Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Article En | MEDLINE | ID: mdl-38051606

Object counting, defined as the task of accurately predicting the number of objects in static images or videos, has recently attracted considerable interest. However, the unavoidable presence of background noise prevents counting performance from advancing further. To address this issue, we created a group and graph attention network (GGANet) for dense object counting. GGANet is an encoder-decoder architecture incorporating a group channel attention (GCA) module and a learnable graph attention (LGA) module. The GCA module groups the feature map into several subfeatures, each of which is assigned an attention factor through the identical channel attention. The LGA module views the feature map as a graph structure in which the different channels represent diverse feature vertices, and the responses between channels represent edges. The GCA and LGA modules jointly avoid the interference of irrelevant pixels and suppress the background noise. Experiments are conducted on four crowd-counting datasets, two vehicle-counting datasets, one remote-sensing counting dataset, and one few-shot object-counting dataset. Comparative results prove that the proposed abbr achieves superior counting performance.

2.
Sensors (Basel) ; 19(11)2019 May 29.
Article En | MEDLINE | ID: mdl-31146456

Multi-pixel photon counting detectors can produce images in low-light environments based on passive photon counting technology. However, the resulting images suffer from problems such as low contrast, low brightness, and some unknown noise distribution. To achieve a better visual effect, this paper describes a denoising and enhancement method based on a block-matching 3D filter and a non-subsampled contourlet transform (NSCT). First, the NSCT was applied to the original image and histogram-equalized image to obtain the sub-band low- and high-frequency coefficients. Regional energy and scale correlation rules were used to determine the respective coefficients. Adaptive single-scale retinex enhancement was applied to the low-frequency components to improve the image quality. The high-frequency sub-bands whose line features were best preserved were selected and processed using a symbol function and the Bayes-shrink threshold. After applying the inverse transform, the fused photon counting image was subjected to an improved block-matching 3D filter, significantly reducing the operation time. The final result from the proposed method was superior to those of comparative methods in terms of several objective evaluation indices and exhibited good visual effects and details from the objective impression.

3.
J Healthc Eng ; 2018: 6797102, 2018.
Article En | MEDLINE | ID: mdl-30581550

Automatic segmentation and three-dimensional reconstruction of the liver is important for liver disease diagnosis and surgical treatment. However, the shape of the imaged 2D liver in each CT image changes dramatically across the slices. In all slices, the imaged 2D liver is connected with other organs, and the connected organs also vary across the slices. In many slices, the intensities of the connected organs are the same with that of the liver. All these facts make automatic segmentation of the liver in the CT image an extremely difficult task. In this paper, we propose a heuristic approach to segment the liver automatically based on multiple thresholds. The thresholds are computed based on the slope difference distribution that has been proposed and verified in the previous research. Different organs in the CT image are segmented with the automatically computed thresholds, respectively. Then, different segmentation results are combined to delineate the boundary of the liver robustly. After the boundaries of the 2D liver in all the slices are identified, they are combined to form the 3D shape of the liver with a global energy minimization function. Experimental results verified the effectiveness of all the proposed image processing algorithms in automatic and robust segmentation of the liver in CT images.


Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Liver/diagnostic imaging , Tomography, X-Ray Computed , Algorithms , Databases, Factual , Humans , Models, Statistical , Pattern Recognition, Automated , Software
...