Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 82
1.
Parasit Vectors ; 17(1): 196, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38685096

BACKGROUND: Ixodes inopinatus was described from Spain on the basis of morphology and partial sequencing of 16S ribosomal DNA. However, several studies suggested that morphological differences between I. inopinatus and Ixodes ricinus are minimal and that 16S rDNA lacks the power to distinguish the two species. Furthermore, nuclear and mitochondrial markers indicated evidence of hybridization between I. inopinatus and I. ricinus. In this study, we tested our hypothesis on tick dispersal from North Africa to Southern Europe and determined the prevalence of selected tick-borne pathogens (TBPs) in I. inopinatus, I. ricinus, and their hybrids. METHODS: Ticks were collected in Italy and Algeria by flagging, identified by sequencing of partial TROSPA and COI genes, and screened for Borrelia burgdorferi s.l., B. miyamotoi, Rickettsia spp., and Anaplasma phagocytophilum by polymerase chain reaction and sequencing of specific markers. RESULTS: Out of the 380 ticks, in Italy, 92 were I. ricinus, 3 were I. inopinatus, and 136 were hybrids of the two species. All 149 ticks from Algeria were I. inopinatus. Overall, 60% of ticks were positive for at least one TBP. Borrelia burgdorferi s.l. was detected in 19.5% of ticks, and it was significantly more prevalent in Ixodes ticks from Algeria than in ticks from Italy. Prevalence of Rickettsia spotted fever group (SFG) was 51.1%, with significantly greater prevalence in ticks from Algeria than in ticks from Italy. Borrelia miyamotoi and A. phagocytophilum were detected in low prevalence (0.9% and 5.2%, respectively) and only in ticks from Italy. CONCLUSIONS: This study indicates that I. inopinatus is a dominant species in Algeria, while I. ricinus and hybrids were common in Italy. The higher prevalence of B. burgdorferi s.l. and Rickettsia SFG in I. inopinatus compared with that in I. ricinus might be due to geographical and ecological differences between these two tick species. The role of I. inopinatus in the epidemiology of TBPs needs further investigation in the Mediterranean Basin.


Ixodes , Rickettsia , Animals , Ixodes/microbiology , Italy/epidemiology , Algeria/epidemiology , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/classification , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Prevalence , Borrelia/genetics , Borrelia/isolation & purification , Borrelia/classification , Anaplasma phagocytophilum/genetics , Anaplasma phagocytophilum/isolation & purification , Anaplasma phagocytophilum/classification , Female , Hybridization, Genetic , Male , RNA, Ribosomal, 16S/genetics , Borrelia burgdorferi/genetics , Borrelia burgdorferi/isolation & purification , Borrelia burgdorferi/classification
2.
Vet Parasitol Reg Stud Reports ; 50: 101007, 2024 05.
Article En | MEDLINE | ID: mdl-38644036

The brown dog tick, Rhipicephalus sanguineus is a complex of tick species with an unsettled species concept. In Europe, R. sanguineus is considered mainly a Mediterranean tick with sporadic findings in central and northern Europe. R. sanguineus is known as a vector of a range of pathogens of medical and veterinary importance, most of which not yet reported as autochthonous in Hungary. A total of 1839 ticks collected by veterinarians from dogs and cats were obtained in Hungary. The study aims at precise determination of ticks identified as R. sanguineus and detection of pathogens in collected ticks. All ticks were morphologically determined and 169 individuals were identified as R. sanguineus. A subset of 15 ticks was selected for molecular analysis (16S rDNA, 12S rDNA, COI). Phylogenetic analyses invariably placed sequences of all three markers into a single haplotype identified as R. sanguineus sensu stricto. All 169 brown dog ticks were tested for the presence of A. platys, E. canis, R. conorii, B. vogeli and H. canis. None of the investigated ticks was positive for the screened pathogens, though A. phagocytophilum sequence was detected in a single tick.


Anaplasma , Dog Diseases , Phylogeny , RNA, Ribosomal , Rhipicephalus sanguineus , Tick Infestations , Animals , Dogs , Hungary , Rhipicephalus sanguineus/microbiology , Dog Diseases/parasitology , Dog Diseases/diagnosis , Tick Infestations/veterinary , Tick Infestations/parasitology , Female , Male , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology , Rickettsia conorii/isolation & purification , Rickettsia conorii/genetics , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Cats/parasitology , Ehrlichia canis/isolation & purification , Ehrlichia canis/genetics
3.
Infect Drug Resist ; 16: 7365-7375, 2023.
Article En | MEDLINE | ID: mdl-38050628

Purpose: Resistance of pathogenic strains of Escherichia coli to ß-lactams, particularly to ampicillin, is on the rise and it is attributed to intrinsic and acquired mechanisms. One important factor contributing to resistance, together with primarily resistance mechanisms, is a mutation and/or an over-expression of the intrinsic efflux pumps in the resistance-nodulation-division (RND) superfamily. Among these efflux pumps, AcrA, AcrB, TolC, and AcrD play an important role in antimicrobial co-resistance, including resistance to ß-lactams. Materials and Methods: Twelve E. coli isolates obtained from patients' wounds and the control strain of E. coli ATCC 25922 were analyzed. The phenotypic resistance of these isolates to selected ß-lactams was assessed by determination of the minimal inhibitory concentration. Additionally, the prevalence of ß-lactamase genes (blaTEM, blaCTX-M, blaSHV, and blaAmpC) was screened by PCR. Real-time qPCR was used to determine the expression of the selected efflux pumps acrA, acrB, tolC, and acrD and the repressor acrR after the exposure of E. coli to ampicillin. Results: Phenotypic resistance to ß-lactams was detected in seven isolates, mainly to ampicillin and piperacillin. This was corroborated by the presence of at least one acquired bla gene in each of these isolates. Although E. coli strains varied in the expression of RND-family efflux pumps after the ampicillin exposure, their gene expression indicated that these pumps did not play a major role in the phenotypic resistance to ampicillin. Conclusion: Each E. coli isolate displayed unique characteristics, differing in minimum inhibitory concentration (MIC) values, prevalence of acquired blaTEM and blaCTX-M genes, and expression of the RND-family pumps. This together demonstrates that these clinical isolates employed distinct intrinsic or acquired resistance pathways for their defense against ampicillin. The prevalence and spread of ampicillin resistant E. coli has to be monitored and the search for ampicillin alternatives is needed.

4.
mSystems ; 8(6): e0073323, 2023 Dec 21.
Article En | MEDLINE | ID: mdl-37905937

IMPORTANCE: A long-term exposure of bacteria to zinc oxide and zinc oxide nanoparticles leads to major alterations in bacterial morphology and physiology. These included biochemical and physiological processes promoting the emergence of strains with multi-drug resistance and virulence traits. After the removal of zinc pressure, bacterial phenotype reversed back to the original state; however, certain changes at the genomic, transcriptomic, and proteomic level remained. Why is this important? The extensive and intensive use of supplements in animal feed effects the intestinal microbiota of livestock and this may negatively impact the health of animals and people. Therefore, it is crucial to understand and monitor the impact of feed supplements on intestinal microorganisms in order to adequately assess and prevent potential health risks.


Zinc Oxide , Zinc , Humans , Animals , Zinc/pharmacology , Zinc Oxide/chemistry , Escherichia coli/genetics , Multiomics , Proteomics
5.
BMC Microbiol ; 23(1): 288, 2023 10 06.
Article En | MEDLINE | ID: mdl-37803300

OBJECTIVES: Resistance to antibiotics among bacteria of clinical importance, including Staphylococcus aureus, is a serious problem worldwide and the search for alternatives is needed. Some metal complexes have antibacterial properties and when combined with antibiotics, they may increase bacterial sensitivity to antimicrobials. In this study, we synthesized the iron complex and tested it in combination with ampicillin (Fe16 + AMP) against S. aureus. METHODS: An iron complex (Fe16) was synthesized and characterized using spectroscopy methods. Confirmation of the synergistic effect between the iron complex (Fe16) and ampicillin (AMP) was performed using ζ-potential, infrared spectra and FICI index calculated from the minimum inhibitory concentration (MIC) from the checkerboard assay. Cytotoxic properties of combination Fe16 + AMP was evaluated on eukaryotic cell line. Impact of combination Fe16 + AMP on chosen genes of S. aureus were performed by Quantitative Real-Time PCR. RESULTS: The MIC of Fe16 + AMP was significantly lower than that of AMP and Fe16 alone. Furthermore, the infrared spectroscopy revealed the change in the ζ-potential of Fe16 + AMP. We demonstrated the ability of Fe16 + AMP to disrupt the bacterial membrane of S. aureus and that likely allowed for better absorption of AMP. In addition, the change in gene expression of bacterial efflux pumps at the sub-inhibitory concentration of AMP suggests an insufficient import of iron into the bacterial cell. At the same time, Fe16 + AMP did not have any cytotoxic effects on keratinocytes. CONCLUSIONS: Combined Fe16 + AMP therapy demonstrated significant synergistic and antimicrobial effects against S. aureus. This study supports the potential of combination therapy and further research.


Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Ampicillin/pharmacology , Drug Synergism , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/drug therapy , Microbial Sensitivity Tests
6.
Parasit Vectors ; 16(1): 354, 2023 Oct 09.
Article En | MEDLINE | ID: mdl-37814284

BACKGROUND: Ixodes ricinus is an important vector of several pathogens, primarily in Europe. Recently, Ixodes inopinatus was described from Spain, Portugal, and North Africa and then reported from several European countries. In this study, a multiplex polymerase chain reaction (PCR) was developed to distinguish I. ricinus from I. inopinatus and used in the surveillance of I. inopinatus in Algeria (ALG) and three regions in the Czech Republic (CZ). METHODS: A multiplex PCR on TROSPA and sequencing of several mitochondrial (16S rDNA, COI) and nuclear markers (TROSPA, ITS2, calreticulin) were used to differentiate these two species and for a subsequent phylogenetic analysis. RESULTS: Sequencing of TROSPA, COI, and ITS2 separated these two species into two subclades, while 16S rDNA and calreticulin could not distinguish I. ricinus from I. inopinatus. Interestingly, 23 nucleotide positions in the TROSPA gene had consistently double peaks in a subset of ticks from CZ. Cloning of these PCR products led to a clear separation of I. ricinus and I. inopinatus indicating hybridization and introgression between these two tick taxa. Based on a multiplex PCR of TROSPA and analysis of sequences of TROSPA, COI, and ITS2, the majority of ticks in CZ were I. ricinus, no I. inopinatus ticks were found, and 10 specimens showed signs of hybridization. In contrast, most ticks in ALG were I. inopinatus, four ticks were I. ricinus, and no signs of hybridization and introgression were detected. CONCLUSIONS: We developed a multiplex PCR method based on the TROSPA gene to differentiate I. ricinus and I. inopinatus. We demonstrate the lack of evidence for the presence of I. inopinatus in Central Europe and propose that previous studies be re-examined. Mitochondrial markers are not suitable for distinguishing I. inopinatus from I. ricinus. Furthermore, our data indicate that I. inopinatus and I. ricinus can hybridize, and the hybrids can survive in Europe.


Ixodes , Animals , Multiplex Polymerase Chain Reaction , Phylogeny , Europe , DNA, Ribosomal/genetics
7.
BMC Microbiol ; 23(1): 207, 2023 08 02.
Article En | MEDLINE | ID: mdl-37528354

BACKGROUND: The emergence of antibiotic resistance in pathogenic bacteria has become a global threat, encouraging the adoption of efficient and effective alternatives to conventional antibiotics and promoting their use as replacements. Titanium dioxide nanoparticles (TiO2 NPs) have been reported to exhibit antibacterial properties. In this study, we synthesized and characterized TiO2 NPs in anatase and rutile forms with surface modification by geraniol (GER). RESULTS: The crystallinity and morphology of modified TiO2 NPs were analyzed by UV/Vis spectrophotometry, X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) with elemental mapping (EDS). The antimicrobial activity of TiO2 NPs with geraniol was assessed against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia coli. The minimum inhibitory concentration (MIC) values of modified NPs ranged from 0.25 to 1.0 mg/ml against all bacterial strains, and the live dead assay and fractional inhibitory concentration (FIC) supported the antibacterial properties of TiO2 NPs with GER. Moreover, TiO2 NPs with GER also showed a significant decrease in the biofilm thickness of MRSA. CONCLUSIONS: Our results suggest that TiO2 NPs with GER offer a promising alternative to antibiotics, particularly for controlling antibiotic-resistant strains. The surface modification of TiO2 NPs by geraniol resulted in enhanced antibacterial properties against multiple bacterial strains, including antibiotic-resistant MRSA. The potential applications of modified TiO2 NPs in the biomedical and environmental fields warrant further investigation.


Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Anti-Bacterial Agents/pharmacology , Bacteria , Microbial Sensitivity Tests
8.
Parasit Vectors ; 16(1): 80, 2023 Feb 28.
Article En | MEDLINE | ID: mdl-36855167

BACKGROUND: Although the tick-borne pathogen Anaplasma phagocytophilum is currently described as a single species, studies using genetic markers can distinguish groups of variants associated with different hosts, pathogenicity, zoonotic potential and biotic and geographic niches. The objective of our study was to investigate the genetic diversity of A. phagocytophilum and Ixodes ricinus ticks attached to people. METHODS: In collaboration with a commercial diagnostic company, a total of 52 DNA samples were obtained from ticks that tested positive for A. phagocytophilum by quantitative PCR. The genetic profile of each sample was determined using the groEL and ankA genes. Identification of the tick species was confirmed by partial sequencing of the COI subunit and a portion of the TROSPA gene. RESULTS: All 52 ticks were identified as I. ricinus. Two protocols of nested PCR amplifying 1293- and 407-bp fragments of groEL of A. phagocytophilum yielded amplicons of the expected size for all 52 samples. Among all sequences, we identified 10 unique genetic variants of groEL belonging to ecotype I and ecotype II. The analysis targeting ankA was successful in 46 of 52 ticks. Among all sequences, we identified 21 unique genetic variants phylogenetically belonging to three clusters. CONCLUSIONS: Our results indicate that ticks attached to people harbor distant genetic variants of A. phagocytophilum, some of which are not recognized as zoonotic. Further studies are needed to determine the risk of human infection by genetic variants other than those designated as zoonotic.


Anaplasma phagocytophilum , Ixodes , Humans , Animals , Anaplasma phagocytophilum/genetics , Ecotype , Polymerase Chain Reaction , Social Group
9.
Environ Microbiol ; 24(12): 5788-5808, 2022 12.
Article En | MEDLINE | ID: mdl-36054322

Psyllids are phloem-feeding insects that can transmit plant pathogens such as phytoplasmas, intracellular bacteria causing numerous plant diseases worldwide. Their microbiomes are essential for insect physiology and may also influence the capacity of vectors to transmit pathogens. Using 16S rRNA gene metabarcoding, we compared the microbiomes of three sympatric psyllid species associated with pear trees in Central Europe. All three species are able to transmit 'Candidatus Phytoplasma pyri', albeit with different efficiencies. Our results revealed potential relationships between insect biology and microbiome composition that varied during psyllid ontogeny and between generations in Cacopsylla pyri and C. pyricola, as well as between localities in C. pyri. In contrast, no variations related to psyllid life cycle and geography were detected in C. pyrisuga. In addition to the primary endosymbiont Carsonella ruddii, we detected another highly abundant endosymbiont (unclassified Enterobacteriaceae). C. pyri and C. pyricola shared the same taxon of Enterobacteriaceae which is related to endosymbionts harboured by other psyllid species from various families. In contrast, C. pyrisuga carried a different Enterobacteriaceae taxon related to the genus Sodalis. Our study provides new insights into host-symbiont interactions in psyllids and highlights the importance of host biology and geography in shaping microbiome structure.


Hemiptera , Microbiota , Pyrus , Humans , Animals , Hemiptera/microbiology , RNA, Ribosomal, 16S/genetics , Symbiosis , Enterobacteriaceae/genetics , Insecta , Microbiota/genetics
10.
Parasit Vectors ; 15(1): 248, 2022 Jul 09.
Article En | MEDLINE | ID: mdl-35810301

BACKGROUND: Ticks are obligate hematophagous arthropods transmitting a wide range of pathogens to humans and animals. They also harbor a non-pathogenic microbiota, primarily in the ovaries and the midgut. In the previous study on Ixodes ricinus, we used a culture-independent approach and showed a diverse but quantitatively poor midgut bacterial microbiome. Our analysis also revealed the absence of a core microbiome, suggesting an environmental origin of the tick midgut microbiota. METHODS: A bacterial analysis of the midgut of adult females collected by flagging from two localities in the Czech Republic was performed. Using the culture-independent approach, we tested the hypothesis that the midgut microbiome is of the environmental origin. We also cultured indigenous bacteria from the tick midgut and used these to feed ticks artificially in an attempt to manipulate the midgut microbiome. RESULTS: The midgut showed a very low prevalence and abundance of culturable bacteria, with only 37% of ticks positive for bacteria. The culture-independent approach revealed the presence of Borrelia sp., Spiroplasma sp., Rickettsia sp., Midichloria sp. and various mainly environmental Gram-positive bacterial taxa. The comparison of ticks from two regions revealed that the habitat influenced the midgut bacterial diversity. In addition, the midgut of ticks capillary fed with the indigenous Micrococcus luteus (Gram-positive) and Pantoea sp. (Gram-negative) could not be colonized due to rapid and effective clearance of both bacterial taxa. CONCLUSIONS: The midgut microbiome of I. ricinus is diverse but low in abundance, with the exception of tick-borne pathogens and symbionts. The environment impacts the diversity of the tick midgut microbiome. Ingested extracellular environmental bacteria are rapidly eliminated and are not able to colonize the gut. We hypothesize that bacterial elimination triggered in the midgut of unfed adult females is critical to maintain low microbial levels during blood-feeding.


Borrelia , Ixodes , Microbiota , Rickettsia , Animals , Czech Republic/epidemiology , Female , Ixodes/microbiology
11.
Ticks Tick Borne Dis ; 13(4): 101962, 2022 07.
Article En | MEDLINE | ID: mdl-35525214

Ticks are hematophagous ectoparasites that transmit a wide range of pathogens. The lone star tick, Amblyomma americanum, is one of the most widely distributed ticks in the Midwest and Eastern United States. Lone star ticks, as other three-host ixodid ticks, can survive in harsh environments for extended periods without a blood meal. Physiological mechanisms that allow them to survive during hot and dry seasons include thermal tolerance and water homeostasis. Dermal fluid secretions have been described in metastriate ticks including A. americanum. We hypothesized that tick dermal secretion in the unfed tick plays a role in thermoregulation, as described in other hematophagous arthropods during blood feeding. In this study, we found that physical contact with a heat probe at 45 °C or high environmental temperature at ∼50 °C can trigger dermal secretion in A. americanum and other metastriate ticks in the off-host period. We demonstrated that dermal secretion plays a role in evaporative cooling when ticks are exposed to high temperatures. We find that type II dermal glands, having paired two cells and forming large glandular structures, are the source of dermal secretion. The secretion was triggered by an injection of serotonin, and the serotonin-mediated secretion was suppressed by a pretreatment with ouabain, a Na/K-ATPase blocker, implying that the secretion is controlled by serotonin and the downstream Na/K-ATPase.


Ixodidae , Ticks , Adenosine Triphosphatases , Amblyomma , Animals , Body Temperature Regulation , Ixodidae/physiology , Serotonin , United States
12.
Ticks Tick Borne Dis ; 13(2): 101894, 2022 03.
Article En | MEDLINE | ID: mdl-34996002

Hyalomma marginatum and Hyalomma rufipes are important vectors of Crimean-Congo Hemorrhagic Fever Virus (CCHFV) in North Africa and Southern Europe. They are occasionally also reported from Central and Western Europe where they are likely introduced from their natural range by migratory birds. In this study, we report findings and molecular identification of adults and one nymph of H. marginatum and H. rufipes, primarily from horses from different regions of the Czech Republic. While the number of the reported ticks is small, this is likely to be an underrepresentation of the actual number. Due to their vector competence for CCHFV and potential expansion into new areas with a changing climate, surveillance programs in Europe are warranted.


Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Ixodidae , Ticks , Animals , Czech Republic , Horses , Humans
13.
Front Cell Infect Microbiol ; 12: 1081666, 2022.
Article En | MEDLINE | ID: mdl-36699720

In addition to being vectors of pathogenic bacteria, ticks also harbor intracellular bacteria that associate with ticks over generations, aka symbionts. The biological significance of such bacterial symbiosis has been described in several tick species but its function in Ixodes ricinus is not understood. We have previously shown that I. ricinus ticks are primarily inhabited by a single species of symbiont, Midichloria mitochondrii, an intracellular bacterium that resides and reproduces mainly in the mitochondria of ovaries of fully engorged I. ricinus females. To study the functional integration of M. mitochondrii into the biology of I. ricinus, an M. mitochondrii-depleted model of I. ricinus ticks was sought. Various techniques have been described in the literature to achieve dysbiosed or apo-symbiotic ticks with various degrees of success. To address the lack of a standardized experimental procedure for the production of apo-symbiotic ticks, we present here an approach utilizing the ex vivo membrane blood feeding system. In order to deplete M. mitochondrii from ovaries, we supplemented dietary blood with tetracycline. We noted, however, that the use of tetracycline caused immediate toxicity in ticks, caused by impairment of mitochondrial proteosynthesis. To overcome the tetracycline-mediated off-target effect, we established a protocol that leads to the production of an apo-symbiotic strain of I. ricinus, which can be sustained in subsequent generations. In two generations following tetracycline administration and tetracycline-mediated symbiont reduction, M. mitochondrii was gradually eliminated from the lineage. Larvae hatched from eggs laid by such M. mitochondrii-free females repeatedly performed poorly during blood-feeding, while the nymphs and adults performed similarly to controls. These data indicate that M. mitochondrii represents an integral component of tick ovarian tissue, and when absent, results in the formation of substandard larvae with reduced capacity to blood-feed.


Ixodes , Animals , Female , Ixodes/microbiology , Tetracycline , Anti-Bacterial Agents , Mitochondria , Symbiosis
14.
Microb Ecol ; 82(3): 602-612, 2021 Oct.
Article En | MEDLINE | ID: mdl-33547531

Anaplasma phagocytophilum is an important tick-borne zoonotic agent of human granulocytic anaplasmosis (HGA). In Europe, the Ixodes ticks are the main vector responsible for A. phagocytophilum transmission. A wide range of wild animals is involved in the circulation of this pathogen in the environment. Changes in populations of vertebrates living in different ecosystems impact the ecology of ticks and the epidemiology of tick-borne diseases. In this study, we investigated four species, Western European hedgehog (Erinaceus europaeus), northern white-breasted hedgehog (Erinaceus roumanicus), Eurasian red squirrel (Sciurus vulgaris), and the common blackbird (Turdus merula), to describe their role in the circulation of A. phagocytophilum in urban and periurban ecosystems. Ten different tissues were collected from cadavers of the four species, and blood and ear/skin samples from live blackbirds and hedgehogs. Using qPCR, we detected a high rate of A. phagocytophilum: Western European hedgehogs (96.4%), northern white-breasted hedgehogs (92.9%), Eurasian red squirrels (60%), and common blackbirds (33.8%). In the groEL gene, we found nine genotypes belonging to three ecotypes; seven of the genotypes are associated with HGA symptoms. Our findings underline the role of peridomestic animals in the ecology of A. phagocytophilum and indicate that cadavers are an important source of material for monitoring zoonotic pathogens. Concerning the high prevalence rate, all investigated species play an important role in the circulation of A. phagocytophilum in municipal areas; however, hedgehogs present the greatest anaplasmosis risk for humans. Common blackbirds and squirrels carry different A. phagocytophilum variants some of which are responsible for HGA.


Anaplasma phagocytophilum , Ixodes , Tick-Borne Diseases , Anaplasma phagocytophilum/genetics , Animals , Ecosystem , Hedgehogs , Humans
15.
Parasit Vectors ; 14(1): 49, 2021 Jan 14.
Article En | MEDLINE | ID: mdl-33446262

BACKGROUND: The lone star tick (Amblyomma americanum), an important vector of a wide range of human and animal pathogens, is very common throughout the East and Midwest of the USA. Ticks are known to carry non-pathogenic bacteria that may play a role in their vector competence for pathogens. Several previous studies using the high throughput sequencing (HTS) technologies reported the commensal bacteria in a tick midgut as abundant and diverse. In contrast, in our preliminary survey of the field collected adult lone star ticks, we found the number of culturable/viable bacteria very low. METHODS: We aimed to analyze the bacterial community of A. americanum by a parallel culture-dependent and a culture-independent approach applied to individual ticks. RESULTS: We analyzed 94 adult females collected in eastern Kansas and found that 60.8% of ticks had no culturable bacteria and the remaining ticks carried only 67.7 ± 42.8 colony-forming units (CFUs)/tick representing 26 genera. HTS of the 16S rRNA gene resulted in a total of 32 operational taxonomic units (OTUs) with the dominant endosymbiotic genera Coxiella and Rickettsia (> 95%). Remaining OTUs with very low abundance were typical soil bacterial taxa indicating their environmental origin. CONCLUSIONS: No correlation was found between the CFU abundance and the relative abundance from the culture-independent approach. This suggests that many culturable taxa detected by HTS but not by culture-dependent method were not viable or were not in their culturable state. Overall, our HTS results show that the midgut bacterial community of A. americanum is very poor without a core microbiome and the majority of bacteria are endosymbiotic.


Amblyomma/microbiology , Bacteria/genetics , High-Throughput Nucleotide Sequencing , Microbiota/genetics , Animals , Bacteria/classification , Bacteria/isolation & purification , Colony Count, Microbial/statistics & numerical data , Female , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
16.
Ticks Tick Borne Dis ; 12(1): 101558, 2021 01.
Article En | MEDLINE | ID: mdl-33010631

The wild boar (Sus scrofa) population has increased dramatically over the last decades throughout Europe and it has become a serious pest. In addition, the common habitat of wild boar and of the tick, Ixodes ricinus, indicates the potential of wild boar to play a role in epidemiology of epizootic and zoonotic tick-borne pathogens, including Anaplasma phagocytophilum. In Europe, epidemiological cycles and reservoirs of A. phagocytophilum, including its zoonotic haplotypes, are poorly understood. In this study, we focused on detection and further genetic characterization of A. phagocytophilum and piroplasmids in 550 wild boars from eleven districts of Moravia and Silesia in the Czech Republic. Using highly sensitive nested PCR targeting the groEL gene, the DNA of A. phagocytophilum was detected in 28 wild boars (5.1 %) representing six unique haplotypes. The dominant haplotype was found in 21 samples from 7 different districts. All detected haplotypes clustered in the largest clade representing the European ecotype I and the dominant haplotype fell to the subclade with the European human cases and strains from dogs and horses. Nested PCR targeting the variable region of the 18S rRNA gene of piroplasmids resulted in one positive sample with 99.8 % sequence identity to Babesia divergens. The presence of these two pathogens that are primarily circulated by I. ricinus confirms the local participation of wild boar in the host spectrum of this tick and warrants experimental studies to address wild boar as a reservoir of zoonotic haplotypes of A. phagocytophilum.


Anaplasma phagocytophilum/isolation & purification , Anaplasmosis/epidemiology , Babesiosis/epidemiology , Disease Reservoirs/veterinary , Genetic Variation , Piroplasmida/isolation & purification , Swine Diseases/epidemiology , Anaplasma phagocytophilum/genetics , Anaplasmosis/microbiology , Animals , Babesiosis/parasitology , Czech Republic/epidemiology , Disease Reservoirs/parasitology , Genes, Bacterial , Genes, Protozoan , Piroplasmida/genetics , Prevalence , Sus scrofa , Swine , Swine Diseases/microbiology , Swine Diseases/parasitology
17.
Foodborne Pathog Dis ; 18(1): 49-55, 2021 01.
Article En | MEDLINE | ID: mdl-32762548

Salmonella enterica serovar Typhimurium is a pathogen harbored by livestock and shed in their feces, which serves as an acquisition source for adult house flies. This study used a green fluorescent protein (GFP) expressing strain of Salmonella Typhimurium to assess its acquisition by and survival within house flies, and transmission from and between flies in the presence or absence of cantaloupe. Female house flies were exposed to manure inoculated with either sterile phosphate-buffered saline or GFP-Salmonella Typhimurium for 12 h, then used in four experiments each performed over 24 h. Experiment 1 assessed the survival of GFP-Salmonella Typhimurium within inoculated flies. Experiment 2 determined transmission of GFP-Salmonella Typhimurium from inoculated flies to cantaloupe. Experiment 3 assessed fly acquisition of GFP-Salmonella Typhimurium from inoculated cantaloupe. Experiment 4 evaluated transmission of GFP-Salmonella Typhimurium between inoculated flies and uninoculated flies in the presence and absence of cantaloupe. GFP-Salmonella Typhimurium survived in inoculated flies but bacterial abundance decreased between 0 and 6 h without cantaloupe present and between 0 and 6 h and 6 and 24 h with cantaloupe present. Uninoculated flies acquired GFP-Salmonella Typhimurium from inoculated cantaloupe and bacterial abundance increased in cantaloupe and flies from 6 to 24 h. More uninoculated flies exposed to inoculated flies acquired GFP-Salmonella Typhimurium when cantaloupe was present than when absent. We infer that the presence of a shared food source facilitated the transfer of GFP-Salmonella Typhimurium from inoculated to uninoculated flies. Our study demonstrated that house flies acquired, harbored, and excreted viable GFP-Salmonella Typhimurium and transferred bacteria to food and each other. Understanding the dynamics of bacterial acquisition and transmission of bacteria between flies and food helps in assessing the risk flies pose to food safety and human health.


Cucumis melo/microbiology , Houseflies/microbiology , Salmonella typhimurium/pathogenicity , Animals , Female , Food Contamination/analysis , Food Microbiology/methods , Green Fluorescent Proteins/metabolism
18.
Int J Syst Evol Microbiol ; 70(12): 6482-6490, 2020 Dec.
Article En | MEDLINE | ID: mdl-33125314

Strain CS-1T, a novel facultative anaerobic bacterium, was isolated from the larval gastrointestinal tract of the biting midge, Culicoides sonorensis, a vector of the epizootic haemorrhagic disease virus and the bluetongue virus. Cells were Gram-stain-positive, non-motile, non-spore-forming, pleomorphic rods. Optimal growth occurred at pH 7.5 and 37 °C. The G+C content of the genomic DNA was 38.3 mol%, estimated by using HPLC. The dominant cellular fatty acids were C14 : 0 (45.9 %) and C16 : 0 (26.6 %). The polar lipid profile comprised glycolipids, diphosphatidylglycerol, phospholipids and phosphoglycolipids. Respiratory quinones were not detected. Strain CS-1T had very low 16S rRNA gene similarity to members of the phylum Firmicutes: Macrococcus canis KM45013T (85 % similarity) and Turicibacter sanguinis MOL361T (88 % similarity). Phylogenetic analysis based on 16S rRNA, rpoB, gyrB genes, and conserved protein sequences of the whole genome revealed that strain CS-1T was related to members of the classes Bacilli and Erysipelotrichia within the phylum Firmicutes. Furthermore, average nucleotide identity and digital DNA-DNA hybridization analyses of the whole genome revealed very low sequence similarity to species of Bacilli and Erysipelotrichaceae (Macrococcus canis KM45013T and Turicibacter sp. H121). These results indicate that strain CS-1T belongs to the phylum Firmicutes and represents a new species of a novel genus, family, order and class. Based on the phenotypic, chemotaxonomic, phylogenetic and genomic characteristics, we propose the novel taxon Culicoidibacter larvae gen. nov., sp. nov. with the type strain CS-1T (=CCUG 71726T=DSM 106607T) within the hereby new proposed novel family Culicoidibacteraceae fam. nov., new order Culicoidibacaterales ord. nov. and new class Culicoidibacteria classis nov. in the phylum Firmicutes.


Ceratopogonidae/microbiology , Firmicutes/classification , Phylogeny , Animals , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/chemistry , Firmicutes/genetics , Gastrointestinal Tract/microbiology , Larva/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Species Specificity
19.
Insects ; 11(7)2020 Jun 28.
Article En | MEDLINE | ID: mdl-32605295

Adult house flies frequent microbe-rich sites such as urban dumpsters and animal facilities, and encounter and ingest bacteria during feeding and reproductive activities. Due to unique nutritional and reproductive needs, male and female flies demonstrate different interactions with microbe-rich substrates and therefore dissemination potential. We investigated culturable aerobic bacteria and coliform abundance in male and female flies (n = 107) collected from urban (restaurant dumpsters) and agricultural (dairy farm) sites. Whole-fly homogenate was aerobically cultured and enumerated on nonselective (tryptic soy agar; culturable bacteria) and selective (violet-red bile agar, VRBA; coliforms) media. Unique morphotypes from VRBA cultures of agricultural flies were identified and tested for susceptibility to 14 antimicrobials. Female flies harbored more bacteria than males and there was a sex by site interaction with sex effects on bacterial abundance at the urban site. Coliform abundance did not differ by sex, site or sex within site. Both male and female flies carried antimicrobial-resistant (AMR) bacteria: 36/38 isolates (95%) were resistant to ≥1 antimicrobial, 33/38 were multidrug-resistant (≥2), and 24/38 isolates were resistant to ≥4 antimicrobials. Our results emphasize the role of house flies in harboring bacteria including AMR strains that pose a risk to human and animal health.

20.
J Anim Sci Biotechnol ; 11: 59, 2020.
Article En | MEDLINE | ID: mdl-32528676

BACKGROUND: The high doses of zinc oxide (ZnO) administered orally to piglets for the prevention of diarrhea and increase of growth rate can contaminate pig farms and the surrounding environment. Therefore, there is a need to find a replacement of high doses of dietary ZnO with an equally effective alternative. In the present study, the effect of two formulations of zinc phosphate-based nanoparticles (ZnA and ZnC NPs) on growth performance, intestinal microbiota, antioxidant status, and intestinal and liver morphology was evaluated. A total of 100 weaned piglets were randomly divided into 10 equal groups with the base diet (control) or the base diet supplemented with ZnA, ZnC, or ZnO at concentrations 500, 1000, and 2000 mg Zn per kilogram of diet. Supplements were given to animals for 10 days. Fecal samples were collected on day 0, 5, 10 and 20. At the end of the treatment (day 10), three piglets from each group were sacrificed and analyzed. RESULTS: Comparing to that of control, the significantly higher piglet weight gain was observed in all piglet groups fed with ZnA (P < 0.05). Differences in the total aerobic bacteria and coliform counts in piglet feces after NPs supplementation compared to that of control and ZnO groups were also found (P < 0.05). The majority of aerobic culturable bacteria from the feces represented Escherichia (28.57-47.62%), Enterococcus (3.85-35.71%), and Streptococcus (3.70-42.31%) spp. A total of 542 Escherichia coli isolates were screened for the virulence genes STa, STb, Stx2, F4, and F18. The substantial occurrence of E. coli virulence factors was found on day 5, mainly in fimbrillary antigen and thermostable toxins, except for piglets fed by ZnC. Zn treatment decreased Zn blood levels in piglets fed with ZnO and ZnA (500 mg/kg) and increased in ZnC (2000 mg/kg) compared to that of control (P < 0.05). The antioxidant status of piglets was affected only by ZnA. While some changes in the liver and the intestinal morphology of piglets with NPs were observed, none were serious as reflected by the normal health status and increased weigh gain performance. CONCLUSIONS: Our results indicate that ZnA NPs have a positive effect on the piglet growth performance even at the lowest concentration. The prevalence of E. coli virulence factors was lowest in pigs supplemented with ZnC. Zinc phosphate-based nanoparticles may be an effective alternative to ZnO.

...