Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
2.
Nat Aging ; 4(4): 435-436, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38486032
3.
Nat Commun ; 14(1): 7086, 2023 11 04.
Article in English | MEDLINE | ID: mdl-37925537

ABSTRACT

Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism activated in ~10-15% of cancers, characterized by telomeric damage. Telomeric damage-induced long non-coding RNAs (dilncRNAs) are transcribed at dysfunctional telomeres and contribute to telomeric DNA damage response (DDR) activation and repair. Here we observed that telomeric dilncRNAs are preferentially elevated in ALT cells. Inhibition of C-rich (teloC) dilncRNAs with antisense oligonucleotides leads to DNA replication stress responses, increased genomic instability, and apoptosis induction selectively in ALT cells. Cell death is dependent on DNA replication and is increased by DNA replication stress. Mechanistically, teloC dilncRNA inhibition reduces RAD51 and 53BP1 recruitment to telomeres, boosts the engagement of BIR machinery, and increases C-circles and telomeric sister chromatid exchanges, without increasing telomeric non-S phase synthesis. These results indicate that teloC dilncRNA is necessary for a coordinated recruitment of DDR factors to ALT telomeres and it is essential for ALT cancer cells survival.


Subject(s)
Telomerase , Telomere Homeostasis , Telomere Homeostasis/genetics , DNA Replication , RNA , Cell Survival/genetics , Telomere/genetics , Telomere/metabolism , Telomerase/genetics , Telomerase/metabolism
4.
Nat Cell Biol ; 25(4): 550-564, 2023 04.
Article in English | MEDLINE | ID: mdl-36894671

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although SARS-CoV-2 was reported to alter several cellular pathways, its impact on DNA integrity and the mechanisms involved remain unknown. Here we show that SARS-CoV-2 causes DNA damage and elicits an altered DNA damage response. Mechanistically, SARS-CoV-2 proteins ORF6 and NSP13 cause degradation of the DNA damage response kinase CHK1 through proteasome and autophagy, respectively. CHK1 loss leads to deoxynucleoside triphosphate (dNTP) shortage, causing impaired S-phase progression, DNA damage, pro-inflammatory pathways activation and cellular senescence. Supplementation of deoxynucleosides reduces that. Furthermore, SARS-CoV-2 N-protein impairs 53BP1 focal recruitment by interfering with damage-induced long non-coding RNAs, thus reducing DNA repair. Key observations are recapitulated in SARS-CoV-2-infected mice and patients with COVID-19. We propose that SARS-CoV-2, by boosting ribonucleoside triphosphate levels to promote its replication at the expense of dNTPs and by hijacking damage-induced long non-coding RNAs' biology, threatens genome integrity and causes altered DNA damage response activation, induction of inflammation and cellular senescence.


Subject(s)
COVID-19 , Animals , Mice , SARS-CoV-2 , Cellular Senescence , DNA Damage
5.
Cell Death Dis ; 14(2): 96, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36759506

ABSTRACT

Telomere maintenance is necessary to maintain cancer cell unlimited viability. However, the mechanisms maintaining telomere length in colorectal cancer (CRC) have not been extensively investigated. Telomere maintenance mechanisms (TMM) include the re-expression of telomerase or alternative lengthening of telomeres (ALT). ALT is genetically associated with somatic alterations in alpha-thalassemia/mental retardation X-linked (ATRX) and death domain-associated protein (DAXX) genes. Cells displaying ALT present distinctive features including C-circles made of telomeric DNA, long and heterogenous telomeric tracts, and telomeric DNA co-localized with promyelocytic leukemia (PML) bodies forming so-called ALT-associated PML bodies (APBs). Here, we identified mutations in ATRX and/or DAXX genes in an extensive collection of CRC samples including 119 patient-derived organoids (PDOs) and 232 established CRC cell lines. C-circles measured in CRC PDOs and cell lines showed low levels overall. We also observed that CRC PDOs and cell lines did not display a significant accumulation of APBs or long telomeres with no appreciable differences between wild-type and mutated ATRX/DAXX samples. Overall, our extensive analyses indicate that CRC is not prone to engage ALT, even when carrying genetic lesions in ATRX and/or DAXX, and support the notion that ATRX/DAXX genomic footprints are not reliable predictors of ALT.


Subject(s)
Colorectal Neoplasms , Intellectual Disability , Telomerase , alpha-Thalassemia , Humans , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism , Telomere Homeostasis/genetics , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Telomerase/genetics , Telomerase/metabolism , Mutation/genetics , Cell Line , Telomere/genetics , Telomere/metabolism , Organoids/metabolism , Colorectal Neoplasms/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
7.
Nat Mater ; 22(5): 644-655, 2023 05.
Article in English | MEDLINE | ID: mdl-36581770

ABSTRACT

The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rings. The chronic strains and stresses associated with unjamming together with the reduction of Lamin B1 levels eventually result in DNA damage and nuclear envelope ruptures, with the release of cytosolic DNA that activates a cGAS-STING (cyclic GMP-AMP synthase-signalling adaptor stimulator of interferon genes)-dependent cytosolic DNA response gene program. This mechanically driven transcriptional rewiring ultimately alters the cell state, with the emergence of malignant traits, including epithelial-to-mesenchymal plasticity phenotypes and chemoresistance in invasive breast carcinoma.


Subject(s)
Actins , Neoplasms , DNA , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Cytosol/metabolism , Signal Transduction
8.
Nat Cell Biol ; 24(2): 135-147, 2022 02.
Article in English | MEDLINE | ID: mdl-35165420

ABSTRACT

Ageing organisms accumulate senescent cells that are thought to contribute to body dysfunction. Telomere shortening and damage are recognized causes of cellular senescence and ageing. Several human conditions associated with normal ageing are precipitated by accelerated telomere dysfunction. Here, we systematize a large body of evidence and propose a coherent perspective to recognize the broad contribution of telomeric dysfunction to human pathologies.


Subject(s)
Aging/metabolism , Cellular Senescence , Noncommunicable Diseases , Telomere Homeostasis , Telomere Shortening , Telomere/metabolism , Age Factors , Aging/genetics , Aging/pathology , Animals , DNA Damage , Humans , Telomere/genetics , Telomere/pathology
9.
Nat Commun ; 13(1): 226, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017534

ABSTRACT

Defects in BRCA1, BRCA2 and other genes of the homology-dependent DNA repair (HR) pathway cause an elevated rate of mutagenesis, eliciting specific mutation patterns including COSMIC signature SBS3. Using genome sequencing of knock-out cell lines we show that Y family translesion synthesis (TLS) polymerases contribute to the spontaneous generation of base substitution and short insertion/deletion mutations in BRCA1 deficient cells, and that TLS on DNA adducts is increased in BRCA1 and BRCA2 mutants. The inactivation of 53BP1 in BRCA1 mutant cells markedly reduces TLS-specific mutagenesis, and rescues the deficiency of template switch-mediated gene conversions in the immunoglobulin V locus of BRCA1 mutant chicken DT40 cells. 53BP1 also promotes TLS in human cellular extracts in vitro. Our results show that HR deficiency-specific mutagenesis is largely caused by TLS, and suggest a function for 53BP1 in regulating the choice between TLS and error-free template switching in replicative DNA damage bypass.


Subject(s)
BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Gene Conversion , Mutation, Missense , BRCA2 Protein/metabolism , DNA Adducts , DNA Damage , DNA Repair , Humans , Mutagenesis , Tumor Suppressor p53-Binding Protein 1
10.
EMBO Rep ; 23(2): e53658, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34854526

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19), known to be more common in the elderly, who also show more severe symptoms and are at higher risk of hospitalization and death. Here, we show that the expression of the angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 cell receptor, increases during aging in mouse and human lungs. ACE2 expression increases upon telomere shortening or dysfunction in both cultured mammalian cells and in vivo in mice. This increase is controlled at the transcriptional level, and Ace2 promoter activity is DNA damage response (DDR)-dependent. Both pharmacological global DDR inhibition of ATM kinase activity and selective telomeric DDR inhibition by the use of antisense oligonucleotides prevent Ace2 upregulation following telomere damage in cultured cells and in mice. We propose that during aging telomere dysfunction due to telomeric shortening or damage triggers DDR activation and this causes the upregulation of ACE2, the SARS-CoV-2 cell receptor, thus contributing to make the elderly more susceptible to the infection.


Subject(s)
Aging , Angiotensin-Converting Enzyme 2/genetics , COVID-19 , DNA Damage , Telomere , Aged , Aging/genetics , Animals , Humans , Mice , SARS-CoV-2 , Telomere/genetics
11.
Cell Rep ; 36(11): 109694, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34525372

ABSTRACT

Chromatin organization plays a crucial role in tissue homeostasis. Heterochromatin relaxation and consequent unscheduled mobilization of transposable elements (TEs) are emerging as key contributors of aging and aging-related pathologies, including Alzheimer's disease (AD) and cancer. However, the mechanisms governing heterochromatin maintenance or its relaxation in pathological conditions remain poorly understood. Here we show that PIN1, the only phosphorylation-specific cis/trans prolyl isomerase, whose loss is associated with premature aging and AD, is essential to preserve heterochromatin. We demonstrate that this PIN1 function is conserved from Drosophila to humans and prevents TE mobilization-dependent neurodegeneration and cognitive defects. Mechanistically, PIN1 maintains nuclear type-B Lamin structure and anchoring function for heterochromatin protein 1α (HP1α). This mechanism prevents nuclear envelope alterations and heterochromatin relaxation under mechanical stress, which is a key contributor to aging-related pathologies.


Subject(s)
Drosophila Proteins/metabolism , Heterochromatin/metabolism , Lamin Type B/metabolism , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Peptidylprolyl Isomerase/metabolism , Stress, Mechanical , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Cells, Cultured , Chromobox Protein Homolog 5/genetics , Chromobox Protein Homolog 5/metabolism , DNA Transposable Elements/genetics , Drosophila/metabolism , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/genetics , Humans , Lamin Type B/chemistry , Mice , Mice, Inbred C57BL , NIMA-Interacting Peptidylprolyl Isomerase/antagonists & inhibitors , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Neocortex/cytology , Neocortex/metabolism , Neurons/cytology , Neurons/metabolism , Nuclear Envelope/chemistry , Peptidylprolyl Isomerase/antagonists & inhibitors , Peptidylprolyl Isomerase/genetics , Phosphorylation , RNA Interference , RNA, Small Interfering/metabolism
12.
Commun Biol ; 4(1): 611, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34021256

ABSTRACT

Accumulation of vascular smooth muscle cells (VSMCs) is a hallmark of multiple vascular pathologies, including following neointimal formation after injury and atherosclerosis. However, human VSMCs in advanced atherosclerotic lesions show reduced cell proliferation, extensive and persistent DNA damage, and features of premature cell senescence. Here, we report that stress-induced premature senescence (SIPS) and stable expression of a telomeric repeat-binding factor 2 protein mutant (TRF2T188A) induce senescence of human VSMCs, associated with persistent telomeric DNA damage. VSMC senescence is associated with formation of micronuclei, activation of cGAS-STING cytoplasmic sensing, and induction of multiple pro-inflammatory cytokines. VSMC-specific TRF2T188A expression in a multicolor clonal VSMC-tracking mouse model shows no change in VSMC clonal patches after injury, but an increase in neointima formation, outward remodeling, senescence and immune/inflammatory cell infiltration or retention. We suggest that persistent telomere damage in VSMCs inducing cell senescence has a major role in driving persistent inflammation in vascular disease.


Subject(s)
Atherosclerosis/pathology , Cellular Senescence , Inflammation/pathology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Neointima/pathology , Telomere/pathology , Animals , Atherosclerosis/etiology , Atherosclerosis/metabolism , Cell Proliferation , Cells, Cultured , DNA Damage , Disease Models, Animal , Humans , Inflammation/etiology , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/physiology , Muscle Proteins/physiology , Muscle, Smooth, Vascular/immunology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/immunology , Myocytes, Smooth Muscle/metabolism , Neointima/etiology , Neointima/metabolism , Telomere/genetics , Telomeric Repeat Binding Protein 2/metabolism
13.
J Cell Sci ; 134(6)2021 03 22.
Article in English | MEDLINE | ID: mdl-33558311

ABSTRACT

The DNA damage response (DDR) is the signaling cascade that recognizes DNA double-strand breaks (DSBs) and promotes their resolution via the DNA repair pathways of non-homologous end joining (NHEJ) or homologous recombination (HR). We and others have shown that DDR activation requires DROSHA; however, whether DROSHA exerts its functions by associating with damage sites, what controls its recruitment, and how DROSHA influences DNA repair remains poorly understood. Here, we show that DROSHA associates with DSBs independently of transcription. Neither H2AX, nor ATM or DNA-PK kinase activities are required for recruitment of DROSHA to break sites. Rather, DROSHA interacts with RAD50, and inhibition of the MRN complex by mirin treatment abolishes this interaction. MRN complex inactivation by RAD50 knockdown or mirin treatment prevents DROSHA recruitment to DSBs and, as a consequence, also prevents 53BP1 (also known as TP53BP1) recruitment. During DNA repair, DROSHA inactivation reduces NHEJ and boosts HR frequency. Indeed, DROSHA knockdown also increases the association of downstream HR factors such as RAD51 to DNA ends. Overall, our results demonstrate that DROSHA is recruited at DSBs by the MRN complex and directs DNA repair towards NHEJ.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA Damage/genetics , DNA Repair/genetics , Homologous Recombination
14.
Cell Rep ; 34(1): 108565, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33406426

ABSTRACT

The MRE11-RAD50-NBS1 (MRN) complex supports the synthesis of damage-induced long non-coding RNA (dilncRNA) by RNA polymerase II (RNAPII) from DNA double-strand breaks (DSBs) by an unknown mechanism. Here, we show that recombinant human MRN and native RNAPII are sufficient to reconstitute a minimal functional transcriptional apparatus at DSBs. MRN recruits and stabilizes RNAPII at DSBs. Unexpectedly, transcription is promoted independently from MRN nuclease activities. Rather, transcription depends on the ability of MRN to melt DNA ends, as shown by the use of MRN mutants and specific allosteric inhibitors. Single-molecule FRET assays with wild-type and mutant MRN show a tight correlation between the ability to melt DNA ends and to promote transcription. The addition of RPA enhances MRN-mediated transcription, and unpaired DNA ends allow MRN-independent transcription by RNAPII. These results support a model in which MRN generates single-strand DNA ends that favor the initiation of transcription by RNAPII.


Subject(s)
Acid Anhydride Hydrolases/metabolism , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , MRE11 Homologue Protein/metabolism , Nuclear Proteins/metabolism , Nucleic Acid Denaturation , RNA Polymerase II/metabolism , RNA, Long Noncoding/biosynthesis , Transcription, Genetic , Acid Anhydride Hydrolases/genetics , Cell Cycle Proteins/genetics , DNA Breaks, Double-Stranded , DNA Damage , DNA Repair , DNA-Binding Proteins/genetics , HeLa Cells , Humans , MRE11 Homologue Protein/genetics , Mutation , Nuclear Proteins/genetics , RNA Polymerase II/genetics , RNA, Long Noncoding/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
15.
Nat Rev Mol Cell Biol ; 22(2): 75-95, 2021 02.
Article in English | MEDLINE | ID: mdl-33328614

ABSTRACT

Cellular senescence, first described in vitro in 1961, has become a focus for biotech companies that target it to ameliorate a variety of human conditions. Eminently characterized by a permanent proliferation arrest, cellular senescence occurs in response to endogenous and exogenous stresses, including telomere dysfunction, oncogene activation and persistent DNA damage. Cellular senescence can also be a controlled programme occurring in diverse biological processes, including embryonic development. Senescent cell extrinsic activities, broadly related to the activation of a senescence-associated secretory phenotype, amplify the impact of cell-intrinsic proliferative arrest and contribute to impaired tissue regeneration, chronic age-associated diseases and organismal ageing. This Review discusses the mechanisms and modulators of cellular senescence establishment and induction of a senescence-associated secretory phenotype, and provides an overview of cellular senescence as an emerging opportunity to intervene through senolytic and senomorphic therapies in ageing and ageing-associated diseases.


Subject(s)
Aging , Cellular Senescence , Telomere , Translational Research, Biomedical , Animals , Cell Proliferation , DNA Damage , Humans , Phenotype
16.
Trends Genet ; 37(4): 337-354, 2021 04.
Article in English | MEDLINE | ID: mdl-33020022

ABSTRACT

Subcellular compartmentalization contributes to the organization of a plethora of molecular events occurring within cells. This can be achieved in membraneless organelles generated through liquid-liquid phase separation (LLPS), a demixing process that separates and concentrates cellular reactions. RNA is often a critical factor in mediating LLPS. Recent evidence indicates that DNA damage response foci are membraneless structures formed via LLPS and modulated by noncoding transcripts synthesized at DNA damage sites. Neurodegeneration is often associated with DNA damage, and dysfunctional LLPS events can lead to the formation of toxic aggregates. In this review, we discuss those gene products involved in neurodegeneration that undergo LLPS and their involvement in the DNA damage response.


Subject(s)
DNA Damage/genetics , Nerve Degeneration/genetics , Organelles/genetics , Transcription, Genetic , Humans , Liquid-Liquid Extraction , Nerve Degeneration/pathology , Organelles/chemistry , Phase Transition
17.
Int J Mol Sci ; 21(24)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371452

ABSTRACT

Because of their intrinsic characteristics, telomeres are genomic loci that pose significant problems during the replication of the genome. In particular, it has been observed that telomeres that are maintained in cancer cells by the alternative mechanism of the lengthening of telomeres (ALT) harbor higher levels of replicative stress compared with telomerase-positive cancer cells. R-loops are three-stranded structures formed by a DNA:RNA hybrid and a displaced ssDNA. Emerging evidence suggests that controlling the levels of R-loops at ALT telomeres is critical for telomere maintenance. In fact, on the one hand, they favor telomere recombination, but on the other, they are a source of detrimental replicative stress. DRIP (DNA:RNA immunoprecipitation) is the main technique used for the detection of R-loops, and it is based on the use of the S9.6 antibody, which recognizes preferentially DNA:RNA hybrids in a sequence-independent manner. The detection of DNA:RNA hybrids in repetitive sequences such as telomeres requires some additional precautions as a result of their repetitive nature. Here, we share an optimized protocol for the detection of telomeric DNA:RNA hybrids, and we demonstrate its application in an ALT and in a telomerase-positive cell line. We demonstrate that ALT telomeres bear higher levels of DNA:RNA hybrids, and we propose this method as a reliable way to detect them in telomeres.


Subject(s)
DNA/analysis , Polymerase Chain Reaction/methods , RNA/analysis , Telomere/genetics , DNA/genetics , HeLa Cells , Humans , RNA/genetics , Telomerase/metabolism , Telomere Homeostasis
18.
Ageing Res Rev ; 62: 101115, 2020 09.
Article in English | MEDLINE | ID: mdl-32565330

ABSTRACT

Telomeres, the ends of eukaryotic chromosomes, play a central role in the control of cellular senescence and organismal ageing and need to be protected in order to avoid being recognised as damaged DNA and activate DNA damage response pathways. Dysfunctional telomeres arise from critically short telomeres or altered telomere structures, which ultimately lead to replicative cellular senescence and chromosome instability: both hallmarks of ageing. The observation that telomeres are transcribed led to the discovery that telomeric transcripts play important roles in chromosome end protection and genome stability maintenance. Recent evidence indicates that particular long non-coding (nc)RNAs transcribed at telomeres, namely TElomeric Repeat-containing RNA (TERRA) and telomeric damage-induced long ncRNAs (tdilncRNA), play key roles in age-related pathways by actively orchestrating the mechanisms known to regulate telomere length, chromosome end protection and DNA damage signalling. Here, we provide a comprehensive overview of the telomere transcriptome, outlining how it functions as a regulatory platform with essential functions in safeguarding telomere integrity and stability. We next review emerging antisense oligonucleotides therapeutic strategies that target telomeric ncRNAs and discuss their potential for ameliorating ageing and age-related diseases. Altogether, this review provides insights on the biological relevance of telomere transcription mechanisms in human ageing physiology and pathology.


Subject(s)
Telomere , Aging/genetics , Cellular Senescence/genetics , Genomic Instability , Humans , RNA, Untranslated/genetics , Telomere/genetics
19.
Nat Commun ; 10(1): 4990, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31740672

ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) is a genetic disorder characterized by premature aging features. Cells from HGPS patients express progerin, a truncated form of Lamin A, which perturbs cellular homeostasis leading to nuclear shape alterations, genome instability, heterochromatin loss, telomere dysfunction and premature entry into cellular senescence. Recently, we reported that telomere dysfunction induces the transcription of telomeric non-coding RNAs (tncRNAs) which control the DNA damage response (DDR) at dysfunctional telomeres. Here we show that progerin-induced telomere dysfunction induces the transcription of tncRNAs. Their functional inhibition by sequence-specific telomeric antisense oligonucleotides (tASOs) prevents full DDR activation and premature cellular senescence in various HGPS cell systems, including HGPS patient fibroblasts. We also show in vivo that tASO treatment significantly enhances skin homeostasis and lifespan in a transgenic HGPS mouse model. In summary, our results demonstrate an important role for telomeric DDR activation in HGPS progeroid detrimental phenotypes in vitro and in vivo.


Subject(s)
DNA Damage , Progeria/pathology , Telomere/metabolism , Animals , Cell Line , Cell Proliferation , Cellular Senescence , DNA Repair , Disease Models, Animal , Homeostasis , Lamin Type A/genetics , Lamin Type A/metabolism , Mice , Mutation/genetics , Oligonucleotides, Antisense/metabolism , Phenotype , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Skin/pathology
20.
Nat Cell Biol ; 21(10): 1286-1299, 2019 10.
Article in English | MEDLINE | ID: mdl-31570834

ABSTRACT

Damage-induced long non-coding RNAs (dilncRNA) synthesized at DNA double-strand breaks (DSBs) by RNA polymerase II are necessary for DNA-damage-response (DDR) focus formation. We demonstrate that induction of DSBs results in the assembly of functional promoters that include a complete RNA polymerase II preinitiation complex, MED1 and CDK9. Absence or inactivation of these factors causes a reduction in DDR foci both in vivo and in an in vitro system that reconstitutes DDR events on nucleosomes. We also show that dilncRNAs drive molecular crowding of DDR proteins, such as 53BP1, into foci that exhibit liquid-liquid phase-separation condensate properties. We propose that the assembly of DSB-induced transcriptional promoters drives RNA synthesis, which stimulates phase separation of DDR factors in the shape of foci.


Subject(s)
Cyclin-Dependent Kinase 9/genetics , DNA Repair , DNA/genetics , Mediator Complex Subunit 1/metabolism , Transcription, Genetic , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase 9/metabolism , DNA/metabolism , DNA Breaks, Double-Stranded , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Histones/genetics , Histones/metabolism , Humans , Mediator Complex Subunit 1/genetics , Osteoblasts/cytology , Osteoblasts/metabolism , Promoter Regions, Genetic , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL