Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Nature ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358506

ABSTRACT

Mutation of tet methylcytosine dioxygenase 2 (encoded by TET2) drives myeloid malignancy initiation and progression1-3. TET2 deficiency is known to cause a globally opened chromatin state and activation of genes contributing to aberrant haematopoietic stem cell self-renewal4,5. However, the open chromatin observed in TET2-deficient mouse embryonic stem cells, leukaemic cells and haematopoietic stem and progenitor cells5 is inconsistent with the designated role of DNA 5-methylcytosine oxidation of TET2. Here we show that chromatin-associated retrotransposon RNA 5-methylcytosine (m5C) can be recognized by the methyl-CpG-binding-domain protein MBD6, which guides deubiquitination of nearby monoubiquitinated Lys119 of histone H2A (H2AK119ub) to promote an open chromatin state. TET2 oxidizes m5C and antagonizes this MBD6-dependent H2AK119ub deubiquitination. TET2 depletion thereby leads to globally decreased H2AK119ub, more open chromatin and increased transcription in stem cells. TET2-mutant human leukaemia becomes dependent on this gene activation pathway, with MBD6 depletion selectively blocking proliferation of TET2-mutant leukaemic cells and largely reversing the haematopoiesis defects caused by Tet2 loss in mouse models. Together, our findings reveal a chromatin regulation pathway by TET2 through retrotransposon RNA m5C oxidation and identify the downstream MBD6 protein as a feasible target for developing therapies specific against TET2 mutant malignancies.

2.
EMBO J ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39322760

ABSTRACT

N6-methyladenosine (m6A) is the most abundant chemical modification in mRNA and plays important roles in human and mouse embryonic stem cell pluripotency, maintenance, and differentiation. We have recently reported that m6A is involved in the postnatal control of ß-cell function in physiological states and in type 1 and 2 diabetes. However, the precise mechanisms by which m6A acts to regulate the development of human and mouse pancreas are unexplored. Here, we show that the m6A landscape is dynamic during human pancreas development, and that METTL14, one of the m6A writer complex proteins, is essential for the early differentiation of both human and mouse pancreatic cells.

3.
bioRxiv ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39149343

ABSTRACT

Animals adapt to environmental challenges with long-term changes at the behavioral, circuit, cellular, and synaptic levels which often require new protein synthesis. The discovery of reversible N6-methyladenosine (m6A) modifications of mRNA has revealed an important layer of post-transcriptional regulation which affects almost every phase of mRNA metabolism and therefore translational control. Many in vitro and in vivo studies have demonstrated the significant role of m6A in cell differentiation and survival, but its role in adult neurons is understudied. We used cell-type specific gene deletion of Mettl14, which encodes one of the subunits of the m6A methyltransferase, and Ythdf1, which encodes one of the cytoplasmic m6A reader proteins, in dopamine D1 receptor expressing or D2 receptor expressing neurons. Mettl14 or Ythdf1 deficiency blunted responses to environmental challenges at the behavioral, cellular, and molecular levels. In three different behavioral paradigms, gene deletion of either Mettl14 or Ythdf1 in D1 neurons impaired D1-dependent learning, whereas gene deletion of either Mettl14 or Ythdf1 in D2 neurons impaired D2-dependent learning. At the cellular level, modulation of D1 and D2 neuron firing in response to changes in environments was blunted in all three behavioral paradigms in mutant mice. Ythdf1 deletion resembled impairment caused by Mettl14 deletion in a cell type-specific manner, suggesting YTHDF1 is the main mediator of the functional consequences of m6A mRNA methylation in the striatum. At the molecular level, while striatal neurons in control mice responded to elevated cAMP by increasing de novo protein synthesis, striatal neurons in Ythdf1 knockout mice didn't. Finally, boosting dopamine release by cocaine drastically increased YTHDF1 binding to many mRNA targets in the striatum, especially those that encode structural proteins, suggesting the initiation of long-term neuronal and/or synaptic structural changes. While the m6A-YTHDF1 pathway has similar functional significance at cellular level, its cell type specific deficiency in D1 and D2 neurons often resulted in contrasting behavioral phenotypes, allowing us to cleanly dissociate the opposing yet cooperative roles of D1 and D2 neurons.

4.
Trends Biochem Sci ; 49(7): 611-621, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677920

ABSTRACT

YTHDF proteins are main cytoplasmic 'reader' proteins of RNA N6-methyladenosine (m6A) methylation in mammals. They are largely responsible for m6A-mediated regulation in the cell cytosol by controlling both mRNA translation and degradation. Recent functional and mechanistic investigations of the YTHDF proteins revealed that these proteins have different functions to enable versatile regulation of the epitranscriptome. Their divergent functions largely originate from their different amino acid sequences in the low-complexity N termini. Consequently, they have different phase separation propensities and possess distinct post-translational modifications (PTMs). Different PTMs, subcellular localizations, and competition among partner proteins have emerged as three major mechanisms that control the functions of these YTHDF proteins. We also summarize recent progress on critical roles of these YTHDF proteins in anticancer immunity and the potential for targeting these proteins for developing new anticancer therapies.


Subject(s)
Adenosine , RNA-Binding Proteins , Humans , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Adenosine/metabolism , Adenosine/analogs & derivatives , Protein Processing, Post-Translational , RNA/metabolism , Methylation , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology
5.
Nucleic Acids Res ; 52(8): 4257-4275, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38366571

ABSTRACT

Complex biological processes are regulated by both genetic and epigenetic programs. One class of epigenetic modifications is methylation. Evolutionarily conserved methyl-CpG-binding domain (MBD)-containing proteins are known as readers of DNA methylation. MBD5 is linked to multiple human diseases but its mechanism of action remains unclear. Here we report that the zebrafish Mbd5 does not bind to methylated DNA; but rather, it directly binds to 5-methylcytosine (m5C)-modified mRNAs and regulates embryonic development, erythrocyte differentiation, iron metabolism, and behavior. We further show that Mbd5 facilitates removal of the monoubiquitin mark at histone H2A-K119 through an interaction with the Polycomb repressive deubiquitinase (PR-DUB) complex in vivo. The direct target genes of Mbd5 are enriched with both RNA m5C and H2A-K119 ubiquitylation signals. Together, we propose that zebrafish MBD5 is an RNA m5C reader that potentially links RNA methylation to histone modification and in turn transcription regulation in vivo.


Subject(s)
5-Methylcytosine , Histones , Ubiquitination , Zebrafish Proteins , Zebrafish , Animals , Histones/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , 5-Methylcytosine/metabolism , Gene Expression Regulation, Developmental , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , DNA Methylation , Embryonic Development/genetics , Epigenesis, Genetic
6.
Nat Methods ; 21(2): 247-258, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38200227

ABSTRACT

RNA-binding proteins (RBPs) regulate diverse cellular processes by dynamically interacting with RNA targets. However, effective methods to capture both stable and transient interactions between RBPs and their RNA targets are still lacking, especially when the interaction is dynamic or samples are limited. Here we present an assay of reverse transcription-based RBP binding site sequencing (ARTR-seq), which relies on in situ reverse transcription of RBP-bound RNAs guided by antibodies to identify RBP binding sites. ARTR-seq avoids ultraviolet crosslinking and immunoprecipitation, allowing for efficient and specific identification of RBP binding sites from as few as 20 cells or a tissue section. Taking advantage of rapid formaldehyde fixation, ARTR-seq enables capturing the dynamic RNA binding by RBPs over a short period of time, as demonstrated by the profiling of dynamic RNA binding of G3BP1 during stress granule assembly on a timescale as short as 10 minutes.


Subject(s)
RNA , Reverse Transcription , RNA/genetics , RNA/metabolism , DNA Helicases/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , RNA-Binding Proteins/metabolism , Binding Sites/genetics , Protein Binding
7.
Nat Cell Biol ; 25(11): 1676-1690, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945829

ABSTRACT

N6-methyladenosine (m6A) is the most abundant internal mRNA nucleotide modification in mammals, regulating critical aspects of cell physiology and differentiation. The YTHDF proteins are the primary readers of m6A modifications and exert physiological functions of m6A in the cytosol. Elucidating the regulatory mechanisms of YTHDF proteins is critical to understanding m6A biology. Here we report a mechanism that protein post-translational modifications control the biological functions of the YTHDF proteins. We find that YTHDF1 and YTHDF3, but not YTHDF2, carry high levels of nutrient-sensing O-GlcNAc modifications. O-GlcNAcylation attenuates the translation-promoting function of YTHDF1 and YTHDF3 by blocking their interactions with proteins associated with mRNA translation. We further demonstrate that O-GlcNAc modifications on YTHDF1 and YTHDF3 regulate the assembly, stability and disassembly of stress granules to enable better recovery from stress. Therefore, our results discover an important regulatory pathway of YTHDF functions, adding an additional layer of complexity to the post-transcriptional regulation function of mRNA m6A.


Subject(s)
Protein Processing, Post-Translational , Proteins , Animals , Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Regulation , Mammals/metabolism
8.
Mol Cell ; 83(23): 4304-4317.e8, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37949069

ABSTRACT

RNA-binding proteins (RBPs) control messenger RNA fate in neurons. Here, we report a mechanism that the stimuli-induced neuronal translation is mediated by phosphorylation of a YTHDF1-binding protein FMRP. Mechanistically, YTHDF1 can condense with ribosomal proteins to promote the translation of its mRNA targets. FMRP regulates this process by sequestering YTHDF1 away from the ribosome; upon neuronal stimulation, FMRP becomes phosphorylated and releases YTHDF1 for translation upregulation. We show that a new small molecule inhibitor of YTHDF1 can reverse fragile X syndrome (FXS) developmental defects associated with FMRP deficiency in an organoid model. Our study thus reveals that FMRP and its phosphorylation are important regulators of activity-dependent translation during neuronal development and stimulation and identifies YTHDF1 as a potential therapeutic target for FXS in which developmental defects caused by FMRP depletion could be reversed through YTHDF1 inhibition.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Humans , Phosphorylation , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Neurons/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Ribosomal Proteins/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
9.
Angew Chem Int Ed Engl ; 62(51): e202311924, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37909922

ABSTRACT

5-Methylcytosine (m5 C) is an RNA modification prevalent on tRNAs, where it can protect tRNAs from endonucleolytic cleavage to maintain protein synthesis. The NSUN family (NSUN1-7 in humans) of RNA methyltransferases are capable of installing the methyl group onto the C5 position of cytosines in RNA. NSUNs are implicated in a wide range of (patho)physiological processes, but selective and cell-active inhibitors of these enzymes are lacking. Here, we use cysteine-directed activity-based protein profiling (ABPP) to discover azetidine acrylamides that act as stereoselective covalent inhibitors of human NSUN2. Despite targeting a conserved catalytic cysteine in the NSUN family, the NSUN2 inhibitors show negligible cross-reactivity with other human NSUNs and exhibit good proteome-wide selectivity. We verify that the azetidine acrylamides inhibit the catalytic activity of recombinant NSUN2, but not NSUN6, and demonstrate that these compounds stereoselectively disrupt NSUN2-tRNA interactions in cancer cells, leading to a global reduction in tRNA m5 C content. Our findings thus highlight the potential to create isotype-selective and cell-active inhibitors of NSUN2 with covalent chemistry targeting a conserved catalytic cysteine.


Subject(s)
Azetidines , Enzyme Inhibitors , Methyltransferases , tRNA Methyltransferases , Humans , Acrylamides , Cysteine/metabolism , Methylation , Methyltransferases/antagonists & inhibitors , Proteomics , RNA, Transfer/chemistry , tRNA Methyltransferases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology
10.
bioRxiv ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37577492

ABSTRACT

N 6 -methyladenosine (m 6 A) is the most abundant chemical modification in mRNA, and plays important roles in human and mouse embryonic stem cell pluripotency, maintenance, and differentiation. We have recently reported, for the first time, the role of m 6 A in the postnatal control of ß-cell function in physiological states and in Type 1 and 2 Diabetes. However, the precise mechanisms by which m 6 A acts to regulate the development of human and mouse ß-cells are unexplored. Here, we show that the m 6 A landscape is dynamic during human pancreas development, and that METTL14, one of the m 6 A writer complex proteins, is essential for the early differentiation of both human and mouse ß-cells.

11.
Mol Cell ; 83(15): 2692-2708.e7, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37478845

ABSTRACT

N6-methyladenosine (m6A) of mRNAs modulated by the METTL3-METTL14-WTAP-RBM15 methyltransferase complex and m6A demethylases such as FTO play important roles in regulating mRNA stability, splicing, and translation. Here, we demonstrate that FTO-IT1 long noncoding RNA (lncRNA) was upregulated and positively correlated with poor survival of patients with wild-type p53-expressing prostate cancer (PCa). m6A RIP-seq analysis revealed that FTO-IT1 knockout increased mRNA m6A methylation of a subset of p53 transcriptional target genes (e.g., FAS, TP53INP1, and SESN2) and induced PCa cell cycle arrest and apoptosis. We further showed that FTO-IT1 directly binds RBM15 and inhibits RBM15 binding, m6A methylation, and stability of p53 target mRNAs. Therapeutic depletion of FTO-IT1 restored mRNA m6A level and expression of p53 target genes and inhibited PCa growth in mice. Our study identifies FTO-IT1 lncRNA as a bona fide suppressor of the m6A methyltransferase complex and p53 tumor suppression signaling and nominates FTO-IT1 as a potential therapeutic target of cancer.


Subject(s)
Neoplasms , RNA, Long Noncoding , Male , Mice , Animals , RNA, Long Noncoding/genetics , Tumor Suppressor Protein p53/genetics , Adenosine/metabolism , RNA, Messenger/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
12.
Mol Cell ; 83(7): 1022-1023, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37028412

ABSTRACT

In this issue, Ciesla et al.1 report a translation regulation through ALKBH5-mediated 5'-UTR m6A demethylation of the SF3B1 transcript during leukemic transformation. The SF3B1 protein maintains efficient splicing and expression of transcripts encoding DNA damage repair components to restrain excessive DNA damage.


Subject(s)
Phosphoproteins , RNA Splicing , RNA Splicing Factors/genetics , Mutation , Phosphoproteins/genetics , RNA Splicing/genetics , DNA Damage/genetics
13.
Science ; 379(6633): 677-682, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36705538

ABSTRACT

N6-methyladenosine (m6A) is the most abundant messenger RNA (mRNA) modification and plays crucial roles in diverse physiological processes. Using a massively parallel assay for m6A (MPm6A), we discover that m6A specificity is globally regulated by suppressors that prevent m6A deposition in unmethylated transcriptome regions. We identify exon junction complexes (EJCs) as m6A suppressors that protect exon junction-proximal RNA within coding sequences from methylation and regulate mRNA stability through m6A suppression. EJC suppression of m6A underlies multiple global characteristics of mRNA m6A specificity, with the local range of EJC protection sufficient to suppress m6A deposition in average-length internal exons but not in long internal and terminal exons. EJC-suppressed methylation sites colocalize with EJC-suppressed splice sites, which suggests that exon architecture broadly determines local mRNA accessibility to regulatory complexes.


Subject(s)
Exons , Gene Expression Regulation , RNA Splicing , RNA, Messenger , RNA, Messenger/genetics , RNA, Messenger/metabolism , Humans , Animals
14.
Genome Biol ; 24(1): 17, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36694229

ABSTRACT

The YTH N6-methyladenosine RNA binding proteins (YTHDFs) mediate the functional effects of N6-methyladenosine (m6A) on RNA. Recently, a report proposed that all YTHDFs work redundantly to facilitate RNA decay, raising questions about the exact functions of individual YTHDFs, especially YTHDF1 and YTHDF2. We show that YTHDF1 and YTHDF2 differ in their low-complexity domains (LCDs) and exhibit different behaviors in condensate formation and subsequent physiological functions. Biologically, we also find that the global stabilization of RNA after depletion of all YTHDFs is driven by increased P-body formation and is not strictly m6A dependent.


Subject(s)
RNA-Binding Proteins , RNA , RNA/metabolism , RNA-Binding Proteins/metabolism , Humans
15.
Fundam Res ; 3(5): 760-762, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38933289

ABSTRACT

Genetic information flows from DNA to protein through RNA in the central dogma. Different RNA species are known to accomplish essential tasks of protein encoding (mRNAs), amino acid loading (tRNAs), and translation machinery assembly (rRNAs). However, on top of these well-known roles, RNAs are central to various cellular regulatory pathways. Here we summarize newly emerging regulatory functions of RNA, specifically focusing on regulations through RNA modifications, RNP granules, and chromatin-associated regulatory RNA. In addition to being an essential building block of the central dogma, RNA can be critical to the regulation of many cellular processes.

16.
Proc Natl Acad Sci U S A ; 119(42): e2123338119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36240321

ABSTRACT

5-methylcytosine (m5C) is one of the most prevalent modifications of RNA, playing important roles in RNA metabolism, nuclear export, and translation. However, the potential role of RNA m5C methylation in innate immunity remains elusive. Here, we show that depletion of NSUN2, an m5C methyltransferase, significantly inhibits the replication and gene expression of a wide range of RNA and DNA viruses. Notably, we found that this antiviral effect is largely driven by an enhanced type I interferon (IFN) response. The antiviral signaling pathway is dependent on the cytosolic RNA sensor RIG-I but not MDA5. Transcriptome-wide mapping of m5C following NSUN2 depletion in human A549 cells revealed a marked reduction in the m5C methylation of several abundant noncoding RNAs (ncRNAs). However, m5C methylation of viral RNA was not noticeably altered by NSUN2 depletion. In NSUN2-depleted cells, the host RNA polymerase (Pol) III transcribed ncRNAs, in particular RPPH1 and 7SL RNAs, were substantially up-regulated, leading to an increase of unshielded 7SL RNA in cytoplasm, which served as a direct ligand for the RIG-I-mediated IFN response. In NSUN2-depleted cells, inhibition of Pol III transcription or silencing of RPPH1 and 7SL RNA dampened IFN signaling, partially rescuing viral replication and gene expression. Finally, depletion of NSUN2 in an ex vivo human lung model and a mouse model inhibits viral replication and reduces pathogenesis, which is accompanied by enhanced type I IFN responses. Collectively, our data demonstrate that RNA m5C methylation controls antiviral innate immunity through modulating the m5C methylome of ncRNAs and their expression.


Subject(s)
Interferon Type I , Virus Diseases , 5-Methylcytosine/metabolism , Animals , Antiviral Agents , DEAD Box Protein 58/metabolism , Humans , Immunity, Innate/genetics , Interferon Type I/genetics , Interferons , Ligands , Mice , RNA Polymerase III , Virus Replication/genetics
17.
Science ; 376(6596): 968-973, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35511947

ABSTRACT

N6-methyladenosine (m6A) is the most abundant internal modification on mammalian messenger RNA. It is installed by a writer complex and can be reversed by erasers such as the fat mass and obesity-associated protein FTO. Despite extensive research, the primary physiological substrates of FTO in mammalian tissues and development remain elusive. Here, we show that FTO mediates m6A demethylation of long-interspersed element-1 (LINE1) RNA in mouse embryonic stem cells (mESCs), regulating LINE1 RNA abundance and the local chromatin state, which in turn modulates the transcription of LINE1-containing genes. FTO-mediated LINE1 RNA m6A demethylation also plays regulatory roles in shaping chromatin state and gene expression during mouse oocyte and embryonic development. Our results suggest broad effects of LINE1 RNA m6A demethylation by FTO in mammals.


Subject(s)
Adenosine/analogs & derivatives , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Chromatin , Gene Expression Regulation, Developmental , Long Interspersed Nucleotide Elements , Mouse Embryonic Stem Cells , Oocytes , RNA, Messenger , Adenosine/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Animals , Chromatin/metabolism , Demethylation , Long Interspersed Nucleotide Elements/genetics , Mice , Mouse Embryonic Stem Cells/metabolism , Oocytes/growth & development , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
Cell Chem Biol ; 29(7): 1218-1231.e8, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35245437

ABSTRACT

The spatial arrangement of newly synthesized transcriptome in eukaryotic cells underlies various biological processes including cell proliferation and differentiation. In this study, we combine metabolic incorporation of electron-rich ribonucleosides (e.g., 6-thioguanosine and 4-thiouridine) with a peroxidase-mediated proximity-dependent RNA labeling technique (APEX-seq) to develop a sensitive method, termed MERR APEX-seq, for selectively profiling newly transcribed RNAs at specific subcellular locations in live cells. We demonstrate that MERR APEX-seq is 20-fold more efficient than APEX-seq and offers both high spatial specificity and high coverage in mitochondrial matrix. At the ER membrane, 91% of the transcripts captured by MERR APEX-seq encode for secretory pathway proteins, thus demonstrating the high spatial specificity of MERR APEX-seq in open subcellular compartments. Application of MERR APEX-seq to the nuclear lamina of human cells reveals a local transcriptome of 1,012 RNAs, many of which encode for nuclear proteins involved in histone modification, chromosomal structure maintenance, and RNA processing.


Subject(s)
Ribonucleosides , Transcriptome , Electrons , Gene Expression Profiling/methods , Humans , Mitochondria/metabolism , RNA/metabolism
19.
Nat Commun ; 12(1): 177, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420027

ABSTRACT

Glioblastoma (GBM) is the most common type of adult malignant brain tumor, but its molecular mechanisms are not well understood. In addition, the knowledge of the disease-associated expression and function of YTHDF2 remains very limited. Here, we show that YTHDF2 overexpression clinically correlates with poor glioma patient prognosis. EGFR that is constitutively activated in the majority of GBM causes YTHDF2 overexpression through the EGFR/SRC/ERK pathway. EGFR/SRC/ERK signaling phosphorylates YTHDF2 serine39 and threonine381, thereby stabilizes YTHDF2 protein. YTHDF2 is required for GBM cell proliferation, invasion, and tumorigenesis. YTHDF2 facilitates m6A-dependent mRNA decay of LXRA and HIVEP2, which impacts the glioma patient survival. YTHDF2 promotes tumorigenesis of GBM cells, largely through the downregulation of LXRα and HIVEP2. Furthermore, YTHDF2 inhibits LXRα-dependent cholesterol homeostasis in GBM cells. Together, our findings extend the landscape of EGFR downstream circuit, uncover the function of YTHDF2 in GBM tumorigenesis, and highlight an essential role of RNA m6A methylation in cholesterol homeostasis.


Subject(s)
Brain Neoplasms/metabolism , Cholesterol/metabolism , ErbB Receptors/metabolism , Glioblastoma/metabolism , RNA-Binding Proteins/metabolism , Adult , Animals , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Cell Survival , Cell Transformation, Neoplastic/genetics , DNA-Binding Proteins/metabolism , ErbB Receptors/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Glioblastoma/genetics , Glioma , Humans , Liver X Receptors/metabolism , MAP Kinase Signaling System , Male , Mice , Phosphorylation , RNA Stability , RNA-Binding Proteins/genetics , Signal Transduction , Transcription Factors/metabolism , Transcriptome
20.
Nat Genet ; 52(9): 939-949, 2020 09.
Article in English | MEDLINE | ID: mdl-32601472

ABSTRACT

N6-methyladenosine (m6A) plays important roles in regulating messenger RNA processing. Despite rapid progress in this field, little is known about the genetic determinants of m6A modification and their role in common diseases. In this study, we mapped the quantitative trait loci (QTLs) of m6A peaks in 60 Yoruba (YRI) lymphoblastoid cell lines. We found that m6A QTLs are largely independent of expression and splicing QTLs and are enriched with binding sites of RNA-binding proteins, RNA structure-changing variants and transcriptional features. Joint analysis of the QTLs of m6A and related molecular traits suggests that the downstream effects of m6A are heterogeneous and context dependent. We identified proteins that mediate m6A effects on translation. Through integration with data from genome-wide association studies, we show that m6A QTLs contribute to the heritability of various immune and blood-related traits at levels comparable to splicing QTLs and roughly half of expression QTLs. By leveraging m6A QTLs in a transcriptome-wide association study framework, we identified putative risk genes of these traits.


Subject(s)
Adenosine/analogs & derivatives , RNA, Messenger/genetics , Adenosine/genetics , Chromosome Mapping/methods , Genetic Testing/methods , Genetic Variation/genetics , Genome-Wide Association Study/methods , Humans , Phenotype , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable , RNA Splicing/genetics , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL