
Amino Acids, Diamino , Halomonas , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Halomonas/genetics , Halomonas/metabolism , Osmotic Pressure , Gene Expression Profiling , Peroxidases/metabolism
6.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473957

ABSTRACT

Chlorogenic acids (CGAs) are bioactive compounds widely used in the food, pharmaceutical, and cosmetic industries. Carthamus tinctorius is an important economic crop, and its suspension cells are rich in CGAs. However, little is known about the biosynthesis and regulation of CGAs in Carthamus tinctorius cells. This study first elucidated the regulatory mechanism of CGA biosynthesis in methyl jasmonate (MeJA)-treated Carthamus tinctorius cells and the role of the MeJA-responsive hydroxycinnamoyl transferase (HCT) gene in enhancing their CGA accumulation. Firstly, temporal changes in intracellular metabolites showed that MeJA increased the intracellular CGA content up to 1.61-fold to 100.23 mg·g-1. Meanwhile, 31 primary metabolites showed significant differences, with 6 precursors related to increasing CGA biosynthesis. Secondly, the transcriptome data revealed 3637 new genes previously unannotated in the Carthamus tinctorius genome and 3653 differentially expressed genes. The genes involved in the plant signaling pathway and the biosynthesis of CGAs and their precursors showed a general up-regulation, especially the HCT gene family, which ultimately promoted CGA biosynthesis. Thirdly, the expression of a newly annotated and MeJA-responsive HCT gene (CtHCT, CtNewGene_3476) was demonstrated to be positively correlated with CGA accumulation in the cells, and transient overexpression of CtHCT enhanced CGA accumulation in tobacco. Finally, in vitro catalysis kinetics and molecular docking simulations revealed the ability and mechanism of the CtHCT protein to bind to various substrates and catalyze the formation of four hydroxycinnamic esters, including CGAs. These findings strengthened our understanding of the regulatory mechanism of CGA biosynthesis, thereby providing theoretical support for the efficient production of CGAs.


Subject(s)
Acetates , Carthamus tinctorius , Cyclopentanes , Oxylipins , Transferases , Transferases/metabolism , Chlorogenic Acid/metabolism , Carthamus tinctorius/genetics , Molecular Docking Simulation , Transcriptome , Nucleotidyltransferases/metabolism , Gene Expression Regulation, Plant
7.
Bioresour Technol ; 395: 130354, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272147

ABSTRACT

The influence of extracellular variations on the cellular metabolism and thereby the process performance at large-scale can be evaluated using the so-called scale-down simulators. Nevertheless, the major challenge is to design an appropriate scale-down simulator, which can accurately mimic the cell lifelines that record the flow paths and experiences of cells circulating in large-scale bioreactors. To address this, a dedicated SDSA (scale-down simulator application) was purposedly developed on the basis of black box model and process reaction model established for Penicillium chrysogenum strain as well as cell lifelines or trajectories information in an industrial-scale fermentor. Guided by the SDSA, the industrial-relevant metabolic regimes for substrate availability, i.e., excess, limitation and starvation, were successfully reproduced at laboratory-scale three-compartment scale-down (SD) system. In addition, such SDSA can also display individual process dynamics in each compartment, and demonstrate how individual factors influence the entire bioprocess performance, thus serving both educational and research purposes.


Subject(s)
Bioreactors , Penicillium chrysogenum , Penicillium chrysogenum/metabolism
8.
Nat Protoc ; 19(2): 374-405, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38036926

ABSTRACT

RNA molecules perform various crucial roles in diverse cellular processes, from translating genetic information to decoding the genome, regulating gene expression and catalyzing chemical reactions. RNA-binding proteins (RBPs) play an essential role in regulating the diverse behaviors and functions of RNA in live cells, but techniques for the spatiotemporal control of RBP activities and RNA functions are rarely reported yet highly desirable. We recently reported the development of LicV, a synthetic photoswitchable RBP that can bind to a specific RNA sequence in response to blue light irradiation. LicV has been used successfully for the optogenetic control of RNA localization, splicing, translation and stability, as well as for the photoswitchable regulation of transcription and genomic locus labeling. Compared to classical genetic or pharmacologic perturbations, LicV-based light-switchable effectors have the advantages of large dynamic range between dark and light conditions and submicron and millisecond spatiotemporal resolutions. In this protocol, we provide an easy, efficient and generalizable strategy for engineering photoswitchable RBPs for the spatiotemporal control of RNA metabolism. We also provide a detailed protocol for the conversion of a CRISPR-Cas system to optogenetic control. The protocols typically take 2-3 d, including transfection and results analysis. Most of this protocol is applicable to the development of novel LicV-based photoswitchable effectors for the optogenetic control of other RNA metabolisms and CRISPR-Cas functions.


Subject(s)
CRISPR-Cas Systems , RNA-Binding Proteins , CRISPR-Cas Systems/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA Splicing , RNA/genetics , RNA/metabolism
9.
J Hazard Mater ; 465: 133119, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38134689

ABSTRACT

The simultaneous sensing and remediation of multiple heavy metal ions in wastewater or soil with microorganisms is currently a significant challenge. In this study, the microorganism Bacillus subtilis was used as a chassis organism to construct two genetic circuits for sensing and adsorbing heavy-metal ions. The engineered biosensor can sense three heavy metal ions (0.1-75 µM of Pb2+ and Cu2+, 0.01-3.5 µM of Hg2+) in situ real-time with high sensitivity. The engineered B. subtilis TasA-metallothionein (TasA-MT) biofilm can specifically adsorb metal ions from the environment, exhibiting remarkable removal efficiencies of 99.5% for Pb2+, 99.9% for Hg2+and 99.5% for Cu2+ in water. Furthermore, this engineered strain (as a biosensor and absorber of Pb2+, Cu2+, and Hg2+) was incubated with biochar to form a hybrid biofilm@biochar (BBC) material that could be applied in the bioremediation of heavy metal ions. The results showed that BBC material not only significantly reduced exchangeable Pb2+ in the soil but also reduced Pb2+ accumulation in maize plants. In addition, it enhanced maize growth and biomass. In conclusion, this study examined the potential applications of biosensors and hybrid living materials constructed using sensing and adsorption circuits in B. subtilis, providing rapid and cost-effective tools for sensing and remediating multiple heavy metal ions (Pb2+, Hg2+, and Cu2+).


Subject(s)
Charcoal , Mercury , Metals, Heavy , Soil Pollutants , Bacillus subtilis , Biodegradation, Environmental , Lead , Metals, Heavy/analysis , Ions , Soil , Soil Pollutants/analysis
10.
Bioprocess Biosyst Eng ; 46(11): 1677-1693, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37878184

ABSTRACT

The quality prediction of batch processes is an important task in the field of biological fermentation. However, dynamic nonlinearity, unequal sampling intervals, uneven duration, and multiple features of a batch process make this task challenging. Thus, the multiple-feature fusion transformer (MFFT) model is proposed for the time series quality prediction of a batch process. First, the application of sequence-to-sequence architecture enables MFFT to perform a wide range of sequence prediction tasks. Second, the transformer parallel operation model imposes no rigid requirement for the order of sequence input, allowing the model to deal with problems of unequal interval sampling and utilize the sequence information. Third, MFFT integrates a pretrained ResNet50 as a mycelium status classifier for fusing image information into the features. Moreover, a multiple-feature encoding structure is proposed to integrate sampling time and mycelium status. Finally, multiple tasks in penicillin fermentation have shown that MFFT significantly outperforms existing methods for time series prediction.


Subject(s)
Mycelium , Penicillins , Fermentation , Time Factors
11.
Sheng Wu Gong Cheng Xue Bao ; 39(9): 3863-3875, 2023 Sep 25.
Article in Chinese | MEDLINE | ID: mdl-37805860

ABSTRACT

Reducing lactate accumulation has always been a goal of the mammalian cell biotechnology industry. When animal cells are cultured in vitro, the accumulation of lactate is mainly the combined result of two metabolic pathways. On one hand, glucose generates lactate under the function of lactate dehydrogenase A (LDHA); on the other hand, lactate can be oxidized to pyruvate by LDHB or LDHC and re-enter the TCA cycle. This study comprehensively evaluated the effects of LDH manipulation on the growth, metabolism and human adenovirus (HAdV) production of human embryonic kidney 293 (HEK-293) cells, providing a theoretical basis for engineering the lactate metabolism in mammalian cells. By knocking out ldha gene and overexpression of ldhb and ldhc genes, the metabolic efficiency of HEK-293 cells was effectively improved, and HAdV production was significantly increased. Compared with the control cell, LDH manipulation promoted cell growth, reduced the accumulation of lactate and ammonia, significantly enhanced the efficiency of substrate and energy metabolism of cells, and significantly increased the HAdV production capacity of HEK-293 cells. Among these LDH manipulation measures, ldhc gene overexpression performed the best, with the maximum cell density increased by about 38.7%. The yield of lactate to glucose and ammonia to glutamine decreased by 33.8% and 63.3%, respectively; and HAdV titer increased by at least 16 times. In addition, the ATP production rate, ATP/O2 ratio, ATP/ADP ratio and NADH content of the modified cell lines were increased to varying degrees, and the energy metabolic efficiency was significantly improved.


Subject(s)
Adenoviruses, Human , L-Lactate Dehydrogenase , Animals , Humans , L-Lactate Dehydrogenase/genetics , Lactic Acid , Ammonia , HEK293 Cells , Glucose/metabolism , Adenosine Triphosphate/metabolism , Kidney/metabolism , Mammals/metabolism
12.
Microb Cell Fact ; 22(1): 185, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37715289

ABSTRACT

BACKGROUND: In the recombinant protein market with broad economic value, the rapid development of synthetic biology has made it necessary to construct an efficient exocrine expression system for the different heterologous proteins. Yarrowia lipolytica possesses unique advantages in nascent protein transport and glycosylation modification, so it can serve as a potential protein expression platform. Although the Po1 series derived from W29 is often used for the expression of the various heterologous proteins, the ability of W29 to secrete proteins has not been verified and the Po1 series has been found to be not convenient for further gene editing. RESULTS: A total of 246 Y. lipolytica strains were evaluated for their secretory capacity through performing high-throughput screening in 48-well plate. Thereafter, following two rounds of shake flask re-screening, a high-secreting protein starting strain DBVPG 5851 was obtained. Subsequently, combined with the extracellular protein types and relative abundance information provided by the secretome of the starting strain, available chassis cell for heterologous protein expression were preliminarily constructed, and it was observed that the most potential signal peptide was derived from YALI0D20680g. CONCLUSIONS: This study offers a novel perspective on the diversification of Y. lipolytica host cells for the heterologous protein expression and provides significant basis for expanding the selection space of signal peptide tools in the future research.


Subject(s)
Yarrowia , Yarrowia/genetics , Secretome , High-Throughput Screening Assays , Glycosylation , Recombinant Proteins/genetics
13.
Proc Natl Acad Sci U S A ; 120(25): e2302779120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307493

ABSTRACT

Supply of Gibbs free energy and precursors are vital for cellular function and cell metabolism have evolved to be tightly regulated to balance their supply and consumption. Precursors and Gibbs free energy are generated in the central carbon metabolism (CCM), and fluxes through these pathways are precisely regulated. However, how fluxes through CCM pathways are affected by posttranslational modification and allosteric regulation remains poorly understood. Here, we integrated multi-omics data collected under nine different chemostat conditions to explore how fluxes in the CCM are regulated in the yeast Saccharomyces cerevisiae. We deduced a pathway- and metabolism-specific CCM flux regulation mechanism using hierarchical analysis combined with mathematical modeling. We found that increased glycolytic flux associated with an increased specific growth rate was accompanied by a decrease in flux regulation by metabolite concentrations, including the concentration of allosteric effectors, and a decrease in the phosphorylation level of glycolytic enzymes.


Subject(s)
Protein Processing, Post-Translational , Saccharomyces cerevisiae , Phosphorylation , Allosteric Regulation , Carbon
14.
Bioengineering (Basel) ; 10(6)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37370675

ABSTRACT

The Valley of Death confronts industrial biotechnology with a significant challenge to the commercialization of products. Fortunately, with the integration of computation, automation and artificial intelligence (AI) technology, the industrial biotechnology accelerates to cross the Valley of Death. The Fourth Industrial Revolution (Industry 4.0) has spurred advanced development of intelligent biomanufacturing, which has evolved the industrial structures in line with the worldwide trend. To achieve this, intelligent biomanufacturing can be structured into three main parts that comprise digitalization, modeling and intellectualization, with modeling forming a crucial link between the other two components. This paper provides an overview of mechanistic models, data-driven models and their applications in bioprocess development. We provide a detailed elaboration of the hybrid model and its applications in bioprocess engineering, including strain design, process control and optimization, as well as bioreactor scale-up. Finally, the challenges and opportunities of biomanufacturing towards Industry 4.0 are also discussed.

15.
Biotechnol Prog ; 39(4): e3352, 2023.
Article in English | MEDLINE | ID: mdl-37141532

ABSTRACT

The strategy of temperature downshift has been widely used in the biopharmaceutical industry to improve antibody production and cell-specific production rate (qp ) with Chinese hamster ovary cells (CHO). However, the mechanism of temperature-induced metabolic rearrangement, especially important intracellular metabolic events, remains poorly understood. In this work, in order to explore the mechanisms of temperature-induced cell metabolism, we systematically assessed the differences in cell growth, antibody expression, and antibody quality between high-producing (HP) and low-producing (LP) CHO cell lines under both constant temperature (37°C) and temperature downshift (37°C→33°C) settings during fed-batch culture. Although the results showed that low-temperature culture during the late phase of exponential cell growth significantly reduced the maximum viable cell density (p < 0.05) and induced cell cycle arrest in the G0/G1 phase, this temperature downshift led to a higher cellular viability and increased antibody titer by 48% and 28% in HP and LP CHO cell cultures, respectively (p < 0.001), and favored antibody quality reflected in reduced charge heterogeneity and molecular size heterogeneity. Combined extra- and intra-cellular metabolomics analyses revealed that temperature downshift significantly downregulated intracellular glycolytic and lipid metabolic pathways while upregulated tricarboxylic acid (TCA) cycle, and particularly featured upregulated glutathione metabolic pathways. Interestingly, all these metabolic pathways were closely associated with the maintenance of intracellular redox state and oxidative stress-alleviating strategies. To experimentally address this, we developed two high-performance fluorescent biosensors, denoted SoNar and iNap1, for real-time monitoring of intracellular nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide + hydrogen (NAD+ /NADH) ratio and nicotinamide adenine dinucleotide phosphate (NADPH) amount, respectively. Consistent with such metabolic rearrangements, the results showed that temperature downshift decreased the intracellular NAD+ /NADH ratio, which might be ascribed to the re-consumption of lactate, and increased the intracellular NADPH amount (p < 0.01) to scavenge intracellular reactive oxygen species (ROS) induced by the increased metabolic requirements for high-level expression of antibody. Collectively, this study provides a metabolic map of cellular metabolic rearrangement induced by temperature downshift and demonstrates the feasibility of real-time fluorescent biosensors for biological processes, thus potentially providing a new strategy for dynamic optimization of antibody production processes.


Subject(s)
Batch Cell Culture Techniques , NAD , Cricetinae , Animals , Cricetulus , NAD/metabolism , CHO Cells , Temperature , NADP , Lactic Acid/metabolism , Antibodies/metabolism , Oxidation-Reduction
16.
Protein Expr Purif ; 208-209: 106293, 2023 08.
Article in English | MEDLINE | ID: mdl-37137401

ABSTRACT

Porcine circovirus type-2 capsid protein contains a major immunodominant epitope used as a subunit vaccine. Transient expression in mammalian cells is an efficient process for producing recombinant proteins. However, there is still a lack of research on the efficient production of virus capsid proteins in mammalian cells. Here we present a comprehensive study to investigate and optimize the production process of a model "difficult-to-express" virus capsid protein, PCV2 capsid protein in HEK293F transient expression system. The study evaluated the transient expression of PCV2 capsid protein in the mammalian cell line HEK293F and investigated the subcellular distribution by confocal microscopy. In addition, the RNA sequencing (RNA-seq) was used to detect the differential expression of genes after cells transfected with pEGFP-N1-Capsid or empty vectors. The analysis revealed that the PCV2 capsid gene affected a panel of differential genes of HEK293F cells involved in protein folding, stress response, and translation process, such as SHP90ß, GRP78, HSP47, and eIF4A. An integrated strategy of protein engineering combined with VPA addition was applied to promote the expression of PCV2 capsid protein in HEK293F. Moreover, this study significantly increased the production of the engineered PCV2 capsid protein in HEK293F cells, reaching a yield of 8.7 mg/L. Conclusively, this study may provide deep insight for other "difficult-to-express" virus capsid proteins in the mammalian cell system.


Subject(s)
Capsid Proteins , Circovirus , Swine , Animals , Humans , Circovirus/genetics , HEK293 Cells , Capsid/metabolism , Recombinant Proteins/genetics , Antibodies, Viral , Mammals
17.
Biotechnol J ; 18(5): e2200444, 2023 May.
Article in English | MEDLINE | ID: mdl-36796787

ABSTRACT

Metabolic reprogramming has been coined as a hallmark of cancer, accompanied by which the alterations in metabolite levels have profound effects on gene expression, cellular differentiation, and the tumor environment. Yet a systematic evaluation of quenching and extraction procedures for quantitative metabolome profiling of tumor cells is currently lacking. To achieve this, this study is aimed at establishing an unbiased and leakage-free metabolome preparation protocol for HeLa carcinoma cell. We evaluated 12 combinations of quenching and extraction methods from three quenchers (liquid nitrogen, -40°C 50% methanol, 0.5°C normal saline) and four extractants (-80°C 80% methanol, 0.5°C methanol/chloroform/water [1:1:1 v/v/v], 0.5°C 50% acetonitrile, 75°C 70% ethanol) for global metabolite profiling of adherent HeLa carcinoma cells. Based on the isotope dilution mass spectrometry (IDMS) method, gas/liquid chromatography in tandem with mass spectrometry was used to quantitatively determine 43 metabolites including sugar phosphates, organic acids, amino acids (AAs), adenosine nucleotides, and coenzymes involved in central carbon metabolism. The results showed that the total amount of the intracellular metabolites in cell extracts obtained using different sample preparation procedures with the IDMS method ranged from 21.51 to 295.33 nmol per million cells. Among 12 combinations, cells that washed twice with phosphate buffered saline (PBS), quenched with liquid nitrogen, and then extracted with 50% acetonitrile were found to be the most optimal method to acquire intracellular metabolites with high efficiency of metabolic arrest and minimal loss during sample preparation. In addition, the same conclusion was drawn as these 12 combinations were applied to obtain quantitative metabolome data from three-dimensional (3D) tumor spheroids. Furthermore, a case study was carried out to evaluate the effect of doxorubicin (DOX) on both adherent cells and 3D tumor spheroids using quantitative metabolite profiling. Pathway enrichment analysis using targeted metabolomics data showed that DOX exposure would significantly affect AA metabolism-related pathways, which might be related to the mitigation of redox stress. Strikingly, our data suggested that compared to two-dimensional (2D) cells the increased intracellular glutamine level in 3D cells benefited replenishing the tricarboxylic acid (TCA) cycle when the glycolysis was limited after dosing with DOX. Taken together, this study provides a well-established quenching and extraction protocol for quantitative metabolome profiling of HeLa carcinoma cell under 2D and 3D cell culture conditions. Based on this, quantitative time-resolved metabolite data can serve to the generation of hypotheses on metabolic reprogramming to reveal its important role in tumor development and treatment.


Subject(s)
Carcinoma , Methanol , Humans , Methanol/chemistry , Gas Chromatography-Mass Spectrometry/methods , Metabolome , Metabolomics/methods , Ethanol/chemistry , 2-Propanol , Cell Culture Techniques, Three Dimensional , Acetonitriles/chemistry , Nitrogen
18.
Biotechnol Lett ; 45(4): 449-461, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36707453

ABSTRACT

Accurate monitoring of dissolved oxygen (DO) is vital for aerobic fermentation process control. This work presents an autoclavable Micro-Dissolved oxygen Sensor (MDS) that can monitor real time DO. The proposed sensor is much cheaper to be manufactured (< $35) and can be adapted to varying measurement environments. An ultra-micropore matrix was created using femtosecond laser processing technology to reduce flow dependency of probe signals. The validity of the proposed DO sensor was verified by testing it under different DO levels. The result revealed consistency between the new designed sensor and a commercial DO sensor. The obtained sensitivity was- 7.93 µA·L·mg-1 (MDS with ultra-micropore matrix). Moreover, the MDS can function without an oxygen-permeable membrane and a solid electrolyte was used which reduced the response time (4.6 s). For real-time monitoring, the stability of the MDS was validated during a yeast batch fermentation carried out until 18 h.


Subject(s)
Oxygen , Saccharomyces cerevisiae , Fermentation , Lasers
19.
Bioresour Bioprocess ; 10(1): 60, 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-38647813

ABSTRACT

Infectious bursal disease (IBD) of chickens is an acute, high-contact, lytic infectious disease caused by infectious bursal disease virus (IBDV). The attenuated inactivated vaccine produced by DF-1 cells is an effective control method, but the epidemic protection demands from the world poultry industry remain unfulfilled. To improve the IBDV vaccine production capacity and reduce the economic losses caused by IBDV in chicken, cellular metabolic engineering is performed on host cells. In this study, when analyzing the metabolomic after IBDV infection of DF-1 cells and the exogenous addition of reduced glutathione (GSH), we found that glutathione metabolism had an important role in the propagation of IBDV in DF-1 cells, and the glutathione synthetase gene (gss) could be a limiting regulator in glutathione metabolism. Therefore, three stable recombinant cell lines GSS-L, GSS-M, and GSS-H (gss gene overexpression with low, medium, and high mRNA levels) were screened. We found that the recombinant GSS-M cell line had the optimal regulatory effect with a 7.19 ± 0.93-fold increase in IBDV titer. We performed oxidative stress and redox status analysis on different recombinant cell lines, and found that the overexpression of gss gene significantly enhanced the ability of host cells to resist oxidative stress caused by IBDV infection. This study established a high-efficiency DF-1 cells system for IBDV vaccine production by regulating glutathione metabolism, and underscored the importance of moderate gene expression regulation on the virus reproduction providing a way for rational and precise cell engineering.

20.
Bioengineering (Basel) ; 9(11)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36354521

ABSTRACT

Morphology plays an important role in the fermentation bioprocess of filamentous fungi. In this study, we investigated the controlling strategies of morphology that improved the efficiency of Rhizomucor miehei lipase (RML) production using a high-yield Aspergillus oryzae. First, the inoculated spore concentrations were optimized in seed culture, and the RML activity increased by 43.4% with the well-controlled mycelium pellets in both ideal sizes and concentrations. Then, the initial nitrogen source and agitation strategies were optimized to regulate the morphology of Aspergillus oryzae in a 5 L bioreactor, and the established stable fermentation system increased the RML activity to 232.0 U/mL, combined with an increase in total RML activity from 98,080 U to 487,179 U. Furthermore, the optimized fermentation strategy was verified by a high-yield Aspergillus oryzae and achieved an additional improvement of RML activity, up to 320.0 U/mL. Moreover, this optimized fermentation bioprocess was successfully scaled up to a 50 L bioreactor, and the RML activity reached 550.0 U/mL. This work has established a stable precision fermentation bioprocess for RML production by A. oryzae in bioreactors, and the controlling strategy developed in this study could potentially be extended to an industrial scale for RML production with high efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...