Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Appl Microbiol Biotechnol ; 108(1): 44, 2024 Dec.
Article En | MEDLINE | ID: mdl-38180554

Poly-ß-hydroxybutyrate (PHB) is a potential source of biodegradable plastics that are environmentally friendly due to their complete degradation to water and carbon dioxide. This study aimed to investigate PHB production in the cyanobacterium Synechocystis sp. PCC6714 MT_a24 in an outdoor bioreactor using urban wastewater as a sole nutrient source. The culture was grown in a thin-layer raceway pond with a working volume of 100 L, reaching a biomass density of up to 3.5 g L-1 of cell dry weight (CDW). The maximum PHB content was found under nutrient-limiting conditions in the late stationary phase, reaching 23.7 ± 2.2% PHB per CDW. These data are one of the highest reported for photosynthetic production of PHB by cyanobacteria, moreover using urban wastewater in pilot-scale cultivation which multiplies the potential of sustainable cultivation approaches. Contamination by grazers (Poterioochromonas malhamensis) was managed by culturing Synechocystis in a highly alkaline environment (pH about 10.5) which did not significantly affect the culture growth. Furthermore, the strain MT_a24 showed significant wastewater nutrient remediation removing about 72% of nitrogen and 67% of phosphorus. These trials demonstrate that the photosynthetic production of PHB by Synechocystis sp. PCC6714 MT_a24 in the outdoor thin-layer bioreactor using urban wastewater and ambient carbon dioxide. It shows a promising approach for the cost-effective and sustainable production of biodegradable carbon-negative plastics. KEY POINTS: • High PHB production by cyanobacteria in outdoor raceway pond • Urban wastewater used as a sole source of nutrients for phototrophic growth • Potential for cost-effective and sustainable production of biodegradable plastics.


Biodegradable Plastics , Synechocystis , Carbon Dioxide , Hydroxybutyrates , Polyesters , Ponds , Wastewater
2.
J Fungi (Basel) ; 7(2)2021 Feb 06.
Article En | MEDLINE | ID: mdl-33562172

The interest in using non-conventional yeasts to produce value-added compounds from low cost substrates, such as lignocellulosic materials, has increased in recent years. Setting out to discover novel microbial strains that can be used in biorefineries, an Issatchenkia orientalis strain was isolated from waste cooking oil (WCO) and its capability to produce ethanol from wheat straw hydrolysate (WSHL) was analyzed. As with previously isolated I. orientalis strains, WCO-isolated I. orientalis KJ27-7 is thermotolerant. It grows well at elevated temperatures up to 42 °C. Furthermore, spot drop tests showed that it is tolerant to various chemical fermentation inhibitors that are derived from the pre-treatment of lignocellulosic materials. I. orientalis KJ27-7 is particularly tolerant to acetic acid (up to 75 mM) and tolerates 10 mM formic acid, 5 mM furfural and 10 mM hydroxymethylfurfural. Important for biotechnological cellulosic ethanol production, I. orientalis KJ27-7 grows well on plates containing up to 10% ethanol and media containing up to 90% WSHL. As observed in shake flask fermentations, the specific ethanol productivity correlates with WSHL concentrations. In 90% WSHL media, I. orientalis KJ27-7 produced 10.3 g L-1 ethanol within 24 h. This corresponds to a product yield of 0.50 g g-1 glucose (97% of the theoretical maximum) and a volumetric productivity of 0.43 g L-1 h-1. Therefore, I. orientalis KJ27-7 is an efficient producer of lignocellulosic ethanol from WSHL.

3.
AMB Express ; 10(1): 78, 2020 Apr 20.
Article En | MEDLINE | ID: mdl-32314068

Meyerozyma guilliermondii, a non-conventional yeast that naturally assimilates xylose, is considered as a candidate for biotechnological production of the sugar alternative xylitol. Because the genes of the xylose metabolism were yet unknown, all efforts published so far to increase the xylitol yield of this yeast are limited to fermentation optimization. Hence, this study aimed to genetically engineer this organism for the first time with the objective to increase xylitol production. Therefore, the previously uncharacterized genes of M. guilliermondii ATCC 6260 encoding for xylose reductase (XR) and xylitol dehydrogenase (XDH) were identified by pathway investigations and sequence similarity analysis. Cloning and overexpression of the putative XR as well as knockout of the putative XDH genes generated strains with about threefold increased xylitol yield. Strains that combined both genetic modifications displayed fivefold increase in overall xylitol yield. Enzymatic activity assays with lysates of XR overexpressing and XDH knockout strains underlined the presumed functions of the respective genes. Furthermore, growth evaluation of the engineered strains on xylose as sole carbon source provides insights into xylose metabolism and its utilization for cell growth.

4.
J Biol Chem ; 293(22): 8600-8613, 2018 06 01.
Article En | MEDLINE | ID: mdl-29669808

The plasminogen system is essential for dissolution of fibrin clots, and in addition, it is involved in a wide variety of other physiological processes, including proteolytic activation of growth factors, cell migration, and removal of protein aggregates. On the other hand, uncontrolled plasminogen activation contributes to many pathological processes (e.g. tumor cells' invasion in cancer progression). Moreover, some virulent bacterial species (e.g. Streptococci or Borrelia) bind human plasminogen and hijack the host's plasminogen system to penetrate tissue barriers. Thus, the conversion of plasminogen to the active serine protease plasmin must be tightly regulated. Here, we show that human lactoferrin, an iron-binding milk glycoprotein, blocks plasminogen activation on the cell surface by direct binding to human plasminogen. We mapped the mutual binding sites to the N-terminal region of lactoferrin, encompassed also in the bioactive peptide lactoferricin, and kringle 5 of plasminogen. Finally, lactoferrin blocked tumor cell invasion in vitro and also plasminogen activation driven by Borrelia Our results explain many diverse biological properties of lactoferrin and also suggest that lactoferrin may be useful as a potential tool for therapeutic interventions to prevent both invasive malignant cells and virulent bacteria from penetrating host tissues.


Borrelia/metabolism , Fibrinolysin/metabolism , Fibrinolysis , Lactoferrin/metabolism , Plasminogen/antagonists & inhibitors , Streptococcus/metabolism , Cell Movement , Cells, Cultured , Crystallography, X-Ray , Humans , Lactoferrin/chemistry , Lactoferrin/genetics , Plasminogen/metabolism , Protein Conformation
5.
Nanomedicine ; 14(1): 123-130, 2018 01.
Article En | MEDLINE | ID: mdl-28939491

Liposomes functionalized with monoclonal antibodies or their antigen-binding fragments have attracted much attention as specific drug delivery devices for treatment of various diseases including cancer. The conjugation of antibodies to liposomes is usually achieved by covalent coupling using cross-linkers in a reaction that might adversely affect the characteristics of the final product. Here we present an alternative strategy for liposome functionalization: we created a recombinant Fab antibody fragment genetically fused on its C-terminus to the hydrophobic peptide derived from pulmonary surfactant protein D, which became inserted into the liposomal bilayer during liposomal preparation and anchored the Fab onto the liposome surface. The Fab-conjugated liposomes specifically recognized antigen-positive cells and efficiently delivered their cargo, the Alexa Fluor 647 dye, into target cells in vitro and in vivo. In conclusion, our approach offers the potential for straightforward development of nanomedicines functionalized with an antibody of choice without the need of harmful cross-linkers.


Antibodies, Monoclonal/immunology , Immunoglobulin Fab Fragments/immunology , Liposomes/chemistry , Lymphoma/immunology , Peptide Fragments/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , CD48 Antigen/metabolism , CD59 Antigens/metabolism , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/metabolism , Jurkat Cells , Lymphoma/metabolism , Lymphoma/pathology , Mice , Peptide Fragments/metabolism , Pulmonary Surfactant-Associated Protein D/immunology , Pulmonary Surfactant-Associated Protein D/metabolism , Tumor Cells, Cultured
6.
Sci Signal ; 8(395): rs11, 2015 Sep 22.
Article En | MEDLINE | ID: mdl-26396269

Lipid rafts, a distinct class of highly dynamic cell membrane microdomains, are integral to cell homeostasis, differentiation, and signaling. However, their quantitative examination is challenging when working with rare cells, developmentally heterogeneous cell populations, or molecules that only associate weakly with lipid rafts. We present a fast biochemical method, which is based on lipid raft components associating with the nucleus upon partial lysis during centrifugation through nonionic detergent. Requiring little starting material or effort, our protocol enabled the multidimensional flow cytometric quantitation of raft-resident proteins with single-cell resolution, thereby assessing the membrane components from a few cells in complex cell populations, as well as their dynamics resulting from cell signaling, differentiation, or genetic mutation.


Cell Differentiation , Flow Cytometry/methods , Membrane Microdomains/metabolism , Membrane Proteins/metabolism , Mutation , Signal Transduction , Humans , Jurkat Cells , Membrane Microdomains/genetics , Membrane Proteins/genetics
7.
J Immunol ; 193(6): 2718-32, 2014 Sep 15.
Article En | MEDLINE | ID: mdl-25127865

The spatial and temporal organization of T cell signaling molecules is increasingly accepted as a crucial step in controlling T cell activation. CD222, also known as the cation-independent mannose 6-phosphate/insulin-like growth factor 2 receptor, is the central component of endosomal transport pathways. In this study, we show that CD222 is a key regulator of the early T cell signaling cascade. Knockdown of CD222 hampers the effective progression of TCR-induced signaling and subsequent effector functions, which can be rescued via reconstitution of CD222 expression. We decipher that Lck is retained in the cytosol of CD222-deficient cells, which obstructs the recruitment of Lck to CD45 at the cell surface, resulting in an abundant inhibitory phosphorylation signature on Lck at the steady state. Hence, CD222 specifically controls the balance between active and inactive Lck in resting T cells, which guarantees operative T cell effector functions.


Leukocyte Common Antigens/immunology , Lymphocyte Activation/immunology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/immunology , Receptor, IGF Type 2/immunology , T-Lymphocytes/immunology , Animals , Cell Line, Tumor , Humans , Jurkat Cells , Lymphocyte Activation/genetics , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Membrane Transport Proteins/immunology , Mice , Phosphorylation , RNA Interference , RNA, Small Interfering , Receptor, IGF Type 2/biosynthesis , Receptor, IGF Type 2/genetics , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology
8.
J Biol Chem ; 287(27): 22450-62, 2012 Jun 29.
Article En | MEDLINE | ID: mdl-22613725

The plasminogen (Plg) activation cascade on the cell surface plays a central role in cell migration and is involved in a plethora of physiological and pathological processes. Its regulation is coordinated by many receptors, in particular the urokinase-type plasminogen activator receptor (uPAR, CD87), receptors that physically interact and functionally cooperate with uPAR, and Plg binding molecules. Here we studied the impact of one of the Plg binding molecules, the mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P-IGF2R, CD222), on cellular Plg activation. By developing both in vitro and in vivo Plg activation assays on size-fractionated lysates of M6P-IGF2R-silenced cells, we identified Plg-associated complexes with M6P-IGF2R as the regulatory factor. Using lipid raft preserving versus dissolving detergents, we found lipid dependence of the Plg regulatory function of these complexes. Furthermore, M6P-IGF2R-silencing in uPAR-positive human cell lines reduced internalization of Plg, resulting in elevated Plg activation. In contrast, the expression of human M6P-IGF2R in mouse embryonic fibroblasts derived from M6P-IGF2R knock-out mice enhanced Plg internalization. Finally, peptide 18-36 derived from the Plg-binding site within M6P-IGF2R enhanced Plg uptake. Thus, by targeting Plg to endocytic pathways, M6P-IGF2R appears to control Plg activation within cells that might be important to restrict plasmin activity to specific sites and substrates.


Endocytosis/physiology , Fibrinolysis/physiology , Plasminogen/metabolism , Receptor, IGF Type 2/metabolism , Animals , Cell Compartmentation/physiology , Cell Line, Transformed , Cell Line, Tumor , Cell Movement/physiology , Fibrinolysin/metabolism , Fibroblasts/cytology , Humans , Kidney Neoplasms , Membrane Microdomains/physiology , Mice , Monocytes/cytology , Mutagenesis, Site-Directed , RNA, Small Interfering/genetics , Receptor, IGF Type 2/genetics
...