Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 558
Filter
1.
J Photochem Photobiol B ; 258: 112995, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39096720

ABSTRACT

Endogenous hypochlorous acid (HOCl) is one of the most important reactive oxygen species (ROS) and acts as a distinct biomarker that is involved in various inflammatory responses including rheumatoid arthritis (RA). Therefore, it's crucial to develop an efficient method for the tracking and analysis of HOCl levels in vivo. Natural products continue to be compounds of interest, because they not only offer diverse and specific molecular scaffolds but also provide invaluable sources for new drug discovery. Herein, we firstly demonstrated harmaline (HML), a natural alkaloid mainly found in Peganum harmala L, could be acted as a novel fluorescent probe for HOCl with exceptional precision and responsiveness. Remarkably, this probe not only specifically tracked HOCl levels in cells and inflammatory RA mouse models, but also exhibited effective anti-inflammatory effects on RAW264.7 cells and anti-proliferative effects on fibroblast-like synoviocytes. Furthermore, HML has the potential to alleviate LPS-induced inflammation by inhibiting the NF-κB signaling pathway. This study represents the first example of a natural product that can simultaneously act as a fluorescent probe for specific ROS and a promising therapeutic candidate for a specific disease, which will undoubtedly extend the application of fluorophore-rich natural products.

2.
MycoKeys ; 106: 251-264, 2024.
Article in English | MEDLINE | ID: mdl-38974462

ABSTRACT

Two novel species within the family Dictyosporiaceae are described and illustrated from terrestrial habitats on dead culms of bamboo and an unidentified plant, respectively. Through morphological comparisons and the multi-locus phylogenetic analyses of combined LSU, ITS, SSU, and tef1-α sequence dataset, two species, Gregaritheciumbambusicola, Pseudocoleophomaparaphysoidea are identified. Phylogenetically, both species clustered into a monophyletic clade with strong bootstrap support. Gregaritheciumbambusicola sp. nov. can be distinguished from other species within the genus based on its almost straight ascospores. Pseudocoleophomaparaphysoidea sp. nov. differs from other species in its conidiogenous cells intermixed with paraphyses, longer conidiogenous cells and larger conidia. The identification of this lineage contributes to our understanding of the classification of Dictyosporiaceae.

3.
PLoS One ; 19(7): e0296139, 2024.
Article in English | MEDLINE | ID: mdl-38968193

ABSTRACT

BACKGROUND: Chronic inflammation may increase susceptibility to pneumonia. RESEARCH QUESTION: To explore associations between clinical comorbidities, serum protein immunoassays, and long-term pneumonia risk. METHODS: Framingham Heart Study Offspring Cohort participants ≥65 years were linked to their Centers for Medicare Services claims data. Clinical data and 88 serum protein immunoassays were evaluated for associations with 10-year incident pneumonia risk using Fine-Gray models for competing risks of death and least absolute shrinkage and selection operators for covariate selection. RESULTS: We identified 1,370 participants with immunoassays and linkage to Medicare data. During 10 years of follow up, 428 (31%) participants had a pneumonia diagnosis. Chronic pulmonary disease [subdistribution hazard ratio (SHR) 1.87; 95% confidence interval (CI), 1.33-2.61], current smoking (SHR 1.79, CI 1.31-2.45), heart failure (SHR 1.74, CI 1.10-2.74), atrial fibrillation/flutter (SHR 1.43, CI 1.06-1.93), diabetes (SHR 1.36, CI 1.05-1.75), hospitalization within one year (SHR 1.34, CI 1.09-1.65), and age (SHR 1.06 per year, CI 1.04-1.08) were associated with pneumonia. Three baseline serum protein measurements were associated with pneumonia risk independent of measured clinical factors: growth differentiation factor 15 (SHR 1.32; CI 1.02-1.69), C-reactive protein (SHR 1.16, CI 1.06-1.27) and matrix metallopeptidase 8 (SHR 1.14, CI 1.01-1.30). Addition of C-reactive protein to the clinical model improved prediction (Akaike information criterion 4950 from 4960; C-statistic of 0.64 from 0.62). CONCLUSIONS: Clinical comorbidities and serum immunoassays were predictive of pneumonia risk. C-reactive protein, a routinely-available measure of inflammation, modestly improved pneumonia risk prediction over clinical factors. Our findings support the hypothesis that prior inflammation may increase the risk of pneumonia.


Subject(s)
Biomarkers , Pneumonia , Humans , Female , Pneumonia/blood , Pneumonia/epidemiology , Male , Biomarkers/blood , Aged , Risk Factors , Blood Proteins/analysis , Cohort Studies , Aged, 80 and over , United States/epidemiology , Comorbidity
4.
Regen Biomater ; 11: rbae080, 2024.
Article in English | MEDLINE | ID: mdl-39055302

ABSTRACT

Osteoinductive supplements without side effects stand out from the growth factors and drugs widely used in bone tissue engineering. Lithium magnesium sodium silicate hydrate (laponite) nanoflake is a promising bioactive component for bone regeneration, attributed to its inherent biosafety and effective osteoinductivity. Up to now, the in vivo osteogenic potential and mechanisms of laponite-encapsulated fibrous membranes remain largely unexplored. This study presents a unique method for homogeneously integrating high concentrations of laponite RDS into a polycaprolactone (PCL) matrix by dispersing laponite RDS sol into the polymer solution. Subsequently, a core-shell fibrous membrane (10RP-PG), embedding laponite-loaded PCL in its core, was crafted using coaxial electrospinning. The PCL core's slow degradation and the shell's gradient degradation enabled the sustained release of bioactive ions (Si and Mg) from laponite. In vivo studies on a critical-sized calvarial bone defect model demonstrated that the 10RP-PG membrane markedly enhanced bone formation and remodeling by accelerating the process of endochondral ossification. Further transcriptome analysis suggested that osteogenesis in the 10RP-PG membrane is driven by Mg and Si from endocytosed laponite, activating pathways related to ossification and endochondral ossification, including Hippo, Wnt and Notch. The fabricated nanocomposite fibrous membranes hold great promise in the fields of critical-sized bone defect repair.

5.
J Exp Clin Cancer Res ; 43(1): 207, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054545

ABSTRACT

Targeted delivery and precise release of toxins is a prospective strategy for the treatment of triple-negative breast cancer (TNBC), yet the flexibility to incorporate both properties simultaneously remains tremendously challenging in the X-drug conjugate fields. As critical components in conjugates, linkers could flourish in achieving optimal functionalities. Here, we pioneered a pH-hypersensitive tumor-targeting aptamer AS1411-triptolide conjugate (AS-TP) to achieve smart release of the toxin and targeted therapy against TNBC. The multifunctional acetal ester linker in the AS-TP site-specifically blocked triptolide toxicity, quantitatively sustained aptamer targeting, and ensured the circulating stability. Furthermore, the aptamer modification endowed triptolide with favorable water solubility and bioavailability and facilitated endocytosis of conjugated triptolide by TNBC cells in a nucleolin-dependent manner. The integrated superiorities of AS-TP promoted the preferential intra-tumor triptolide accumulation in xenografted TNBC mice and triggered the in-situ triptolide release in the weakly acidic tumor microenvironment, manifesting striking anti-TNBC efficacy and virtually eliminated toxic effects beyond clinical drugs. This study illustrated the therapeutic potential of AS-TP against TNBC and proposed a promising concept for the development of nucleic acid-based targeted anticancer drugs.


Subject(s)
Aptamers, Nucleotide , Diterpenes , Epoxy Compounds , Phenanthrenes , Triple Negative Breast Neoplasms , Diterpenes/pharmacology , Diterpenes/therapeutic use , Diterpenes/chemistry , Epoxy Compounds/pharmacology , Epoxy Compounds/therapeutic use , Epoxy Compounds/chemistry , Phenanthrenes/pharmacology , Phenanthrenes/therapeutic use , Phenanthrenes/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Animals , Humans , Mice , Female , Aptamers, Nucleotide/pharmacology , Aptamers, Nucleotide/therapeutic use , Xenograft Model Antitumor Assays , Cell Line, Tumor , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use
6.
J Imaging Inform Med ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886290

ABSTRACT

The efficacy of immune checkpoint inhibitors is significantly influenced by the tumor immune microenvironment (TIME). RNA sequencing of tumor tissue can offer valuable insights into TIME, but its high cost and long turnaround time seriously restrict its utility in routine clinical examinations. Several recent studies have suggested that ultrahigh-resolution pathology images can infer cellular and molecular characteristics. However, few study pay attention to the quantitative estimation of various tumor infiltration immune cells from pathology images. In this paper, we integrated contrastive learning and weakly supervised learning to infer tumor-associated macrophages and potential immunotherapy benefit from whole slide images (WSIs) of H &E stained pathological sections. We split the high-resolution WSIs into tiles and then apply contrastive learning to extract features of each tile. After aggregating the features at the tile level, we employ weak supervisory signals to fine-tune the encoder for various downstream tasks. Comprehensive experiments on two independent breast cancer cohorts and spatial transcriptomics data demonstrate that the computational pathological features accurately predict the proportion of tumor-infiltrating immune cells, particularly the infiltration level of macrophages, as well as the immune subtypes and potential immunotherapy benefit. These findings demonstrate that our model effectively captures pathological features beyond human vision, establishing a mapping relationship between cellular compositions and histological morphology, thus expanding the clinical applications of digital pathology images.

7.
Colloids Surf B Biointerfaces ; 241: 114047, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38897025

ABSTRACT

Polymer-based scaffolds with different degradability have been investigated to screen the matrix whose degradation rate is more closely matched with the bone regeneration rate. However, these comparisons are inclined to be compromised by the animal individual differences. In this study, we constructed an integrated scaffold model comprising four parts with different degradability and bioactivity to achieve an in situ comparison of bone regeneration ability of different scaffolds. Slow-degradable polycaprolactone (PCL), fast-degradable poly (lactic-co-glycolic acid) (PLGA), and silica-coated PCL and PLGA scaffolds were assembled into a round sheet to form a hydroxyapatite (HA)-free integrated scaffold. HA-doped PCL, PLGA, and silica-coated PCL and PLGA scaffolds were assembled to create an HA-incorporated integrated scaffold. The in vivo experimental results demonstrated that the local acid microenvironment caused by the rapid degradation of PLGA interfered with the osteogenic process promoted by PCL-based scaffolds in defect areas implanted with HA-free integrated scaffolds. Since the incorporation of HA alleviated the acidic microenvironment to some extent, each scaffold in HA-incorporated scaffolds exhibited its expected bone regeneration capacity. Consequently, it is feasible to construct an integrated structure for comparing the osteogenic effects of various scaffolds in situ, when there is no mutual interference between the materials. The strategy presented in this study inspired the structure design of biomaterials to enable in situ comparison of bone regeneration capacity of scaffolds.


Subject(s)
Durapatite , Osteogenesis , Polyesters , Polylactic Acid-Polyglycolic Acid Copolymer , Tissue Scaffolds , Tissue Scaffolds/chemistry , Osteogenesis/drug effects , Animals , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polyesters/chemistry , Durapatite/chemistry , Bone Regeneration/drug effects , Polymers/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Polyglycolic Acid/chemistry , Tissue Engineering/methods , Lactic Acid/chemistry
8.
ACS Appl Mater Interfaces ; 16(26): 33005-33020, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38900067

