Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters











Publication year range
1.
Talanta ; 259: 124535, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37054622

ABSTRACT

A simple water extraction and transfer procedure is found to result in reproducible and highly sensitive 785 nm excited SERS spectra of 24 h dried bloodstains on Ag nanoparticle substrates. This protocol allows confirmatory detection and identification of dried stains of blood that have been diluted by up to 105 in water on Ag substrates. While previous SERS results demonstrated similar performance on Au substrates when a 50% acetic acid extraction and transfer procedure was used, the water/Ag methodology avoids any potential DNA damage when the sample size is extremely small (≤∼1 µL) due to low pH exposure. The water only procedure is not effective on Au SERS substrates. This metal substrate difference results from the efficient red blood cell lysis and hemoglobin denaturation effects of the Ag nanoparticle surfaces as compare to that of Au nanoparticles. Consequently, the 50% acetic acid exposure is required for the acquisition of 785 nm SERS spectra of dried bloodstains on Au substrates.


Subject(s)
Metal Nanoparticles , Spectrum Analysis, Raman/methods , Gold , Silver , Surface Properties
2.
J Chem Phys ; 155(19): 194701, 2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34800946

ABSTRACT

A density matrix treatment of plasmon-enhanced (PE) stimulated Raman spectroscopies is developed. Specifically, PE stimulated Raman Gain/Loss (PE-SRG/L) and coherent anti-Stokes Raman scattering (PE-CARS) due to monochromatic excitation and PE femtosecond stimulated Raman spectroscopy (PE-FSRS) are considered. A Lorentz oscillator model is used to explicitly describe the time dependence of plasmon-enhanced optical fields. These temporal characteristics are required for a density matrix based description of all plasmon-enhanced nonlinear molecular spectroscopies. Dispersive vibrational line shapes in PE-SRG/L and PE-FSRS spectra are shown to result primarily from terms proportional to the square of the complex optical field enhancement factor. The dependence on the plasmon resonance, picosecond and femtosecond pulse characteristics, and molecular vibrational properties are evident in the density matrix derived PE-FSRS intensity expression. The difference in signal detection mechanisms accounts for the lack of dispersive line shapes in PE spontaneous Raman spectroscopy. This density matrix treatment of PE-FSRS line shapes is compared with prior coupled wave results.

3.
Forensic Sci Int ; 328: 111000, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34564021

ABSTRACT

Surface enhanced Raman spectroscopy (SERS) provides highly specific vibrational signatures identifying dried blood for a variety of forensic applications. SERS spectra on Au nanoparticle substrates excited at 785 nm are found to identify dried stains of human and nonhuman blood from seven animals, and distinguish stains due to menstrual and peripheral blood. In addition, the unique SERS bloodstain spectrum is distinct from the SERS spectra of thirty red-brown stains of potential household substances that could be visually mistaken for bloodstains and from food stains that have been shown to give positive results with presumptive colorimetric blood tests. Finally, a SERS swab procedure has been developed and demonstrates that the substrates that a blood sample dried on does not offer any Raman or fluorescence interference for the SERS identification of dried blood. Such bloodstains on porous and nonporous materials are all identical and exclusively due to the heme moiety of hemoglobin. Optimized selection of the extraction solvent is found to control the chemical composition of molecular components appearing in the SERS spectrum of complex, multicomponent biological mixtures, such as body fluids.


Subject(s)
Blood Stains , Animals , Forensic Medicine , Gold , Humans , Metal Nanoparticles , Spectrum Analysis, Raman
4.
J Phys Chem B ; 125(23): 6330-6337, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34076448

ABSTRACT

A lattice model is described to explain a recent striking Sum Frequency Generation (SFG) observation of a cooperative surface adsorption effect for an organic acid system at an air-water interface. The reported anomalous pH-dependent enhancement in p-methylbenzoic acid (pmBA) arises from an interaction between the acid (HA) and its conjugate base anion (A-), which competes with strong Coulombic repulsion between the conjugate bases (A--A -). Using a statistical mechanical approach, this lattice gas model reveals an analogy to well-studied magnetic systems in which the attraction between the two different molecular species leads to a phase transition to a two-dimensional checkerboard phase consisting of a network of anion-acid complexes formed at the low-dielectric air-water interface. Cooperative acid-anion interactions that control partitioning at solution and aerosol interfaces are of interest to fields ranging from oceanic and atmospheric chemistry, pharmacology, and chemical engineering.


Subject(s)
Air , Water , Adsorption , Anions , Phase Transition
5.
Analyst ; 145(18): 6097-6110, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32840504

ABSTRACT

An optimized procedure is described for the acquisition of 785 nm excited SERS spectra of dried bloodstains and shown to offer great potential for rapid, portable, highly sensitive and specific, confirmatory identification for forensic applications. Following extraction in 1 µL of 50% acetic acid, a robust, highly reproducible SERS spectrum is observed from dried bloodstains resulting from a hematin-like heme moiety (ferric, high spin). As anticipated, this blood signature can be classified with 100% specificity and sensitivity with respect to the SERS spectra of other body fluids. High quality SERS spectra can be observed from stains of blood diluted by as much as 105. Dried blood spectra acquired on Au and Ag SERS active substrates exhibit very different relative intensities at this electronically, non-resonant excitation wavelength (785 nm) indicating that a strong chemical effect contributes to the SERS enhancement of this body fluid. DFT calculations further confirm the vibrational band assignments of the features seen in these SERS spectra of dried blood.


Subject(s)
Blood Stains , Body Fluids , Spectrum Analysis, Raman
6.
J Phys Chem A ; 124(16): 3064-3076, 2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32212703

ABSTRACT

Vibrational sum-frequency generation (SFG) spectroscopy is used to determine the surface pKa of p-methyl benzoic acid (pMBA) at the air-water interface by monitoring the carbonyl and carboxylate stretching modes over the pH range of 2 to 12. The SFG intensities of pMBA and its conjugate base, p-methyl benzoate (pMBA-), exhibit an anomalously large enhancement over a narrow pH range (∼0.5) centered at pH 6.3 near the SFG-determined surface pKa, 5.9 ± 0.1. The increase in the surface pKa relative to the bulk value of 4.34 is consistent with the trend previously observed for long chain carboxylic acids in which the surface pKa is higher than the bulk solution pKa. SFG polarization studies help distinguish the orientation and number density contributions to this observed anomalous surface phenomenon. The large SFG intensity increase is attributed to an increase in the pMBA and pMBA- surface concentrations in this narrow pH range due to a cooperative adsorption effect between pMBA and pMBA-. This cooperativity is manifested only on the 2D air-water interface, where the interactions between the acid and base are not as dielectrically screened as in the aqueous bulk phase. Surface effects are critical to understanding and controlling the reactivity, solubility, and behavior of organic acids at interfaces and can have an impact on biomedical applications.


Subject(s)
Benzoic Acid/chemistry , Adsorption , Air , Hydrogen-Ion Concentration , Molecular Structure , Spectrophotometry, Infrared , Surface Tension , Water/chemistry
7.
Phys Chem Chem Phys ; 21(38): 21249-21261, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31538165

ABSTRACT

Ultrafast 2DIR spectra and pump-probe responses of the N2O ν3 asymmetric stretch in SF6 as a function of density from the gas to supercritical phase and liquid are reported. 2DIR spectra unequivocally reveal free rotor character at all densities studied in the gas and supercritical region. Analysis of the 2DIR spectra determines that J-scrambling or rotational relaxation in N2O is highly efficient, occurring in ∼1.5 to ∼2 collisions with SF6 at all non-liquid densities. In contrast, N2O ν3 vibrational energy relaxation requires ∼15 collisions, and complete vibrational equilibrium occurs on the ∼ns scale at all densities. An independent binary collision model is sufficient to describe these supercritical state point dynamics. The N2O ν3 in liquid SF6 2DIR spectrum shows no evidence of free rotor character or spectral diffusion. Using these 2DIR results, hindered rotor or liquid-like character is found in gas and all supercritical solutions for SF6 densities ≥ρ* = 0.3, and increases with SF6 density. 2DIR spectral analysis offers direct time domain evidence of critical slowing for SF6 solutions closest to the critical point density. Applications of 2DIR to other high density and supercritical solution dynamics and descriptions are discussed.

8.
Phys Rev Lett ; 120(10): 103401, 2018 Mar 09.
Article in English | MEDLINE | ID: mdl-29570323

ABSTRACT

Ultrafast two-dimensional infrared (2DIR) spectra of the N_{2}O ν_{3} mode in moderately dense SF_{6} gas exhibit complex line shapes with diagonal and antidiagonal features in contrast to condensed phase vibrational 2DIR spectroscopy. Observed spectra for this quasifree rotor system are well captured by a model that includes all 36 possible rovibrational pathways and treats P (ΔJ=-1) and R (ΔJ=+1) branch resonances as distinct Kubo line shape features. Transition frequency correlation decay is due to J scrambling within one to two gas collisions at each density. Studies of supercritical solvation and relaxation at high pressure and temperature are enabled by this methodology.

9.
Sci Rep ; 8(1): 5163, 2018 03 26.
Article in English | MEDLINE | ID: mdl-29581560

ABSTRACT

SERS spectra excited at 785 nm of the bacteria Chlamydia trahomatis (elementary bodies, EB) and Neisseria gonorrheoae, the causative pathogens for the two most common sexually transmitted diseases (STD), chlamydia and gonorrhea, respectively, are reported. Although both are Gram-negative bacteria, the SERS signatures of C. trachomatis and N. gonorrheoae are completely different. N. gonorrheoae SERS spectra are due to the starvation induced nucleotide metabolites adenine and guanine, and the surface associated co-enzyme nicotinamide adenine dinucleotide and are very similar on Au and Ag although the spectrum appears more rapidly on Ag. The C. trachomatis SERS spectrum is dominated by the vibrational features of cell surface proteins. While features attributable to specific residues and the amide backbone characterize the C. trachomatis spectrum on Ag, the corresponding SERS spectrum on Au substrates displays vibrational characteristics of aggregated proteins. The prospects for the development of a SERS based platform for rapid (

Subject(s)
Chlamydia Infections/diagnosis , Chlamydia trachomatis/metabolism , Gonorrhea/diagnosis , Metabolomics/methods , Neisseria gonorrhoeae/metabolism , Spectrum Analysis, Raman/methods , Adenine/analysis , Cell Line , Chlamydia Infections/microbiology , Gold/chemistry , Gonorrhea/microbiology , Guanine/analysis , Humans , Metabolome , Metal Nanoparticles/chemistry , Sexually Transmitted Diseases/diagnosis , Silver/chemistry , Vibration
10.
Anal Bioanal Chem ; 409(11): 3043-3054, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28235996

ABSTRACT

SERS spectra of 12 bacterial strains of urinary tract infection (UTI) clinical isolates grown and enriched from urine are reported. A partial least squares-discriminant analysis (PLS-DA) classification treatment of these SERS spectra results in strain level identification with >95% sensitivity and >99% specificity. The classification model successfully identified the SERS spectra of a urine-cultured strain not used to build this statistical model. Enrichment was accomplished by a filtration and centrifugation protocol. The predetermined drug susceptibility profiles of these clinical isolates thus allowed the SERS methodology to provide appropriate UTI antibiotic information in less than 1 h. Most of this time was used for sample preparation procedures (enrichment and washing) for this proof of principle study. SERS spectra of the enriched bacterial samples are dominated by nucleotide degradation metabolites: adenine, hypoxanthine, xanthine, guanine, uric acid, AMP, and guanosine. Strain-specific specificity is due to the different relative amounts of these purines contributing to the corresponding SERS spectra of these clinical isolates. All measurements were made at the minimal bacterial concentration in urine for UTI diagnosis (105 cfu/mL). Graphical abstract The relative contribution of each of the seven purines found to contribute to the bacterial SERS spectra are summarized in this bar graph. Although strain specific differences are evident, it can be see how the pattern of contributing purines is more different between the four species than between strains of a given species.


Subject(s)
Bacterial Infections/microbiology , Bacterial Infections/urine , Bacterial Typing Techniques/methods , Spectrum Analysis, Raman/methods , Urinary Tract Infections/microbiology , Urinary Tract Infections/urine , Anti-Bacterial Agents/administration & dosage , Bacterial Infections/drug therapy , Humans , Reproducibility of Results , Sensitivity and Specificity , Urinary Tract Infections/drug therapy
11.
J Phys Chem B ; 120(40): 10569-10580, 2016.
Article in English | MEDLINE | ID: mdl-27668810

ABSTRACT

Ultrafast IR pump-probe responses resonant with the ν3 asymmetric stretch of nitrous oxide (N2O) at ∼2230 cm-1 are reported for 2 M aqueous salt solutions of MgCl2, CaCl2, NaCl, KCl, and CsCl at room temperature. The solvated cations of these chloride solutions span the range from strongly to weakly hydrating ions, and correspondingly are often categorized as structure makers and structure breakers, respectively. The observed salt dependent trends of the N2O ν3 vibrational energy relaxation (VER) and rotational reorientation anisotropy (R(t)) decays are consistent with the categorization of these cations as structure breakers or makers, and show evidence of effects on the water hydrogen bonding network beyond the first solvation shell of these ions. This N2O mode is resonant with the H2O bend-libration band region. The corresponding FTIR is fitted well by a two Gaussian plus sloping continuum baseline model that allows a framework for characterizing the salt perturbations of the solvent spectral density in the ν3 resonant region. Both coupling strengths and density of states effects appear to contribute the systematic cation dependent T1 effects reported here. R(t) decays follow bulk viscosity values. These results are contrasted with previous IR pump-probe studies predominantly based on the relaxation dynamics of the OH/OD vibrational stretch of HOD hydrogen bonded to anions in salt solutions.

12.
Anal Bioanal Chem ; 406(1): 193-200, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24162820

ABSTRACT

Care must be exercised in the use of Raman spectroscopy for the identification of blood in forensic applications. The Raman spectra of dried whole human blood excited at 785 nm are shown to be exclusively due to oxyhemoglobin or related hemoglobin denaturation products. Raman spectra of whole blood are reported as a function of the incident 785-nm-laser power, and features attributable to heme aggregates are observed for fluences on the order of 10(4) W/cm(2) and signal collection times of 20 s. In particular, the formation of this local-heating-induced heme aggregate product is indicated by a redshifting of several heme porphyrin ring vibrational bands, the appearance of a large broad band at 1,248 cm(-1), the disappearance of the Fe-O2 stretching and bending bands, and the observation of a large overlapping fluorescence band. This denaturation product is also observed in the low-power-excitation Raman spectrum of older ambient-air-exposed bloodstains (2 weeks or more). The Raman spectrum of methemoglobin whole blood excited at 785 nm is reported, and increasing amounts of this natural denaturation product can also be identified in Raman spectra of dried whole blood particularly when the blood has been stored prior to drying. These results indicate that to use 785-nm-excitation Raman spectra as an identification method for forensic applications to maximum effect, incident laser powers need to be kept low to eliminate variable amounts of heme aggregate spectral components contributing to the signal and the natural aging process of hemoglobin denaturation needs to be accounted for. This also suggests that there is a potential opportunity for 785-nm-excitation Raman spectra to be a sensitive indicator of the age of dried bloodstains at crime scenes.


Subject(s)
Dried Blood Spot Testing/standards , Heme/chemistry , Methemoglobin/chemistry , Oxyhemoglobins/chemistry , Spectrum Analysis, Raman/standards , Dried Blood Spot Testing/instrumentation , Erythrocytes/chemistry , Forensic Sciences , Humans , Protein Denaturation , Time Factors
13.
J Phys Chem B ; 117(49): 15774-85, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-23941277

ABSTRACT

Dispersed IR three-pulse photon echoes due to the antisymmetric (ν3) stretch mode of N2O dissolved in H2O and 1-octanol at room temperature are reported and analyzed. The experimentally determined transition frequency-frequency correlation function (FFCF) in these two solvents is explained in terms of inertial solvent contributions, hydrogen bond network fluctuations, and, for octanol, the motions of the alkyl chains. The H2O hydrogen bond fluctuations result in 1.5 ps FFCF decay, in agreement with relaxation rates determined from photon echo based measurements of other aqueous solutions including salt solutions. In octanol, hydrogen bond fluctuations decay on a slower time scale of 3.3 ps and alkyl chain motions result in an inhomogeneous broadening contribution to the ν3 absorption spectrum that decays on a 35 ps time scale. Rotational reorientation of N2O is nearly 3 times faster in octanol as compared to water. Although the vibrational ν3 N2O absorption line shapes in water and octanol are similar, the line widths result from different coherence loss mechanisms. A hot band contribution in the N2O in octanol solution is found to have a significant effect on the echo spectrum due to its correspondingly stronger transition moment than that of the fundamental transition. The dephasing dynamics of the N2O ν3 stretch mode is of interest as a probe in ultrafast studies of complex or nanoconfined systems with both hydrophobic and hydrophilic regions such as phospholipids, nucleic acids, and proteins. These results demonstrate the value of the N2O molecule to act as a reporter of equilibrium fluctuations in such complex systems particularly due to its solubility characteristics and long vibrational lifetime.


Subject(s)
Nitrous Oxide/chemistry , Octanols/chemistry , Water/chemistry , Azides/chemistry , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Photons , Spectrophotometry, Infrared , Time Factors
14.
J Phys Chem B ; 116(31): 9376-86, 2012 Aug 09.
Article in English | MEDLINE | ID: mdl-22780445

ABSTRACT

SERS spectra of whole human blood, blood plasma, and red blood cells on Au nanoparticle SiO(2) substrates excited at 785 nm have been observed. For the sample preparation procedure employed here, the SERS spectrum of whole blood arises from the blood plasma component only. This is in contrast to the normal Raman spectrum of whole blood excited at 785 nm and open to ambient air, which is exclusively due to the scattering of oxyhemoglobin. The SERS spectrum of whole blood shows a storage time dependence that is not evident in the non-SERS Raman spectrum of whole blood. Hypoxanthine, a product of purine degradation, dominates the SERS spectrum of blood after ~10-20 h of storage at 8 °C. The corresponding SERS spectrum of plasma isolated from the stored blood shows the same temporal release of hypoxanthine. Thus, blood cellular components (red blood cells, white blood cells, and/or platelets) are releasing hypoxanthine into the plasma over this time interval. The SERS spectrum of red blood cells (RBCs) excited at 785 nm is reported for the first time and exhibits well-known heme group marker bands as well as other bands that may be attributed to cell membrane components or protein denaturation contributions. SERS, as well as normal Raman spectra, of oxy- and met-RBCs are reported and compared. These SERS results can have significant impact in the area of clinical diagnostics, blood supply management, and forensics.


Subject(s)
Blood Chemical Analysis/methods , Erythrocytes/chemistry , Nanoparticles/chemistry , Plasma/chemistry , Spectrum Analysis, Raman/methods , Gold/chemistry , Humans , Silicon Dioxide/chemistry
15.
Spectroscopy (Springf) ; 27(6): s8-31, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-24371371

ABSTRACT

There is a continuing need to develop new techniques for the rapid and specific identification of bacterial pathogens in human body fluids especially given the increasing prevalence of drug resistant strains. Efforts to develop a surface enhanced Raman spectroscopy (SERS) based approach, which encompasses sample preparation, SERS substrates, portable Raman microscopy instrumentation and novel identification software, are described. The progress made in each of these areas in our laboratory is summarized and illustrated by a spiked infectious sample for urinary tract infection (UTI) diagnostics. SERS bacterial spectra exhibit both enhanced sensitivity and specificity allowing the development of an easy to use, portable, optical platform for pathogen detection and identification. SERS of bacterial cells is shown to offer not only reproducible molecular spectroscopic signatures for analytical applications in clinical diagnostics, but also is a new tool for studying biochemical activity in real time at the outer layers of these organisms.

16.
J Phys Chem A ; 115(16): 3917-23, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21241060

ABSTRACT

Highly nonlinear pump fluence dependence was observed in the ultrafast one-color pump-probe responses excited by 38 fs pulses resonant with the E(22) transition in a room-temperature solution of (6,5) carbon nanotubes. The differential probe transmission (ΔT/T) at the peak of the pump-probe response (τ = 20 fs) was measured for pump fluences from ∼10(13) to 10(17) photons/pulse cm(2). The onset of saturation is observed at ∼2 × 10(15) photons/pulse cm(2) (∼8 × 10(5) excitons/cm). At pump fluences >4 × 10(16) photons/pulse cm(2) (∼1.6 × 10(6) excitons/cm), ΔT/T decreases as the pump fluence increases. Analogous signal saturation behavior was observed for all measured probe delays. Despite the high exciton density at saturation, no change in the E(22) population decay rate was observed at short times (<300 fs). The pump probe signal was modeled by a third-order perturbation theory treatment that includes the effects of inhomogeneous broadening. The observed ΔT/T signal is well-fit by a pump-fluence-dependent dephasing rate linearly dependent on the number of excitons created by the pump pulse. Therefore, the observed nonlinear pump intensity dependence is attributed to the effects of quasi-elastic exciton-exciton interactions on the dephasing rates of single carbon nanotubes. The low fluence total dephasing time is 36 fs, corresponding to a homogeneous width of 36 meV (290 cm(-1)), and the derived E(22) inhomogeneous width is 68 meV (545 cm(-1)). These results are contrasted with photon-echo-derived parameters for the E(11) transition.


Subject(s)
Electrons , Nanotubes, Carbon/chemistry , Thermodynamics , Time Factors
17.
J Chem Phys ; 131(5): 054501, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19673568

ABSTRACT

The optical heterodyne detected anisotropic rotational Raman responses of H(2) and D(2) (22 mol %) in a near critical CO(2) (rho(*) = rho/rho(c) = 0.8, T = 308 K) solution are reported. J-specific rotational Raman correlation functions (RCFs) for the S(J) transitions of H(2) (J = 0,1,2) and D(2) (J = 0,1,2,3) in this CO(2) solution are determined from these measurements. A mixed classical-quantum simulation methodology results in RCFs that are in excellent agreement with the experimentally derived J-specific responses. The observed S(J) coherence decay time scales, J-dependence, rotor mass dependence, and solvent-induced transition frequency shifts are well captured by these simulations. Pure dephasing of these rotational Raman transitions is shown to be close to the homogeneous limit of the standard Kubo line shape analysis and attributable to the rotor center-of-mass translation in an anisotropic solvent cage. Rotor translational motion in the vicinity of a single CO(2) appears to dominate this dephasing mechanism. Mixed classical-quantum simulations, incorporating the effects of solution fluctuation driven nonadiabatic coupling of instantaneous adiabatic states, including full J-mixing, are required for the agreement between theory and experiment obtained here. Simulations of the classically excited angular kinetic energy of D(2) rotors are used as an estimate of T(1) relaxation rates and are found to be negligible compared to the D(2) rotational Raman coherence time scale. These results are discussed in the context of previous mixed classical-quantum and rotational friction calculations of the dephasing and energy relaxation contributions to H(2) rotational Raman coherence decays. Advantages of time domain acquisition of these rotational Raman responses as compared to spontaneous Raman measurements are illustrated here.

18.
J Raman Spectrosc ; 39(11): 1660-1672, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19714262

ABSTRACT

A principal component analysis (PCA) based on the sign of the second derivative of the surface enhanced Raman spectroscopy (SERS) spectrum obtained on in-situ grown Au cluster covered SiO(2) substrates results in improved reproducibility and enhanced specificity for bacterial diagnostics. The barcode generated clustering results are systematically compared to those obtained from corresponding spectral intensities, first derivatives and second derivatives for the SERS spectra of closely related cereus group Bacillus strains. PCA plots and corresponding hierarchical cluster analysis (HCA) dendrograms illustrate the improved bacterial identification resulting from the barcode spectral data reduction. Supervised DFA plots result in slightly improved group separation but show more susceptibility to false positive classifications than the corresponding PCA contours. In addition, this PCA treatment is used to highlight the enhanced bacterial species specificity observed for SERS as compared to normal bulk (non-SERS) Raman spectra. The identification algorithm described here is critical for the development of SERS microscopy as a rapid, reagentless, portable diagnostic of bacterial pathogens.

19.
J Phys Chem B ; 109(1): 312-20, 2005 Jan 13.
Article in English | MEDLINE | ID: mdl-16851017

ABSTRACT

The surface enhanced Raman scattering (SERS) of a number of species and strains of bacteria obtained on novel gold nanoparticle (approximately 80 nm) covered SiO(2) substrates excited at 785 nm is reported. Raman cross-section enhancements of >10(4) per bacterium are found for both Gram-positive and Gram-negative bacteria on these SERS active substrates. The SERS spectra of bacteria are spectrally less congested and exhibit greater species differentiation than their corresponding non-SERS (bulk) Raman spectra at this excitation wavelength. Fluorescence observed in the bulk Raman emission of Bacillus species is not apparent in the corresponding SERS spectra. Despite the field enhancement effects arising from the nanostructured metal surface, this fluorescence component appears "quenched" due to an energy transfer process which does not diminish the Raman emission. The surface enhancement effect allows the observation of Raman spectra of single bacterial cells excited at low incident powers and short data acquisition times. SERS spectra of B. anthracis Sterne illustrate this single cell level capability. Comparison with previous SERS studies reveals how the SERS vibrational signatures are strongly dependent on the morphology and nature of the SERS active substrates. The potential of SERS for detection and identification of bacterial pathogens with species and strain specificity on these gold particle covered glassy substrates is demonstrated by these results.


Subject(s)
Bacillus/chemistry , Spectrum Analysis, Raman/methods , Gold/chemistry , Nanoparticles/chemistry , Particle Size , Sensitivity and Specificity , Silicon Dioxide/chemistry , Spectrum Analysis, Raman/instrumentation , Surface Properties
20.
J Clin Oncol ; 14(8): 2197-205, 1996 Aug.
Article in English | MEDLINE | ID: mdl-8708708

ABSTRACT

PURPOSE: To determine the long-term clinical course of patients with metastatic breast cancer (MBC) who achieved a complete remission with doxorubicin-alkylating agent-containing combination chemotherapy programs. PATIENTS AND METHODS: To assess the long-term prognosis of MBC, we reviewed our experience with 1,581 patients treated on consecutive doxorubicin and alkylating agent-containing front-line treatment protocols between 1973 and 1982. Treatment was administered for a maximum duration of 2 years. Characteristics of long-term survivors were evaluated, and hazard rates for progression were calculated. RESULTS: From this group, 263 (16.6%) achieved complete responses (CR) and 49 (3.1%) remained in CR for more than 5 years. After a median duration of 191 months, 26 patients remain in first CR, four patients died in CR at times ranging from 118 to 234 months, 18 patients died of breast cancer, and one is alive with metastatic disease. Compared with the overall CR and total patient populations, the long-term CR group had more premenopausal patients, a younger median age, a lower tumor burden, and better performance status. The hazard function shows a substantial drop in risk of progression after approximately 3 years from initiation of therapy. Ten long-term CR patients developed second primary cancers: breast (3), ovary (2), pancreas (1), endometrium (1), colon (1), head and neck (1), and lung (1). CONCLUSION: Most patients with MBC treated with systemic therapies have only temporary responses to treatment, but some patients continue in CR following initial treatment. These data show that a small percentage of patients achieve long-term remissions with standard chemotherapy regimens. Remission consolidation strategies are needed.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Disease-Free Survival , Female , Follow-Up Studies , Humans , Middle Aged , Neoplasm Metastasis , Neoplasms, Second Primary/pathology , Prognosis , Remission Induction , Retrospective Studies , Survival Rate , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL