Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Biotechnol ; : 1-14, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36322696

ABSTRACT

The yak is an agricultural animal with strong disease resistance in Qinghai-Tibet Plateau. Immune organs are directly involved in the body's immune response and protect it from external aggression. In this study, we characterized and evaluated the main markers of interleukin (IL)-1ß, IL-17a, hypoxia inducer factor-1 (HIF-1)α, and heat shock protein 90 (HSP90) in the lymph nodes, spleen, thymus, and hemal nodes of adult yaks using network informatics, molecular cloning, immunohistochemistry, real-time quantitative polymerase chain reaction (RT-qPCR), and western blotting. We first cloned the IL-1ß and IL-17a mRNA of yaks. A significant feature was the higher IL-1ß and IL-17a expression in the lymph nodes than in the spleen, hemal nodes, and thymus. Immunohistochemistry and immunofluorescence revealed that IL-1ß and IL-17a cells were mainly located in the paracortex area of the lymph nodes and the T-cell-dependent area in the hemal nodes and spleen. Several HIF-1α proteins were detected in the cortex of the hemal nodes mantle, while HSP90 was detected in the lymphoid nodules of the hemal nodes and lymph nodes. This study sheds light on the relationship between the morphology and function of these organs and provides an important reference for studies on the participation of yak immune organs in immune responses.

2.
Chem Commun (Camb) ; 57(84): 11041-11044, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34608910

ABSTRACT

A narrowband blue CP-TADF emitter with a rigid hetero-helicene structure (QAO-PhCz) was synthesized and characterized. QAO-PhCz exhibits good electroluminescence performance (EQE = 14.0%) and narrow FWHM. The enantiomers of QAO-PhCz display CPL and CPEL properties with |glum| and |gEL|values of up to 1.1 × 10-3 and 1.5 × 10-3, respectively.

3.
Angew Chem Int Ed Engl ; 60(16): 9114-9119, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33538056

ABSTRACT

Near-infrared (NIR) organic solid-state lasers play an essential role in applications ranging from laser communication to infrared night vision, but progress in this area is restricted by the lack of effective excited-state gain processes. Herein, we originally proposed and demonstrated the cascaded occurrence of excited-state intramolecular proton transfer for constructing the completely new energy-level systems. Cascading by the first ultrafast proton transfer of <430 fs and the subsequent irreversible second proton transfer of ca. 1.6 ps, the stepwise proton transfer process favors the true six-level photophysical cycle, which supports efficient population inversion and thus NIR single-mode lasing at 854 nm. This work realizes longest wavelength beyond 850 nm of organic single-crystal lasing to date and originally exploits the cascaded excited-state molecular proton transfer energy-level systems for organic solid-state lasers.

4.
Org Lett ; 23(3): 958-962, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33439028

ABSTRACT

Three emissive bridged-triphenylamine derivatives are designed and synthesized by incorporating carbon (DQAO), oxygen (OQAO), and sulfur (SQAO) atoms with two carbonyl groups. The fully bridged geometry and unique frontier molecular orbital distribution reveal its potential as narrowband thermally activated delayed fluorescence emitters. DQAO-, OQAO-, and SQAO-based organic light-emitting diodes exhibit the maximum external quantum efficiency (EQEmax) of 15.2%, 20.3%, and 17.8% for blue, green, and yellow, respectively.

5.
Adv Mater ; 32(48): e2003885, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33118645

ABSTRACT

In this work, two novel thermally activated delayed fluorescence (TADF) emitters, 2tDMG and 3tDMG, are synthesized for high-efficiency organic light-emitting diodes (OLEDs), The two emitters have a tilted face-to-face alignment of donor (D)/acceptor (A) units presenting intramolecular noncovalent interactions. The two TADF materials are deposited either by an evaporation-process or by a solution-process, both of them leading to high OLED performance. 2tDMG used as the emitter in evaporation-processed OLEDs achieves a high external quantum efficiency (EQE) of 30.8% with a very flat efficiency roll-off of 7% at 1000 cd m-2 . The solution-processed OLEDs also display an interesting EQE of 16.2%. 3tDMG shows improved solubility and solution processability as compared to 2tDMG, and thus a high EQE of 20.2% in solution-processed OLEDs is recorded. The corresponding evaporation-processed OLEDs also reach a reasonably high EQE of 26.3%. Encouragingly, this work provides a novel strategy to address the imperious demands for OLEDs with high EQE and low roll-off.

6.
J Org Chem ; 85(16): 10628-10637, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32806105

ABSTRACT

Intramolecular spatial charge transfer (ISCT) plays a critical role in determining the optical and charge transport properties of thermally activated delayed fluorescence (TADF) materials. Herein, a new donor/acceptor-type TADF compound based on rigid dibenzothiophene sulfone (DBTS) moiety, STF-DBTS, was designed and synthesized. Fluorene unit was used as a rigid linker to position the rigid acceptor and donor subunit in close vicinity with control over their spacing and molecular structure and to achieve high photoluminescence quantum yield (∼53%) and TADF property. For comparison purposes, we constructed the more flexible STF-DPS with a less rotationally constrained diphenylsulphone (DPS) acceptor instead of the rigid DBTS units, and STF-DPS showed no TADF properties and lower PLQY (16.0%). Organic light-emitting diodes (OLEDs) based on STF-DBTS achieve an external quantum efficiency (EQE) of 10.3% at 488 nm, which is a fivefold improvement in EQE with respect to STF-DPS.

SELECTION OF CITATIONS
SEARCH DETAIL
...