ABSTRACT

Inspired by the crucial role of matrix vesicles (MVs), a series of biomimetic vesicles (BVs) fabricated by calcium glycerophosphate (CaGP) modified polyurethane were designed to mediate the mineralization through in situ enzyme activation for bone therapy. In this study, alkaline phosphatase (ALP) was harbored in the porous BVs by adsorption (Ad-BVs) or entrapment (En-BVs). High encapsulation of ALP on En-BVs was effectively self-activating by calcium ions of CaGP-modified PU that specifically hydrolyzed the organophosphorus (CaGP) to inorganic phosphate, thus promoting the formation of the highly oriented bone-like apatite in vitro. Enzyme-catalyzed kinetics confirms the regulation of apatite crystallization by the synergistic action of self-activated ALP and the confined microcompartments of BVs. This leads to a supersaturated microenvironment, with the En-BVs group exhibiting inorganic phosphate (Pi) levels 4.19 times higher and Ca2+ levels 3.67 times higher than those of simulated body fluid (SBF). Of note, the En-BVs group exhibited excellent osteo-inducing differentiation of BMSCs in vitro and the highest maturity with reduced bone loss in rat femoral defect in vivo. This innovative strategy of biomimetic vesicles is expected to provide valuable insights into the enzyme-activated field of bone therapy.


Subject(s)
Alkaline Phosphatase , Biomimetic Materials , Calcification, Physiologic , Animals , Rats , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Calcification, Physiologic/drug effects , Osteogenesis/drug effects , Rats, Sprague-Dawley , Cell Differentiation/drug effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Glycerophosphates/chemistry , Polyurethanes/chemistry , Polyurethanes/pharmacology
9.
Comput Biol Med ; 178: 108607, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897147

ABSTRACT

Keratoconus (KC) is a degenerative condition affecting the cornea, characterized by progressive thinning and bulging, which can ultimately result in serious visual impairment. The onset and progression of KC are closely tied to the gradual weakening of the cornea's biomechanical properties. KC progression can be prevented with corneal cross-linking (CXL), but this treatment has shortcomings, and evaluating its tissue stiffening effect is important for determining its efficacy. In this field, the shortage of human corneas has made it necessary for most previous studies to rely on animal corneas, which have different microstructure and may be affected differently from human corneas. In this research, we have used the lenticules obtained through small incision lenticule extraction (SMILE) surgeries as a source of human tissue to assess CXL. And to further improve the results' reliability, we used inflation testing, personalized finite element modeling, numerical optimization and histology microstructure analysis. These methods enabled determining the biomechanical and histological effects of CXL protocols involving different irradiation intensities of 3, 9, 18, and 30 mW/cm2, all delivering the same total energy dose of 5.4 J/cm2. The results showed that the CXL effect did not vary significantly with protocols using 3-18 mW/cm2 irradiance, but there was a significant efficacy drop with 30 mW/cm2 irradiance. This study validated the updated algorithm and provided guidance for corneal lenticule reuse and the effects of different CXL protocols on the biomechanical properties of the human corneal stroma.


Subject(s)
Corneal Stroma , Keratoconus , Riboflavin , Ultraviolet Rays , Humans , Riboflavin/pharmacology , Corneal Stroma/drug effects , Corneal Stroma/metabolism , Keratoconus/metabolism , Keratoconus/pathology , Keratoconus/drug therapy , Biomechanical Phenomena , Finite Element Analysis , Models, Biological , Adult , Cross-Linking Reagents/pharmacology
10.
Food Res Int ; 190: 114653, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945587

ABSTRACT

Food comprises proteins, lipids, sugars and various other molecules that constitute a multicomponent biological system. It is challenging to investigate microscopic changes in food systems solely by performing conventional experiments. Molecular dynamics (MD) simulation serves as a crucial bridge in addressing this research gap. The Groningen Machine for Chemical Simulations (GROMACS) is an open-source, high-performing molecular dynamics simulation software that plays a significant role in food science research owing to its high flexibility and powerful functionality; it has been used to explore the molecular conformations and the mechanisms of interaction between food molecules at the microcosmic level and to analyze their properties and functions. This review presents the workflow of the GROMACS software and emphasizes the recent developments and achievements in its applications in food science research, thus providing important theoretical guidance and technical support for obtaining an in-depth understanding of the properties and functions of food.


Subject(s)
Food Technology , Molecular Dynamics Simulation , Software , Food Technology/methods
11.
Mater Today Bio ; 26: 101063, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698884

ABSTRACT

Effective tissue repair relies on the orchestration of different macrophage phenotypes, both the M2 phenotype (promotes tissue repair) and M1 phenotype (pro-inflammatory) deserve attention. In this study, we propose a sequential immune activation strategy to mediate bone regeneration, by loading lipopolysaccharide (LPS) onto the surface of a strontium (Sr) ions -contained composite scaffold, which was fabricated by combining Sr-doped micro/nano-hydroxyapatite (HA) and dual degradable matrices of polycaprolactone (PCL) and poly (lactic-co-glycolic acid) (PLGA). Our strategy involves the sequential release of LPS to promote macrophage homing and induce the expression of the pro-inflammatory M1 phenotype, followed by the release of Sr ions to suppress inflammation. In vitro and in vivo experiments demonstrated that, the appropriate pro-inflammatory effects at the initial stage of implantation, along with the anti-inflammatory effects at the later stage, as well as the structural stability of the scaffolds conferred by the composition, can synergistically promote the regeneration and repair of bone defects.

12.
Int J Surg ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752515

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is one of the diseases with high disability and mortality worldwide. Recent studies have shown that TBI-related factors may change the complex balance between bleeding and thrombosis, leading to coagulation disorders. The aim of this retrospective study was to investigate the prediction of coagulopathy and subdural hematoma thickness at admission using the Glasgow Outcome Scale (GOS) in patients with severe TBI at 6 months after discharge. METHODS: In this retrospective cohort study, a total of 1,006 patients with severe TBI in large medical centers in three different provinces of China from June 2015 to June 2021 were enrolled after the exclusion criteria, and 800 patients who met the enrollment criteria were included. A receiver operating characteristic (ROC) curve was used to determine the best cut-off values of platelet (PLT), international normalized ratio (INR), activated partial thromboplastin time (APTT), and subdural hematoma (SDH) thickness. The ROC curve, nomogram, calibration curve, and the decision curve were used to evaluate the predictive effect of the coagulopathy and Coagulopathy-SDH(X1) models on the prognoses of patients with severe TBI, and the importance of predictive indicators was ranked by machine learning. RESULTS: Among the patients with severe TBI on admission, 576/800 (72%) had coagulopathy, 494/800 (61%) had SDH thickness ≥14.05 mm, and 385/800 (48%) had coagulopathy combined with SDH thickness ≥14.05 mm. Multivariate logistic regression analyses showed that age, pupil, brain herniation, WBC, CRP, SDH, coagulopathy, and X1 were independent prognostic factors for GOS after severe TBI. Compared with other single indicators, X1 as a predictor of the prognosis of severe TBI was more accurate. The GOS of patients with coagulopathy and thick SDH (X1, 1 point) at 6 months after discharge was significantly worse than that of patients with coagulopathy and thin SDH (X1, 2 points), patients without coagulopathy and thick SDH (X1, 3 point), and patients without coagulopathy and thin SDH (X1, 4 points). In the training group, the C-index based on the coagulopathy nomogram was 0.900. The C-index of the X1-based nomogram was 0.912. In the validation group, the C-index based on the coagulopathy nomogram was 0.858. The C-index of the X1-based nomogram was 0.877. Decision curve analysis also confirmed that the X1-based model had a higher clinical net benefit of GOS at 6 months after discharge than the coagulopathy-based model in most cases, both in the training and validation groups. In addition, compared with the calibration curve based on the coagulopathy model, the prediction of the X1 model-based calibration curve for the probability of GOS at 6 months after discharge showed better agreement with actual observations. Machine learning compared the importance of each independent influencing factor in the evaluation of GOS prediction after TBI, with results showing that the importance of X1 was better than that of coagulopathy alone. CONCLUSION: Coagulopathy combined with SDH thickness could be used as a new, accurate, and objective clinical predictor, and X1, based on combining coagulopathy with SDH thickness could be used to improve the accuracy of GOS prediction in patients with TBI, 6 months after discharge.

13.
J Nanobiotechnology ; 22(1): 244, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735969

ABSTRACT

Biomaterials can modulate the local immune microenvironments to promote peripheral nerve regeneration. Inspired by the spatial orderly distribution and endogenous electric field of nerve fibers, we aimed to investigate the synergistic effects of electrical and topological cues on immune microenvironments of peripheral nerve regeneration. Nerve guidance conduits (NGCs) with aligned electrospun nanofibers were fabricated using a polyurethane copolymer containing a conductive aniline trimer and degradable L-lysine (PUAT). In vitro experiments showed that the aligned PUAT (A-PUAT) membranes promoted the recruitment of macrophages and induced their polarization towards the pro-healing M2 phenotype, which subsequently facilitated the migration and myelination of Schwann cells. Furthermore, NGCs fabricated from A-PUAT increased the proportion of pro-healing macrophages and improved peripheral nerve regeneration in a rat model of sciatic nerve injury. In conclusion, this study demonstrated the potential application of NGCs in peripheral nerve regeneration from an immunomodulatory perspective and revealed A-PUAT as a clinically-actionable strategy for peripheral nerve injury.


Subject(s)
Macrophages , Nerve Regeneration , Peripheral Nerve Injuries , Polyurethanes , Rats, Sprague-Dawley , Schwann Cells , Animals , Nerve Regeneration/drug effects , Polyurethanes/chemistry , Rats , Macrophages/drug effects , Schwann Cells/drug effects , Nanofibers/chemistry , Sciatic Nerve/drug effects , Guided Tissue Regeneration/methods , Male , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Scaffolds/chemistry , Mice , RAW 264.7 Cells
14.
Inorg Chem ; 63(23): 10786-10797, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38772008

ABSTRACT

To date, developing crystalline proton-conductive metal-organic frameworks (MOFs) with an inherent excellent proton-conducting ability and structural stability has been a critical priority in addressing the technologies required for sustainable development and energy storage. Bearing this in mind, a multifunctional organic ligand, 3,4-dimethylthiophene[2,3-b]thiophene-2,5-dicarboxylic acid (H2DTD), was employed to generate two exceptionally stable three-dimensional porous Zr/Hf MOFs, [Zr6O4(OH)4(DTD)6]·5DMF·H2O (Zr-DTD) and [Hf6O4(OH)4(DTD)6]·4DMF·H2O (Hf-DTD), using solvothermal means. The presence of Zr6 or Hf6 nodes, strong Zr/Hf-O bonds, the electrical influence of the methyl group, and the steric effect of the thiophene unit all contribute to their structural stability throughout a wide pH range as well as in water. Their proton conductivity was fully examined at various relative humidities (RHs) and temperatures. Creating intricate and rich H-bonded networks between the guest water molecules, coordination solvent molecules, thiophene-S, -COOH, and -OH units within the framework assisted proton transfer. As a result, both MOFs manifest the maximum proton conductivity of 0.67 × 10-2 and 4.85 × 10-3 S·cm-1 under 98% RH/100 °C, making them the top-performing proton-conductive Zr/Hf-MOFs. Finally, by combining structural characteristics and activation energies, potential proton conduction pathways for the two MOFs were identified.

15.
Trials ; 25(1): 231, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570855

ABSTRACT

BACKGROUND: Breast cancer is the most prevalent cancer among women globally, and surgical procedures continue to be the primary treatment. However, over 50% of patients experience preoperative anxiety due to the unknown and fear associated with surgery. Although drug therapy is commonly used to address this anxiety, its side effects have led to a heated debate regarding its effectiveness. Consequently, non-pharmacological therapies, such as preoperative education, have emerged as an alternative approach to alleviate anxiety. WeChat, a widely popular social media platform, offers a public platform that can potentially be utilized for effective preoperative education. This study aims to evaluate the use of WeChat public platform as a tool for preoperative education in patients undergoing breast surgery. METHODS: This is a prospective, randomized, and controlled trial will involve 392 adult women scheduled for breast cancer resection. Participants will be randomly assigned to either the WeChat education group or the regular group. In addition to regular preoperative visits, the WeChat education group will also watch science videos through the WeChat public platform. The regular group will only receive education from ward nurses during preoperative visits. The primary outcome measure will be the incidence of preoperative anxiety, defined by scores of the State Anxiety Inventory (SAI) exceeding 40 points. Secondary outcome measures include the incidence of severe anxiety (SAI > 44) on the day before surgery, incidence of anxiety 72 h after surgery, incidence of severe anxiety 72 h after surgery, NRS scores for pain at rest and during activity 24, 48, and 72 h after surgery, incidence of nausea and vomiting within 24 h after surgery, subjective sleep score at 1 week postoperatively, quality of life QoR-15 scores at 1 and 3 months postoperatively, incidence of chronic pain at 3 months postoperatively, bowel function recovery, length of hospital stay, and hospitalization expenses. DISCUSSION: This is the first clinical trial to investigate the use of WeChat public platform for delivering preoperative education on perioperative anxiety in breast cancer patients. By utilizing the renowned WeChat public platform, our study aims to improve patient outcomes by providing video education that explains the disease, surgery, and anesthesia in a more accessible manner, thereby reducing the incidence of perioperative anxiety. If our hypothesis is confirmed, this non-pharmacological approach can be universally acknowledged as a cost-effective and practical method in clinical care. Its application can also be extended to other medical fields beyond breast cancer. TRIAL REGISTRATION: ClinicalTrials.gov, NCT05291494. Registered on 29 December 2021.


Subject(s)
Breast Neoplasms , Quality of Life , Adult , Humans , Female , Breast Neoplasms/surgery , Prospective Studies , Anxiety/diagnosis , Anxiety/etiology , Anxiety/prevention & control , Preoperative Care/methods , Randomized Controlled Trials as Topic
16.
Biophys J ; 123(12): 1519-1530, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38664968

ABSTRACT

The type II pneumocytes of the lungs secrete a mixture of lipids and proteins that together acts as a surfactant. The material forms a thin film on the surface of the liquid layer that lines the alveolar air sacks. When compressed by the decreasing alveolar surface area during exhalation, the films reduce surface tension to exceptionally low levels. Pulmonary surfactant is essential for preserving the integrity of the barrier between alveolar air and capillary blood during normal breathing. This review focuses on the major biophysical processes by which endogenous pulmonary surfactant achieves its function and the mechanisms involved in those processes. Vesicles of pulmonary surfactant adsorb rapidly from the alveolar liquid to form the interfacial film. Interfacial insertion, which requires the hydrophobic surfactant protein SP-B, proceeds by a process analogous to the fusion of two vesicles. When compressed, the adsorbed film desorbs slowly. Constituents remain at the surface at high interfacial concentrations that reduce surface tensions well below equilibrium levels. We review the models proposed to explain how pulmonary surfactant achieves both the rapid adsorption and slow desorption characteristic of a functional film.


Subject(s)
Pulmonary Surfactants , Pulmonary Surfactants/metabolism , Pulmonary Surfactants/chemistry , Humans , Animals , Models, Biological , Adsorption , Biophysical Phenomena , Surface Tension
17.
Front Comput Neurosci ; 18: 1358437, 2024.
Article in English | MEDLINE | ID: mdl-38449670

ABSTRACT

With the rapid increase of economic globalization, the significant expansion of shipping volume has resulted in shipping route congestion, causing the necessity of trajectory prediction for effective service and efficient management. While trajectory prediction can achieve a relatively high level of accuracy, the performance and generalization of prediction models remain critical bottlenecks. Therefore, this article proposes a dual-attention (DA) based end-to-end (E2E) neural network (DAE2ENet) for trajectory prediction. In the E2E structure, long short-term memory (LSTM) units are included for the task of pursuing sequential trajectory data from the encoder layer to the decoder layer. In DA mechanisms, global attention is introduced between the encoder and decoder layers to facilitate interactions between input and output trajectory sequences, and multi-head self-attention is utilized to extract sequential features from the input trajectory. In experiments, we use a ro-ro ship with a fixed navigation route as a case study. Compared with baseline models and benchmark neural networks, DAE2ENet can obtain higher performance on trajectory prediction, and better validation of environmental factors on ship navigation.

18.
Sens Actuators B Chem ; 4042024 Apr 01.
Article in English | MEDLINE | ID: mdl-38524639

ABSTRACT

Recent advances in Raman spectroscopy have shown great potential for non-invasive analyte sensing, but the lack of a standardized optical phantom for these measurements has hindered further progress. While many research groups have developed optical phantoms that mimic bulk optical absorption and scattering, these materials typically have strong Raman scattering, making it difficult to distinguish metabolite signals. As a result, solid tissue phantoms for spectroscopy have been limited to highly scattering tissues such as bones and calcifications, and metabolite sensing has been primarily performed using liquid tissue phantoms. To address this issue, we have developed a layered skin-mimetic phantom that can support metabolite sensing through Raman spectroscopy. Our approach incorporates millifluidic vasculature that mimics blood vessels to allow for diffusion akin to metabolite diffusion in the skin. Furthermore, our skin phantoms are mechanically mimetic, providing an ideal model for development of minimally invasive optical techniques. By providing a standardized platform for measuring metabolites, our approach has the potential to facilitate critical developments in spectroscopic techniques and improve our understanding of metabolite dynamics in vivo.

19.
Acta Crystallogr C Struct Chem ; 80(Pt 4): 104-114, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38470953

ABSTRACT

Six new pyrimidin-2-yl-substituted triaryltriazoles, namely, 4-(4-R-phenyl)-3-(pyridin-2-yl)-5-(pyrimidin-2-yl)-1,2,4-triazoles [L1: R = methoxy (OCH3); L2: R = methyl (CH3); L3: R = nil (H); L4: R = bromo (Br); L5: R = chloro (Cl); L6: R = fluoro (F)] have been successfully synthesized with yields in the range 68.3-81.7%. Compounds L1-6 have been characterized by UV-Vis, FT-IR, 1H NMR and ESI-MS spectroscopy, and elemental analysis. In addition, the structures of L2-6 and the ethanol monosolvate of L2 (L2·C2H5OH) have been determined by single-crystal X-ray diffraction. A combination of intermolecular O-H...N, C-H...O, C-H...N and C-H...π hydrogen bonds connects the components of L2·C2H5OH into a three-dimensional (3D) framework. A combination of three intermolecular C-H...N hydrogen bonds links the molecules of L2 or L3 into two different 3D networks. Both L4 and L5 show a similar 3D net structure through two intermolecular C-H...N hydrogen bonds and one kind of C-H...π interaction. However, L6 displays a more complicated 3D net structure via three intermolecular C-H...N hydrogen bonds and one kind of C-H...π interaction. Notably, an interaction between the π-electrons and the lone-pair p-electrons of a halogen atom (Br, Cl and F) is observed in L4-6, which will further stabilize the 3D networks. The intermolecular interactions in L2·C2H5OH and L2-6 were further investigated by 3D Hirshfeld surface analyses and 2D fingerprint plots to show that the prominent interactions are H...H, N...H/H...N and C...H/H...C contacts.

20.
Cell Rep ; 43(3): 113909, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38451814

ABSTRACT

The deciduous tree Idesia polycarpa can provide premium edible oil with high polyunsaturated fatty acid contents. Here, we generate its high-quality reference genome, which is ∼1.21 Gb, comprising 21 pseudochromosomes and 42,086 protein-coding genes. Phylogenetic and genomic synteny analyses show that it diverged with Populus trichocarpa about 16.28 million years ago. Notably, most fatty acid biosynthesis genes are not only increased in number in its genome but are also highly expressed in the fruits. Moreover, we identify, through genome-wide association analysis and RNA sequencing, the I. polycarpa SUGAR TRANSPORTER 5 (IpSTP5) gene as a positive regulator of high oil accumulation in the fruits. Silencing of IpSTP5 by virus-induced gene silencing causes a significant reduction of oil content in the fruits, suggesting it has the potential to be used as a molecular marker to breed the high-oil-content cultivars. Our results collectively lay the foundation for breeding the elite cultivars of I. polycarpa.


Subject(s)
Genome-Wide Association Study , Salicaceae , Phylogeny , Plant Breeding , Salicaceae/genetics , Base Sequence
SELECTION OF CITATIONS
SEARCH DETAIL