Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Lancet Respir Med ; 12(7): 523-534, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705167

ABSTRACT

BACKGROUND: Morbidity and mortality in pulmonary arterial hypertension (PAH) remain high. Activation of platelet-derived growth factor receptor, colony stimulating factor 1 receptor, and mast or stem cell growth factor receptor kinases stimulates inflammatory, proliferative, and fibrotic pathways driving pulmonary vascular remodelling in PAH. Seralutinib, an inhaled kinase inhibitor, targets these pathways. We aimed to evaluate the efficacy and safety of seralutinib in patients with PAH receiving standard background therapy. METHODS: The TORREY trial was a phase 2, randomised, multicentre, multinational, double-blind, placebo-controlled study. Patients with PAH from 40 hospital and community sites were randomly assigned 1:1 via interactive response technologies to receive seralutinib (60 mg twice daily for 2 weeks, then increased to 90 mg twice daily as tolerated) or placebo by dry powder inhaler twice daily for 24 weeks. Randomisation was stratified by baseline pulmonary vascular resistance (PVR; <800 dyne·s/cm5 and ≥800 dyne·s/cm5). Patients were eligible if classified as WHO Group 1 PH (PAH), WHO Functional Class II or III, with a PVR of 400 dyne·s/cm5 or more, and a 6 min walk distance of between 150 m and 550 m. The primary endpoint was change in PVR from baseline to 24 weeks. Analyses for efficacy endpoints were conducted in randomly assigned patients (intention-to-treat population). Safety analyses included all patients who received the study drug. TORREY was registered with ClinicalTrials.gov (NCT04456998) and EudraCT (2019-002669-37) and is completed. FINDINGS: From Nov 12, 2020, to April 20, 2022, 151 patients were screened for eligibility, and following exclusions, 86 adults receiving PAH background therapy were randomly assigned to seralutinib (n=44; four male, 40 female) or placebo (n=42; four male, 38 female), and comprised the intention-to-treat population. At baseline, treatment groups were balanced except for a higher representation of WHO Functional Class II patients in the seralutinib group. The least squares mean change from baseline to week 24 in PVR was 21·2 dyne·s/cm5 (95% CI -37·4 to 79·8) for the placebo group and -74·9 dyne·s/cm5 (-139·7 to -10·2) for the seralutinib group. The least squares mean difference between the seralutinib and placebo groups for change in PVR was -96·1 dyne·s/cm5 (95% CI -183·5 to -8·8; p=0·03). The most common treatment-emergent adverse event in both treatment groups was cough: 16 (38%) of 42 patients in the placebo group; 19 (43%) of 44 patients in the seralutinib group. INTERPRETATION: Treatment with inhaled seralutinib significantly decreased PVR, meeting the primary endpoint of the study among patients receiving background therapy for PAH. FUNDING: Gossamer Bio.


Subject(s)
Pulmonary Arterial Hypertension , Humans , Male , Double-Blind Method , Female , Middle Aged , Adult , Treatment Outcome , Aged , Pulmonary Arterial Hypertension/drug therapy , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/therapeutic use , Vascular Resistance/drug effects , Administration, Inhalation , Hypertension, Pulmonary/drug therapy
2.
J Vis Exp ; (168)2021 02 05.
Article in English | MEDLINE | ID: mdl-33616109

ABSTRACT

Cardiogenic shock remains one of the most challenging clinical syndromes in modern medicine. Mechanical support is being increasingly used in the management of cardiogenic shock. Intra-aortic balloon pump (IABP) is one of the earliest and most widely used types of mechanical circulatory support. The device acts by external counterpulsation and uses systolic unloading and diastolic augmentation of aortic pressure to improve hemodynamics. Although IABP provides less hemodynamic support when compared with newer mechanical circulatory support devices, it can still be the mechanical support device of choice in appropriate situations because of its relative simplicity of insertion and removal, need for smaller size vascular access and better safety profile. In this review, we discuss the equipment, procedural and technical aspects, hemodynamic effects, indications, evidence, current status and recent advances in the use of IABP in cardiogenic shock.


Subject(s)
Heart-Assist Devices , Intra-Aortic Balloon Pumping/methods , Shock, Cardiogenic/therapy , Hemodynamics , Humans , Shock, Cardiogenic/etiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL